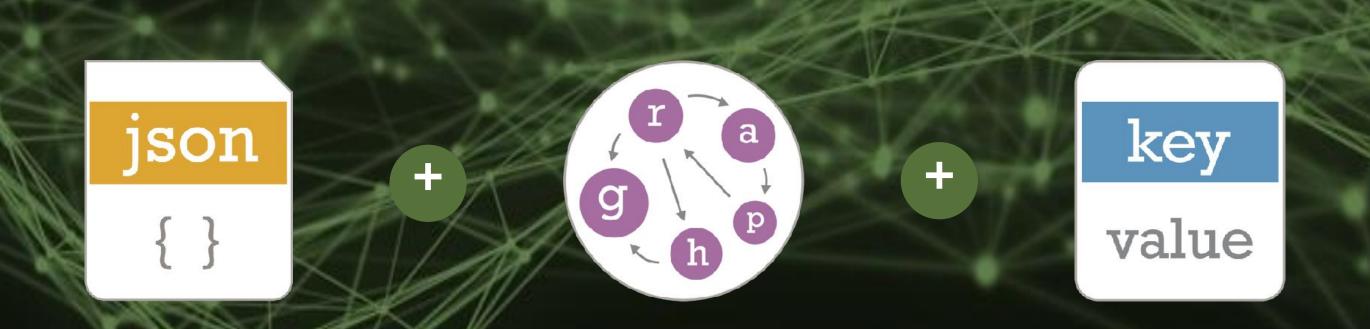


The case for a common metadata layer for machine learning platforms From Data to Metadata



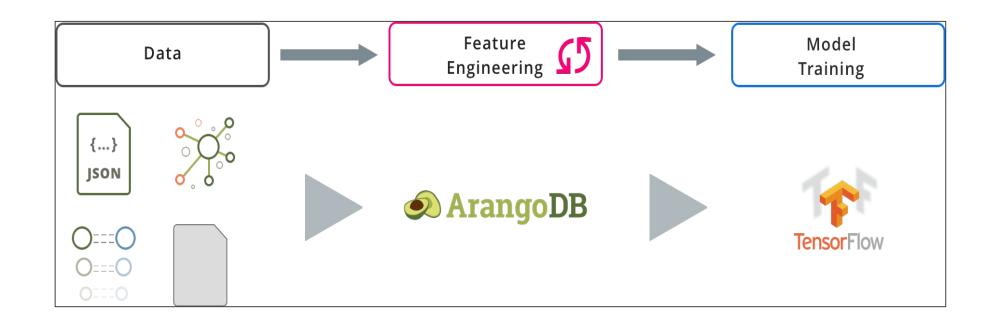
Databases and Machine Learning

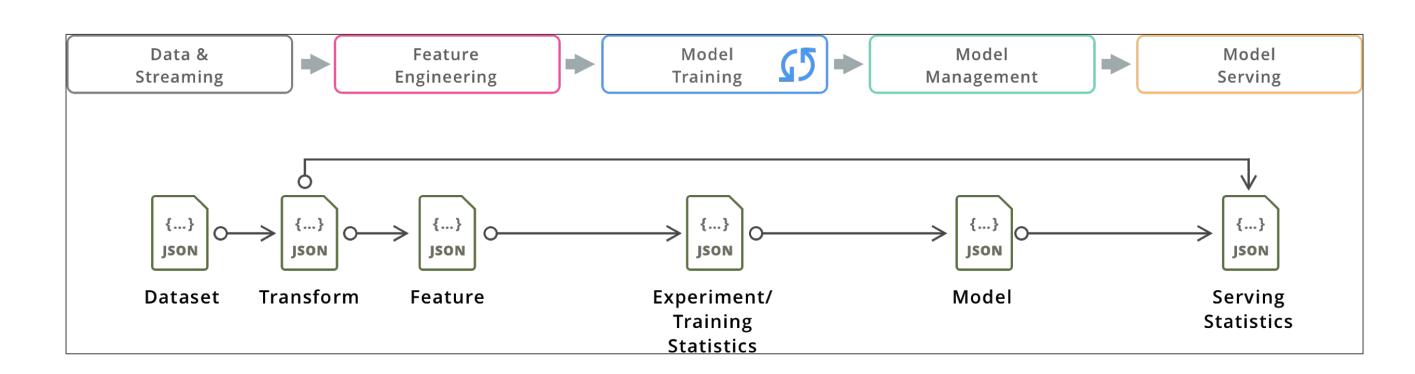
Multi-Model-Powered Machine Learning

Feature and Model Engineering

Databases for Machine Learning Infrastructure

 Utilize Multi-Model for managing heterogeneous metadata across Machine Learning Pipelines



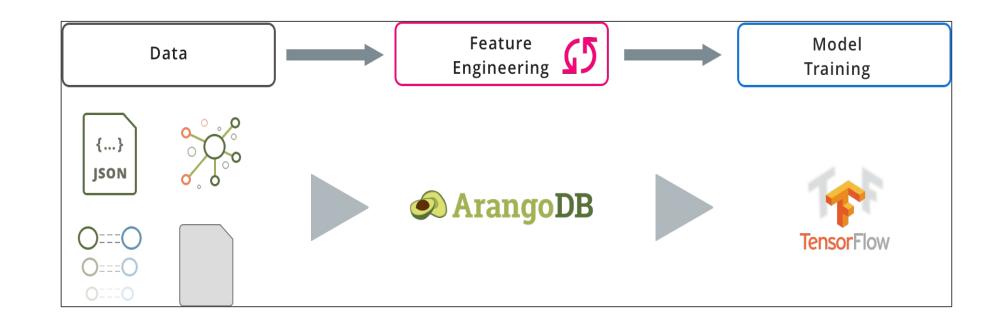


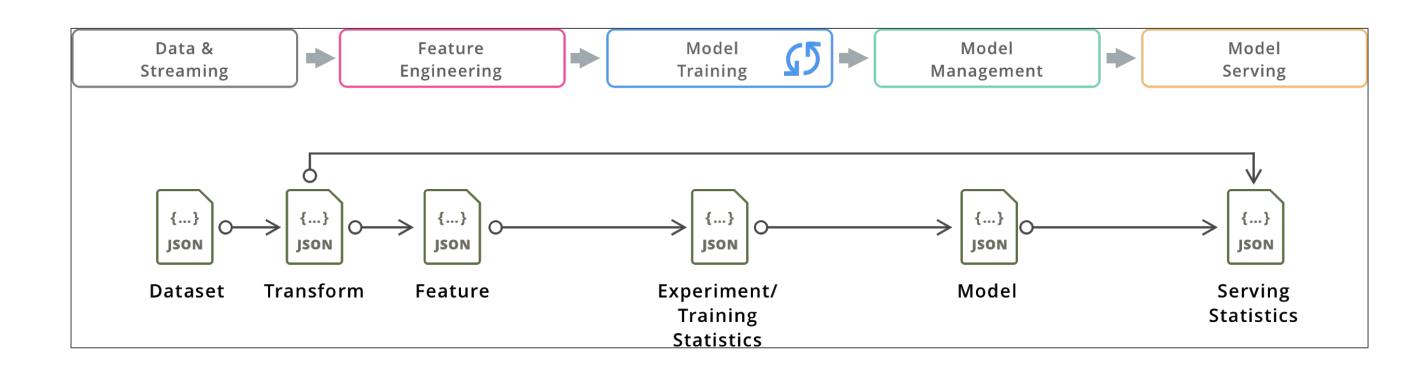
Multi-Model-Powered Machine Learning

Feature and Model Engineering

Databases for Machine Learning Infrastructure

 Utilize Multi-Model for managing heterogeneous metadata across Machine Learning Pipelines

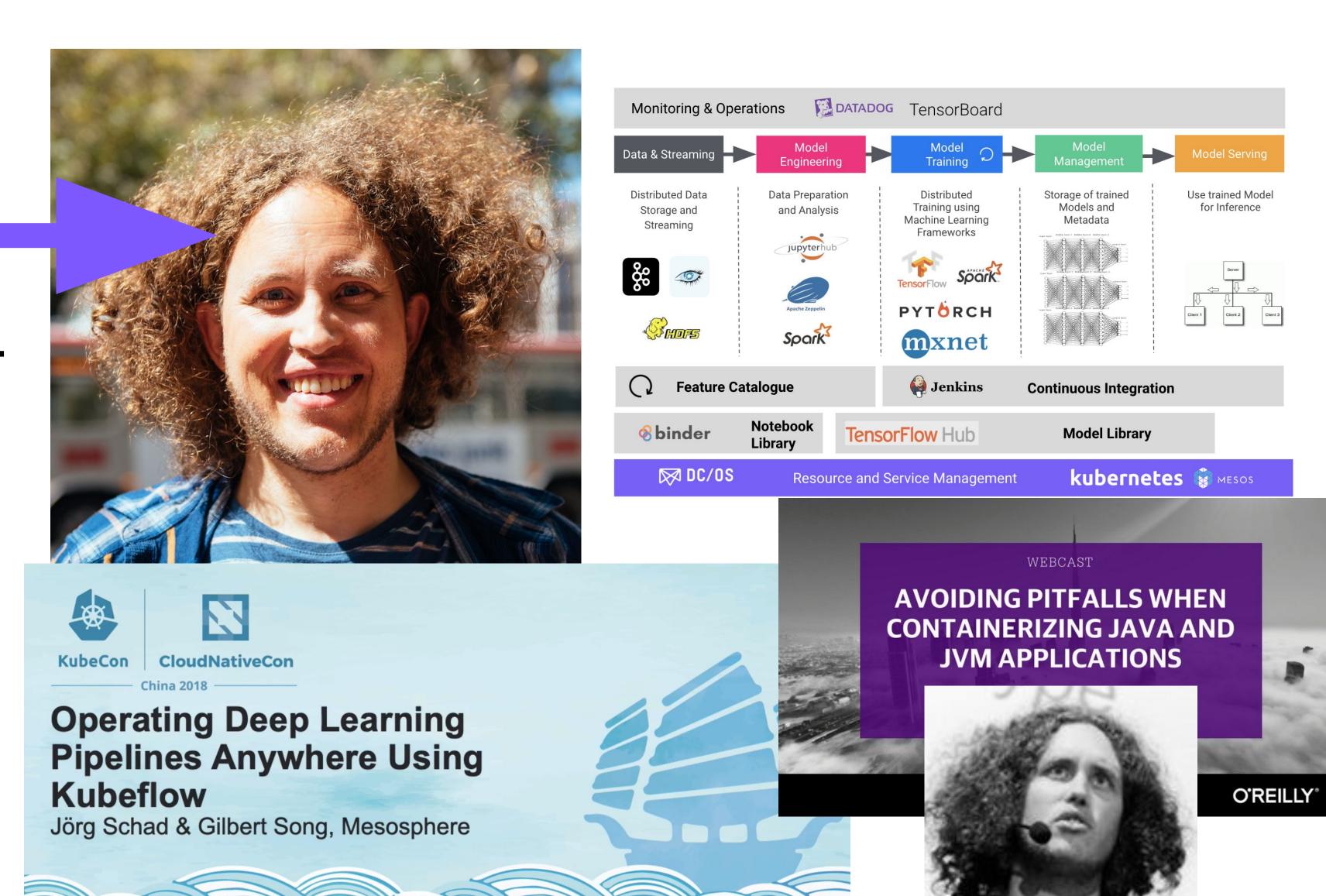




Jörg Schad, PhD

Head of Engineering and ML @ArangoDB

- Suki.ai
- Mesosphere
- Architect @SAP Hana
- PhD Distributed DB Systems
- Twitter: @joerg_schad

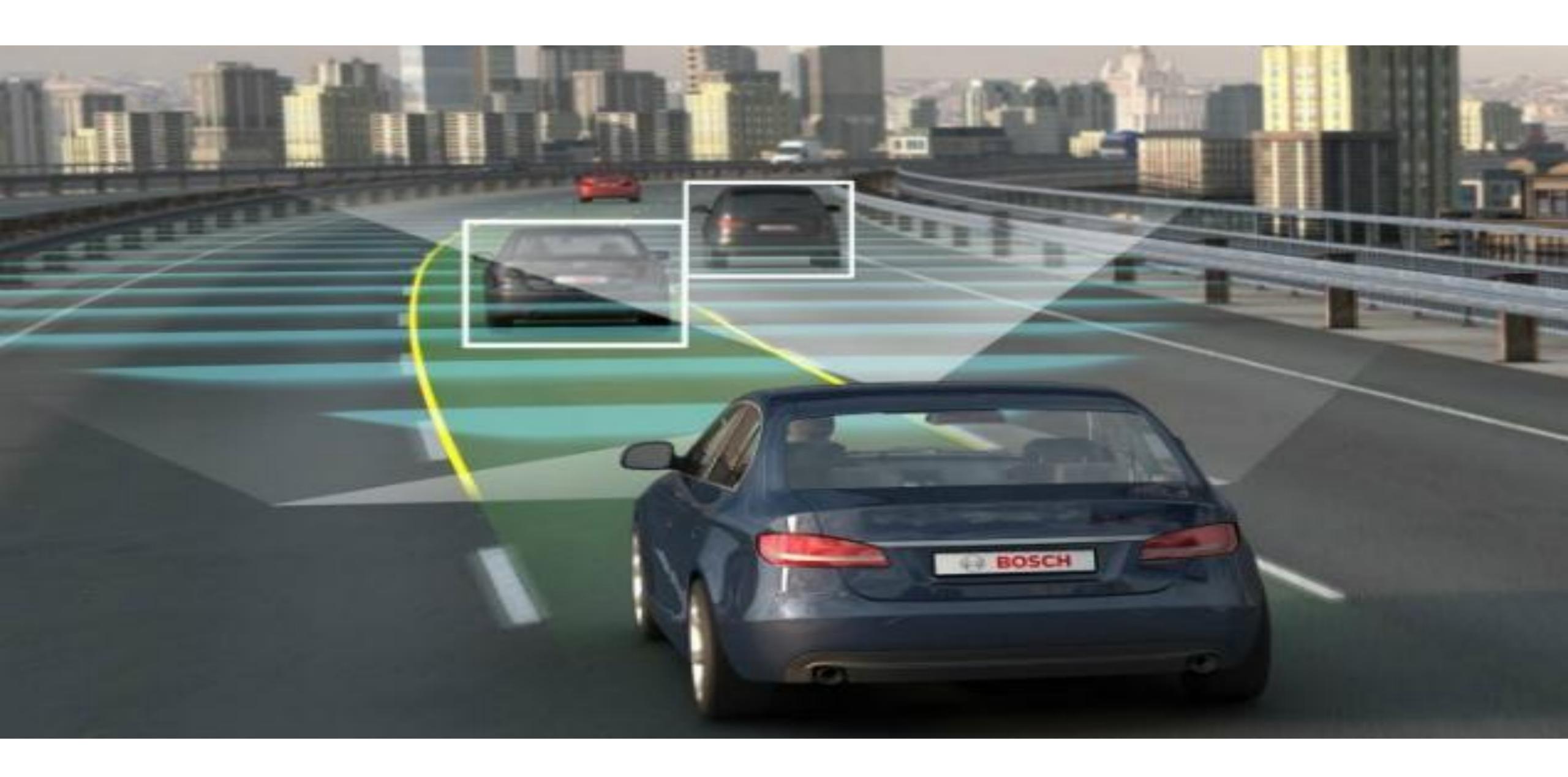


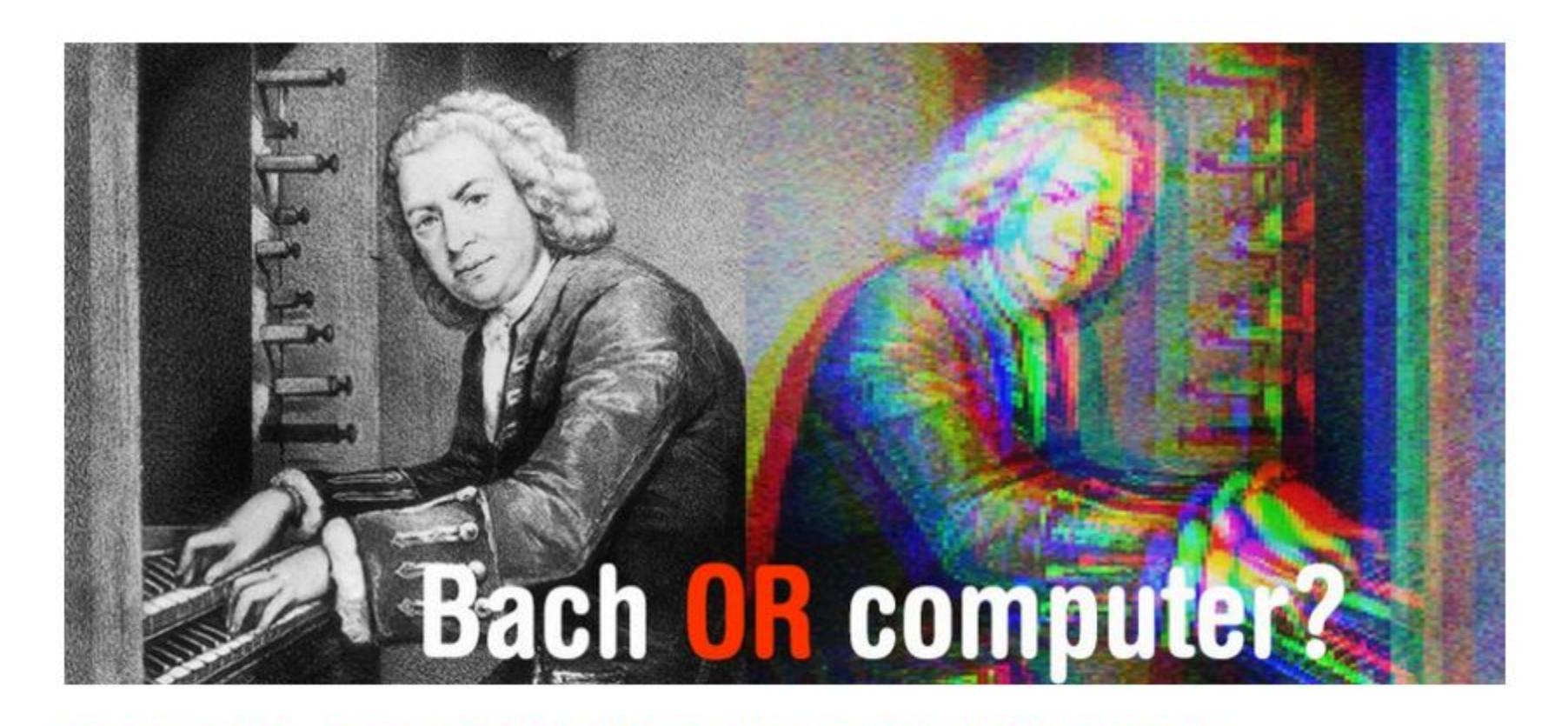
Why is machine learning taking off?

Convolutions

Subsampling

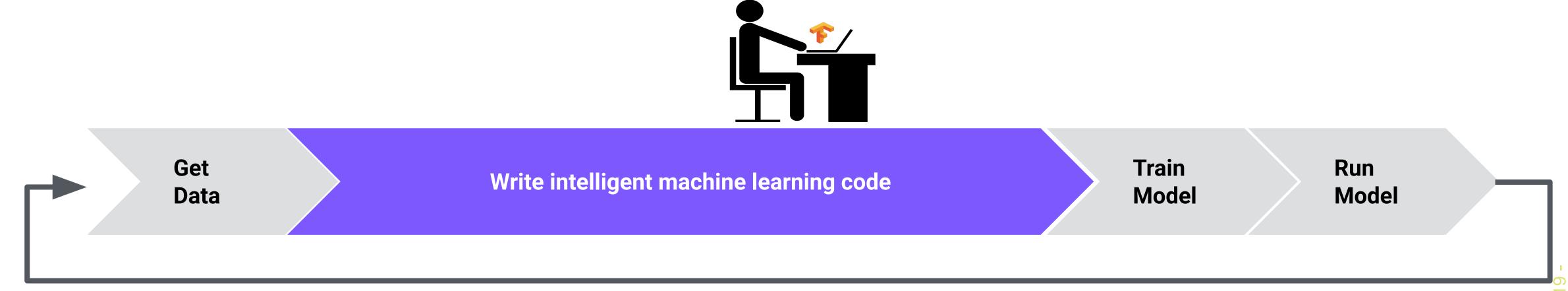
Convolutions Subsampling Fully connected





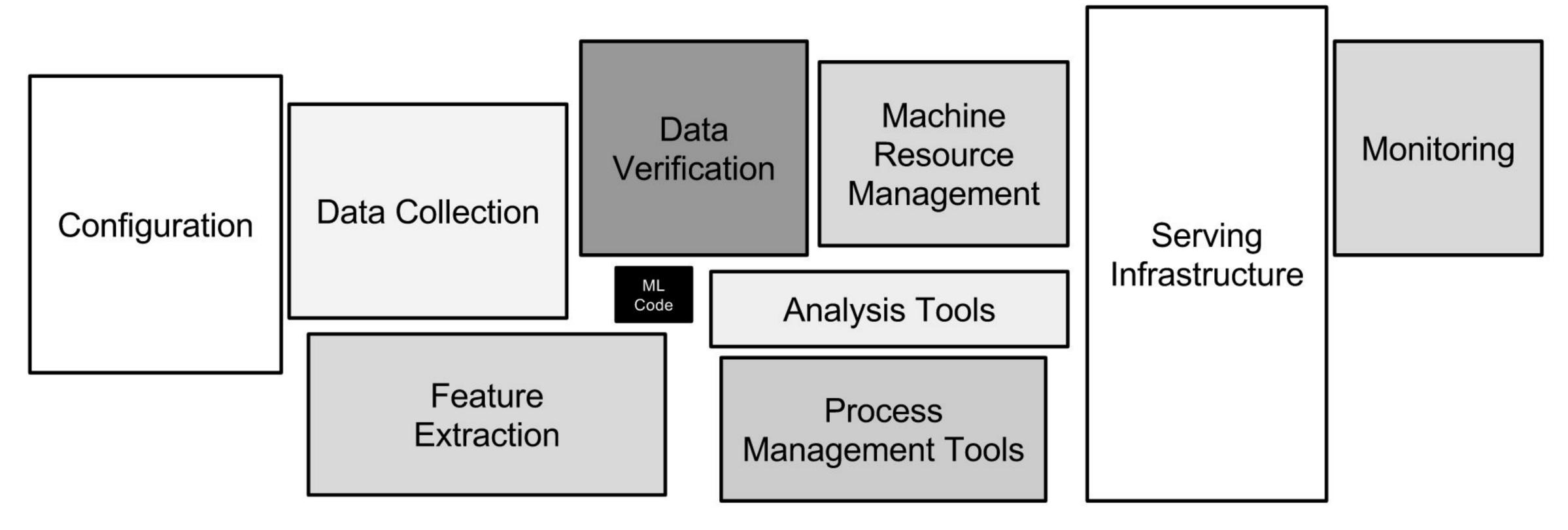
DEEPBACH: A STEERABLE MODEL FOR BACH CHORALES
GENERATION

What Data Scientist should be doing...



Repeat

What Data Scientist are doing...



Challenge: Persona(s)

The Rise of the DataOps Engineer

Combines two key skills:

- Data science
- Distributed systems engineering

The equivalent of DevOps for Data Science

- Build automation software to run machine learning systems
- Operate systems so they're available, scalable, and performant
- Evangelize tools and best practices among data scientists

Division of Labor

System Admin/ DevOps

Data Engineer/DataOps

Data Scientist

Configuration

Data Collection

Data Verification

ML Analysis Tools

Feature Extraction

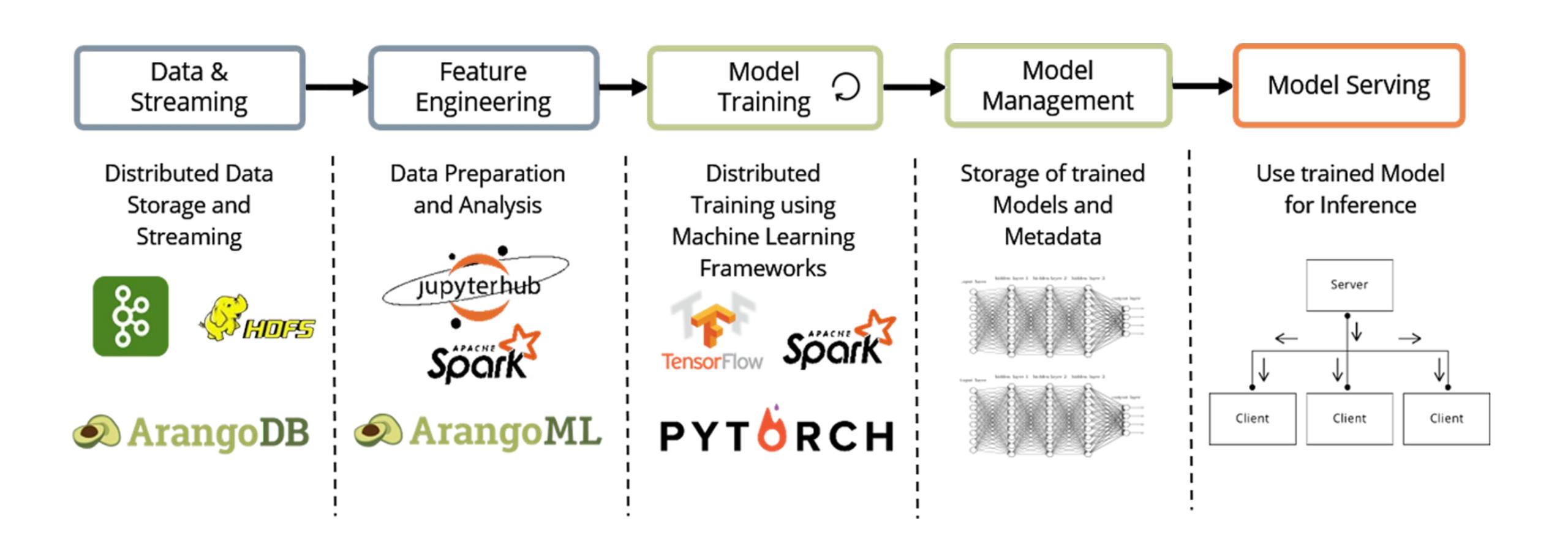
Process Management Tools

Model Monitoring

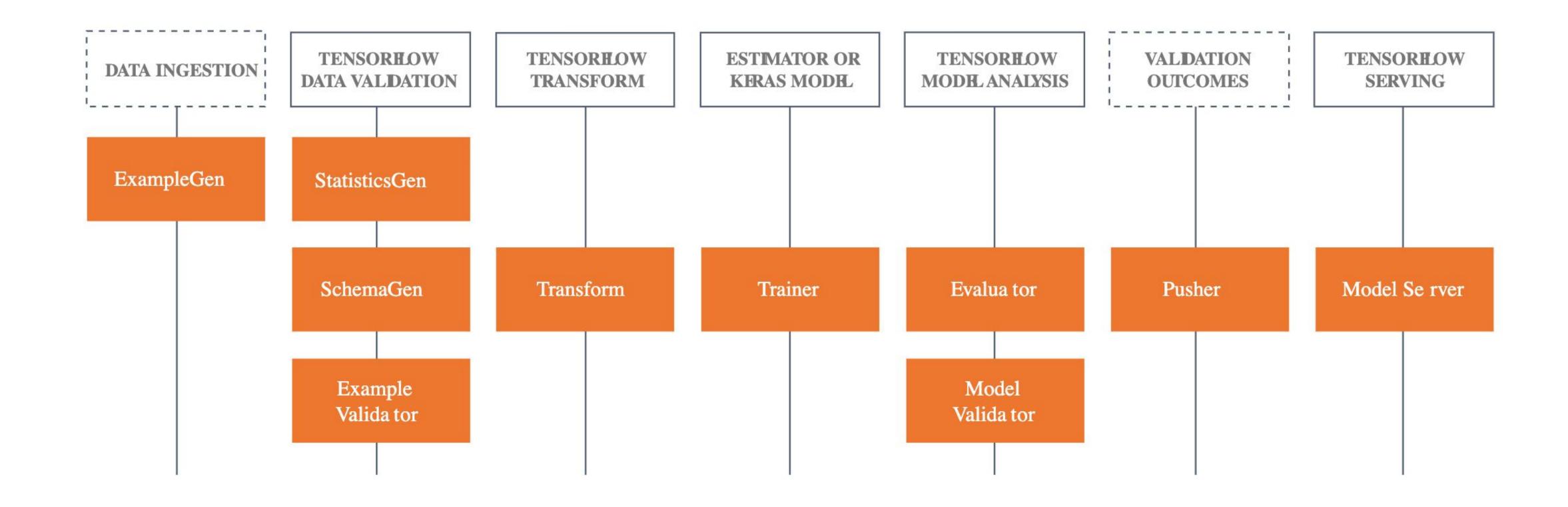
Serving Infrastructure

Inspired by "Sculley, D., Holt, G., Golovin, D. et al. Hidden Technical Debt in Machine Learning Systems" article

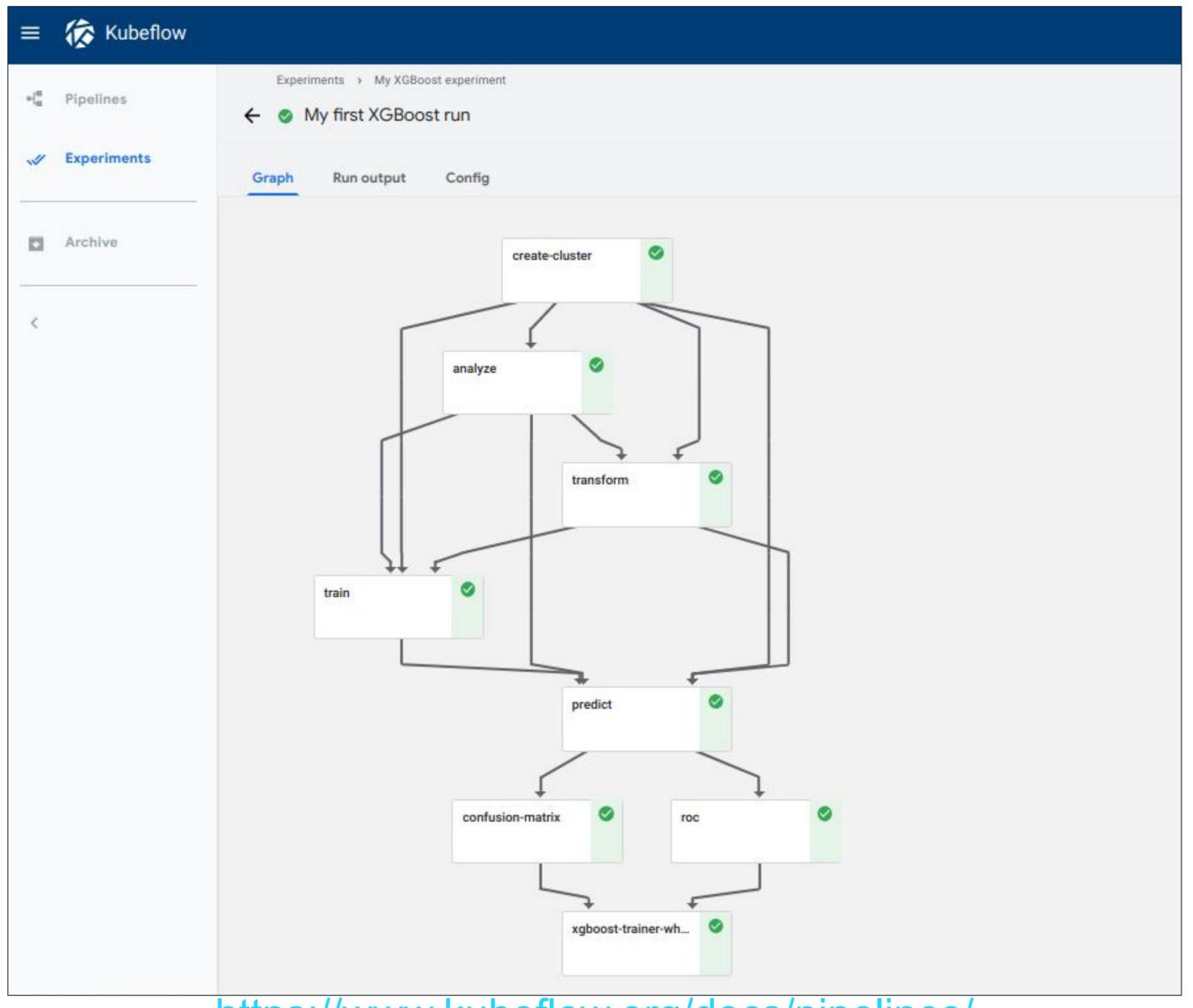
Machine Learning Pipeline



TensorFlow Extended

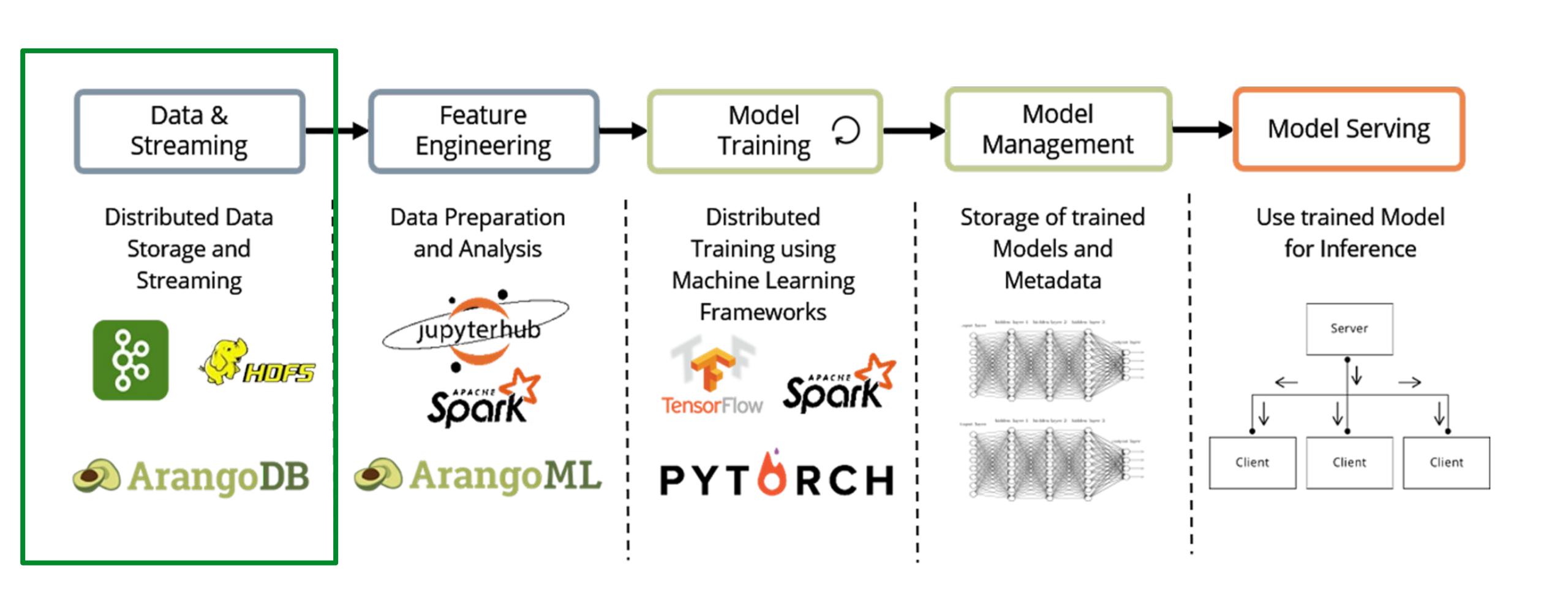


Kubeflow Pipelines

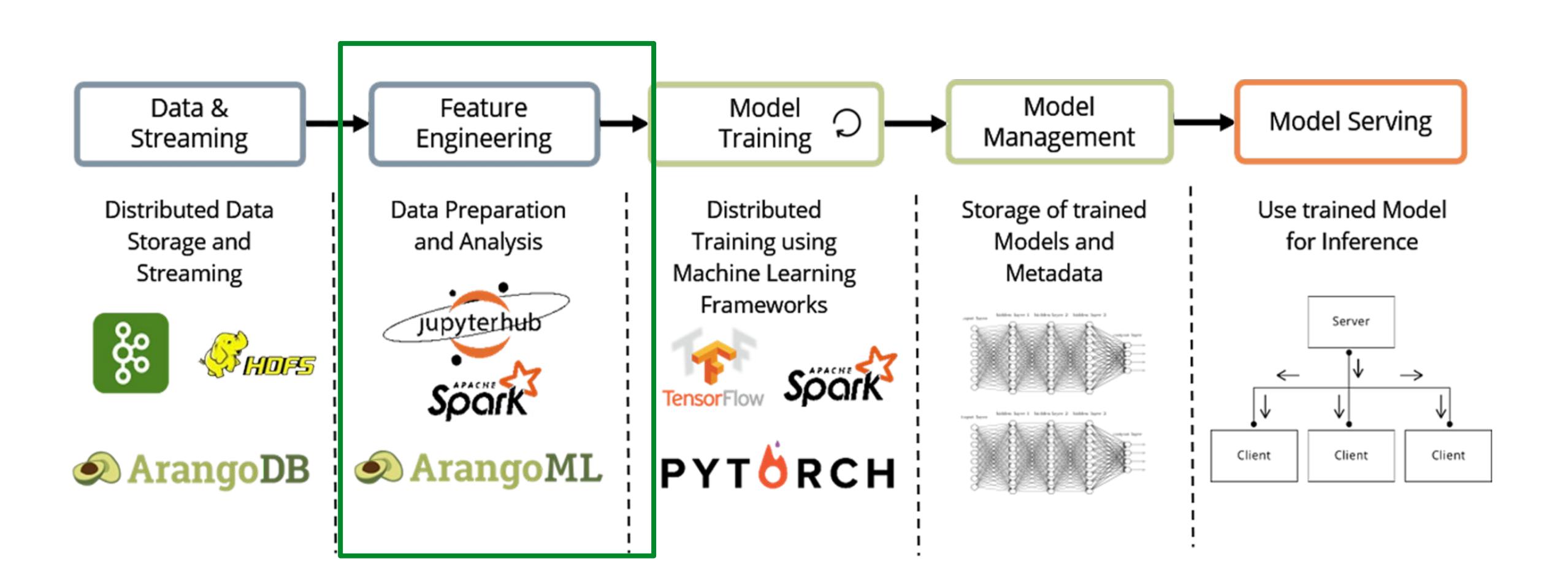


https://www.kubeflow.org/docs/pipelines/

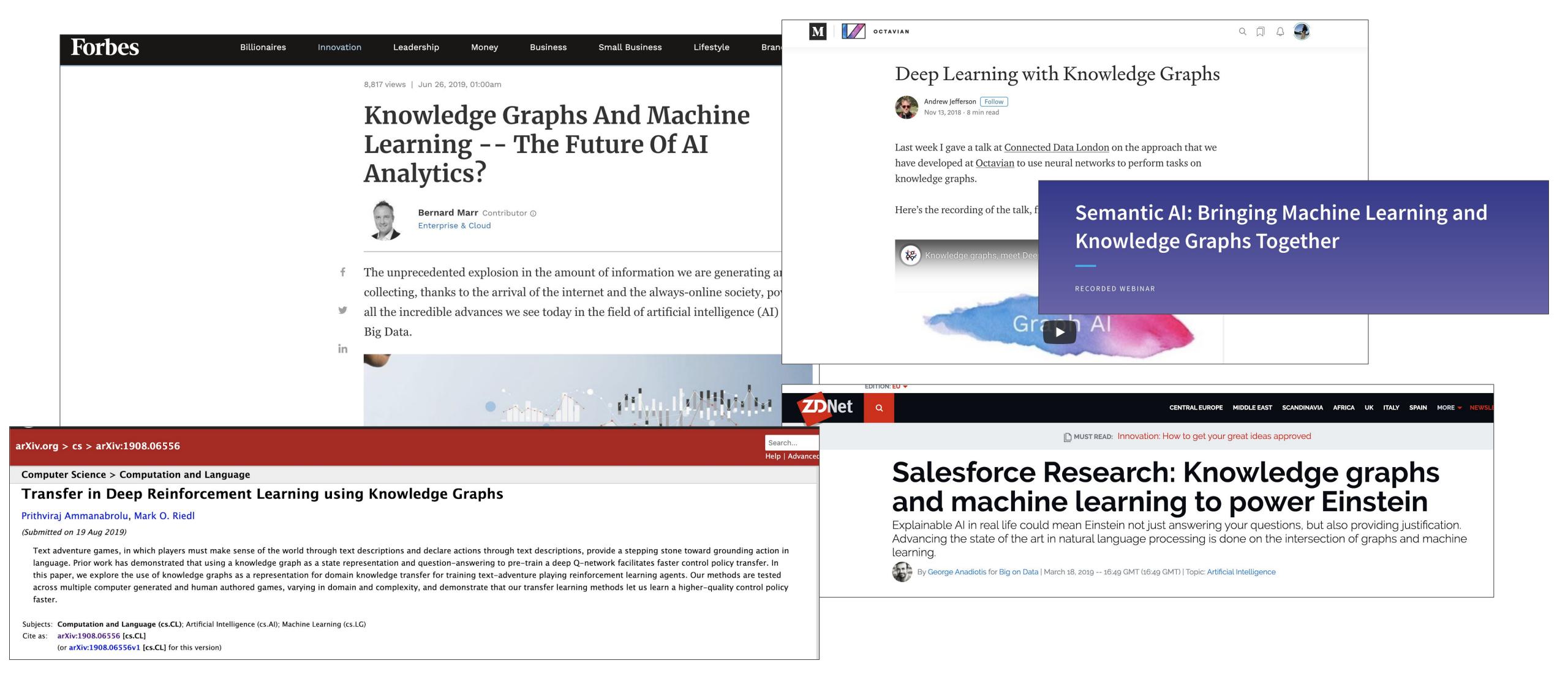
Databases I



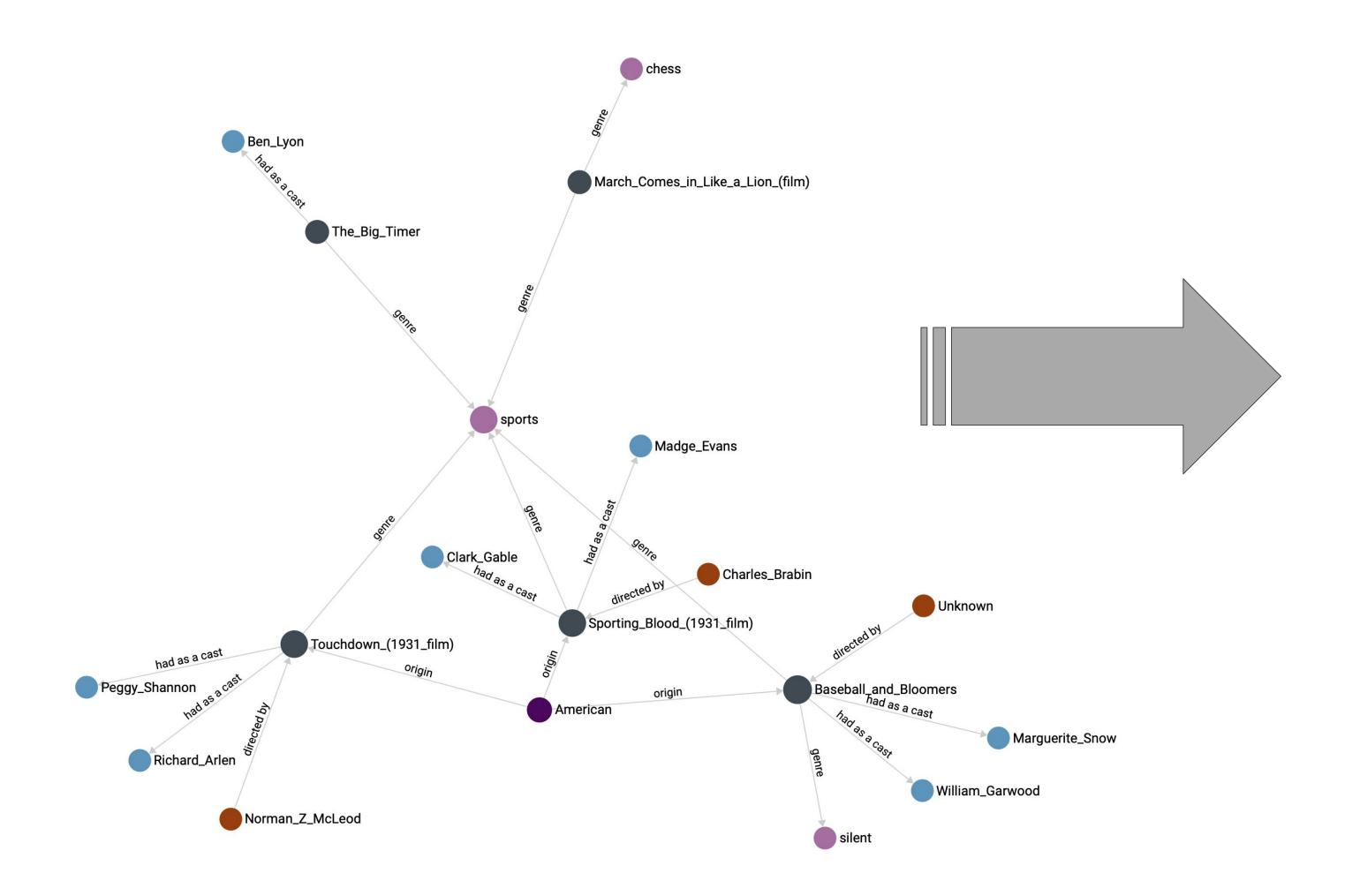
Databases II



Graphs and Machine Learning

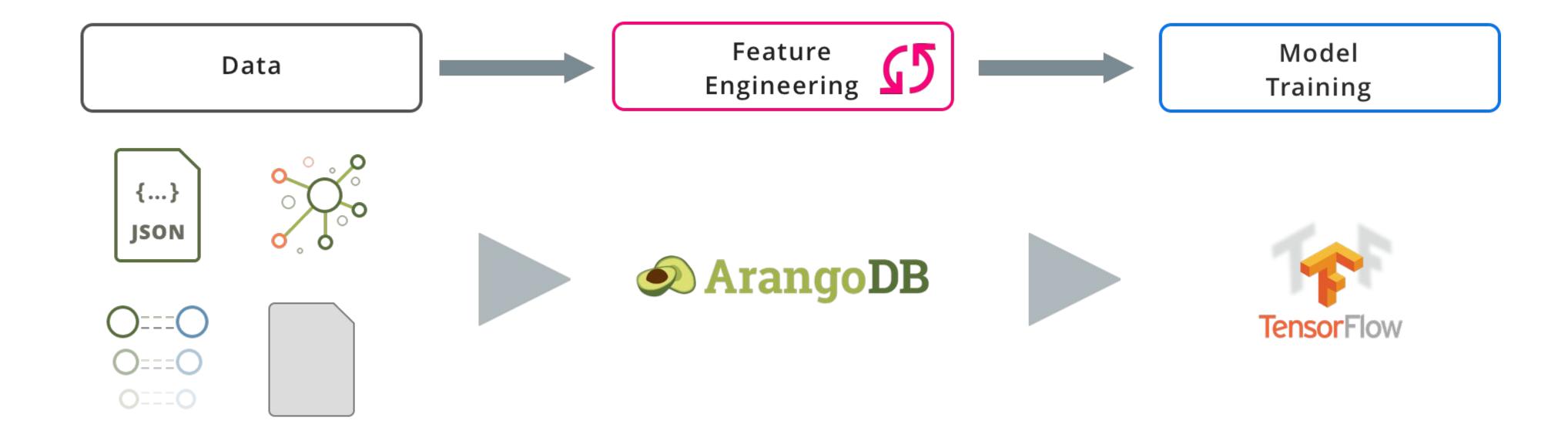


Feature Engineering

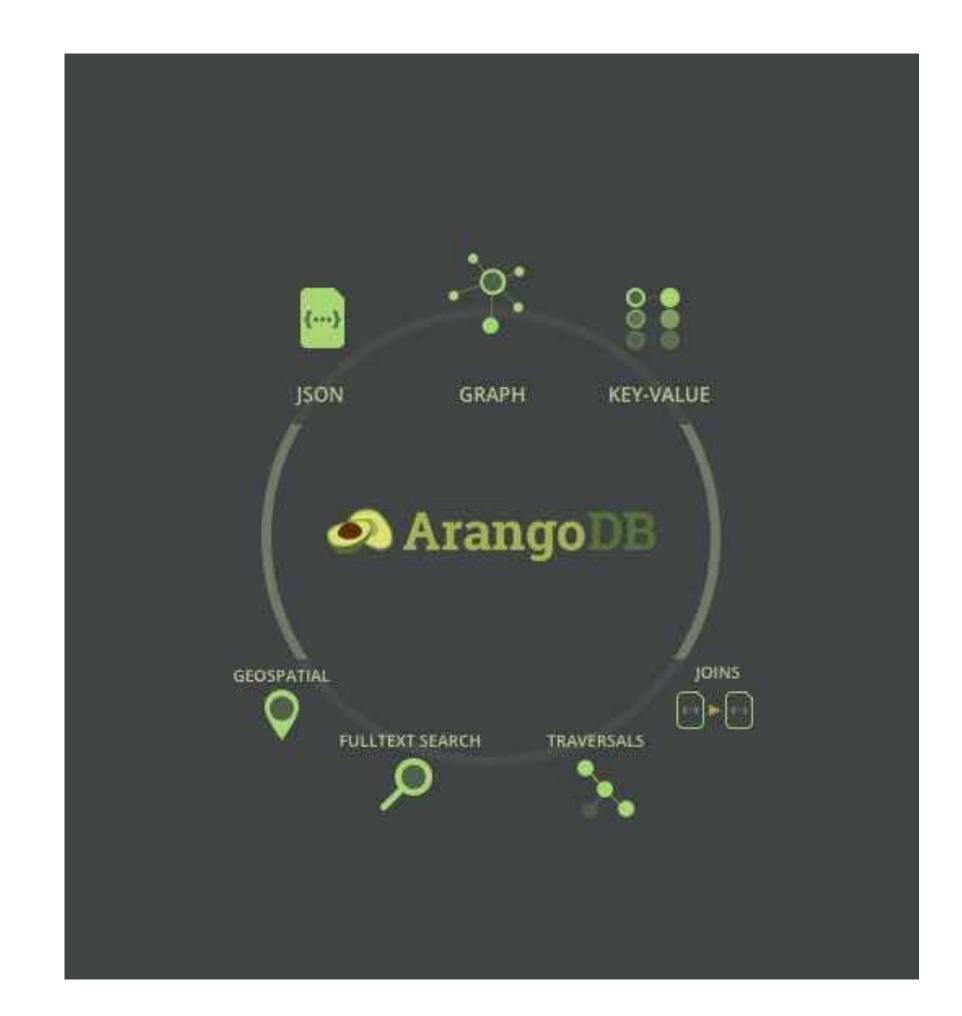


<u>Director</u>	Number Movies
George_S_Fleming	10

Feature Engineering

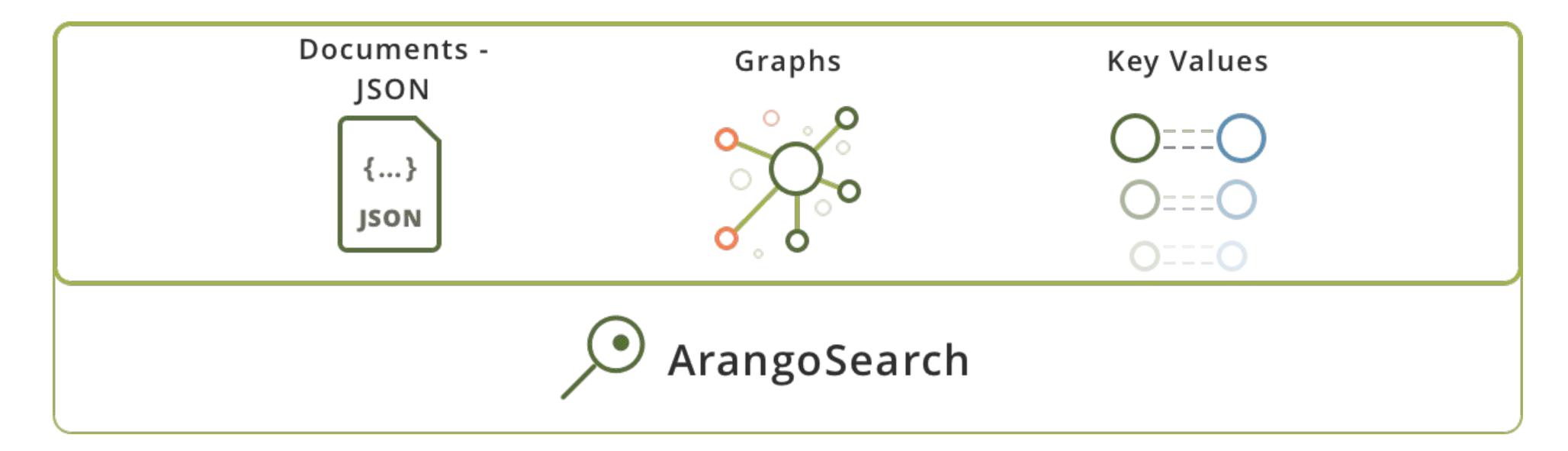


- Native Multi Model Database
 - Stores, K/V, Documents & Graphs
- Distributed
 - o Graphs can span multiple nodes
- AQL SQL-like multi-model query language
- ACID Transactions including Multi Collection Transactions

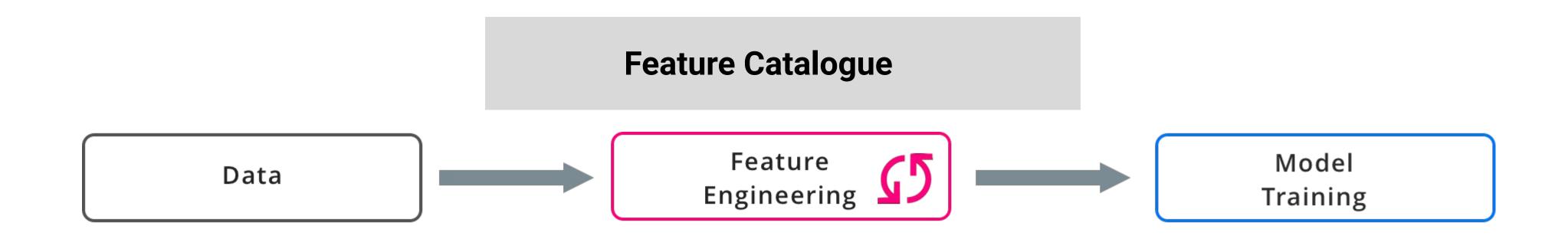


Multi-Model?

<a>ArangoDB



Feature Catalogue

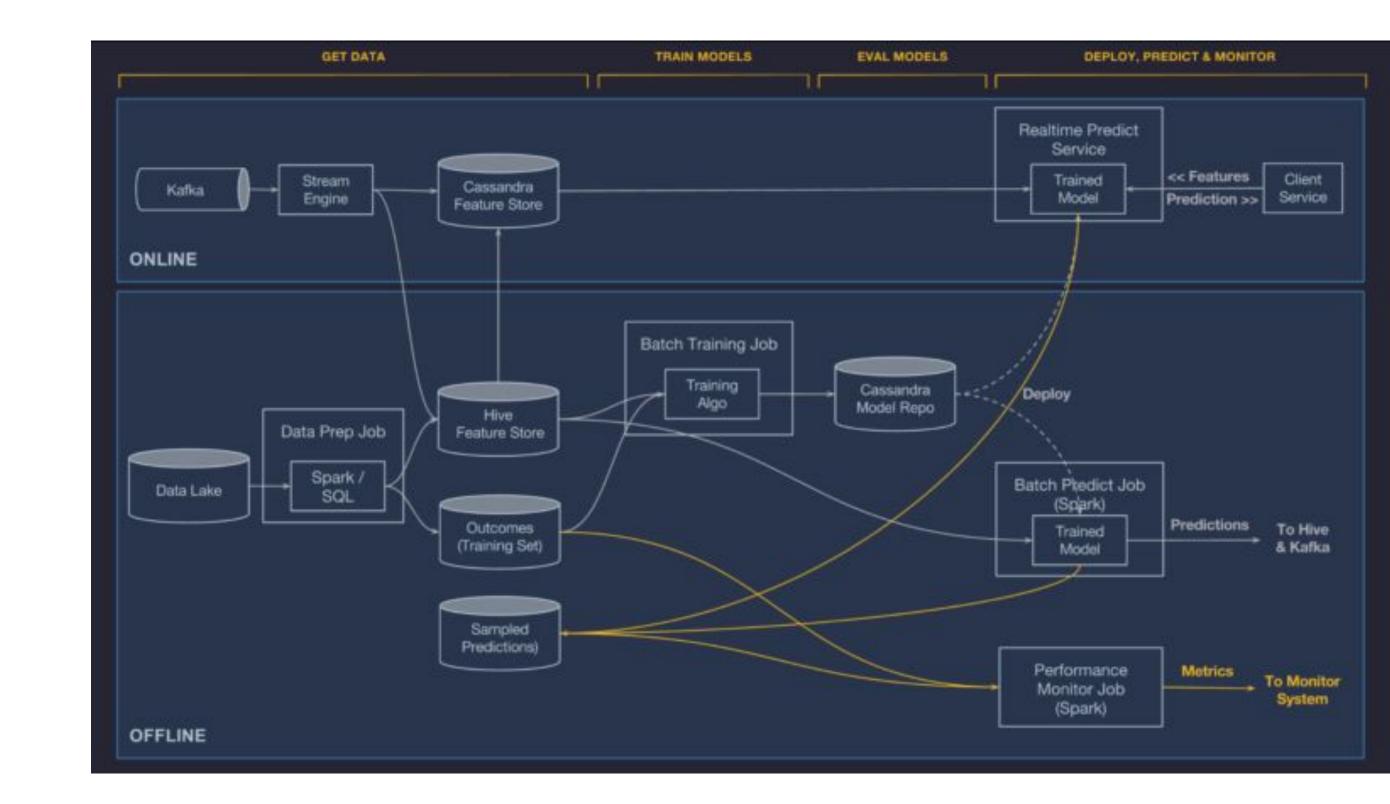


- Feature Catalogue ≈ Preprocessing
 Cache + Discovery
- Uber Michelangelo
- Logical Clocks
- Kubeflow FEAST

Uber Michelangelo

"..there were no systems in place to build reliable, uniform, and reproducible pipelines for creating and managing training and prediction data at scale."

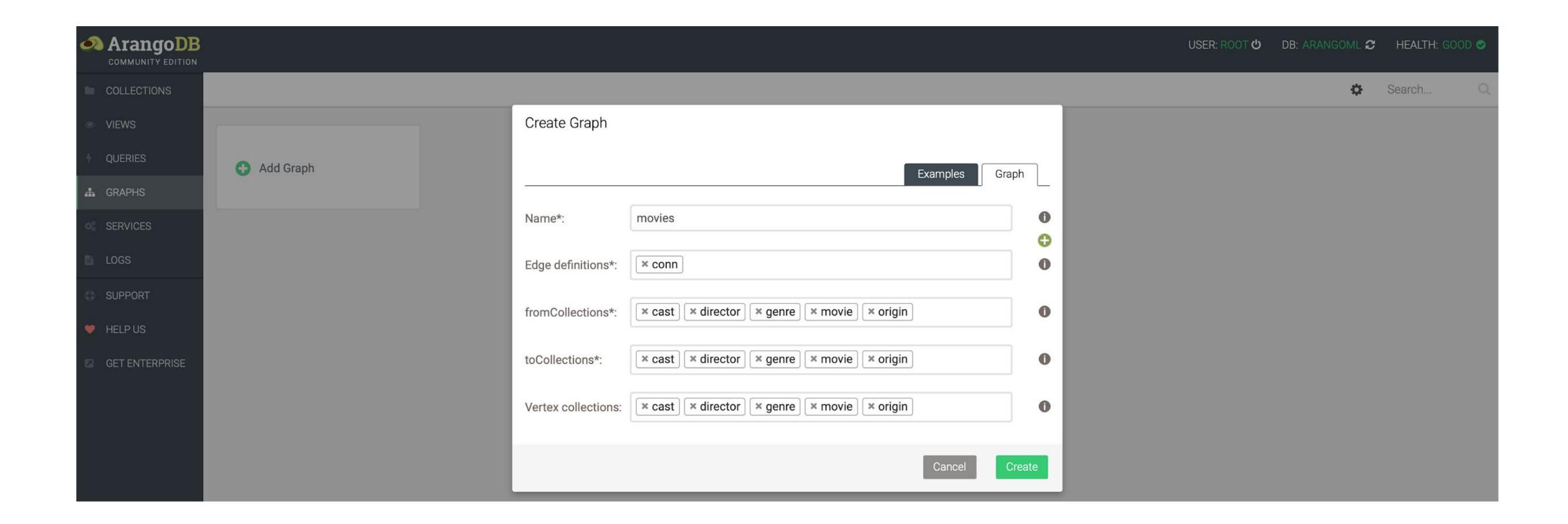
Feature store



Feature Store

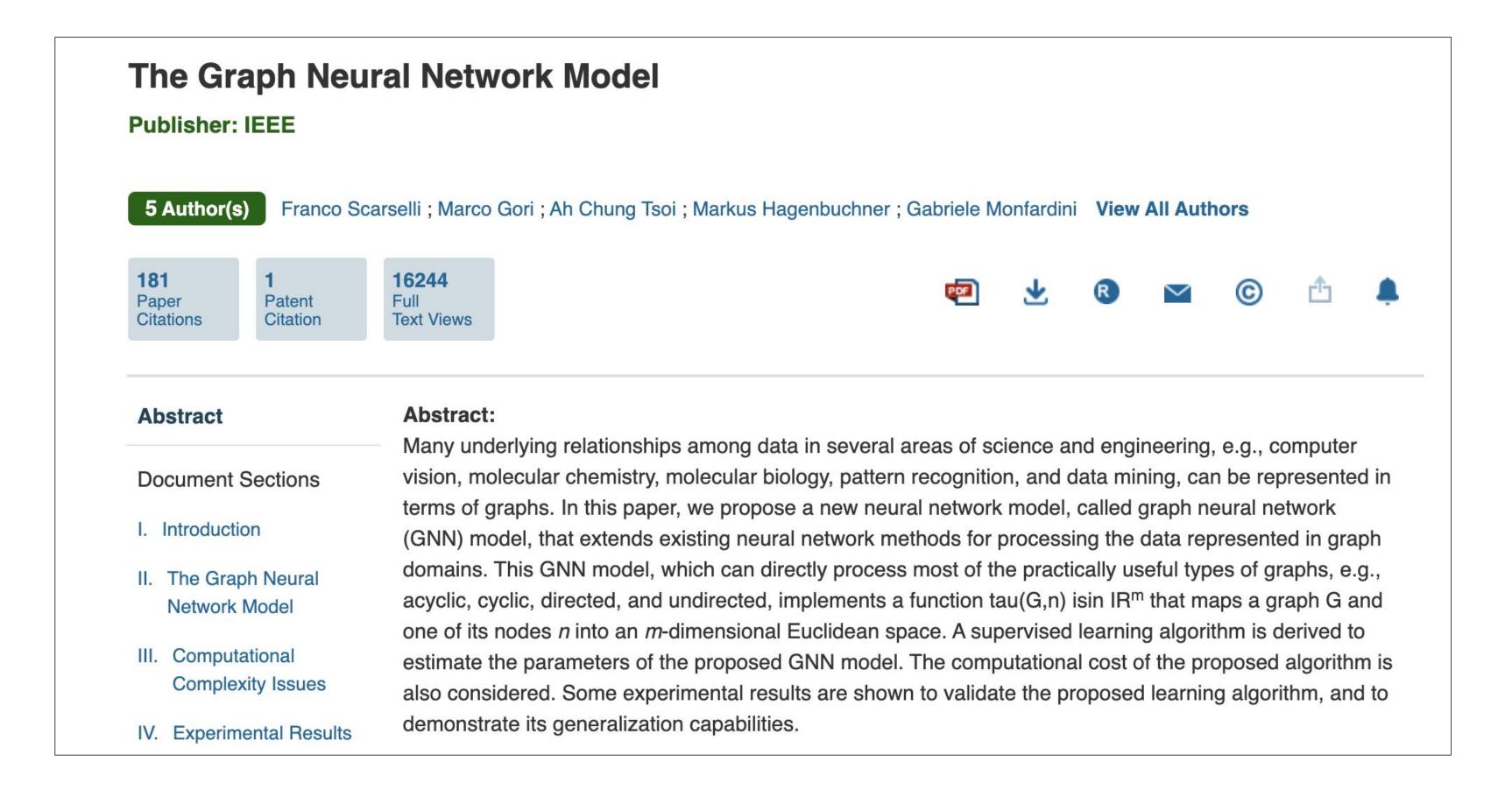
https://techblog.appnexus.com/lessons-learned-from-building-scalable-machine-learning-pipelines-822acb3412ad

Multi-Model ML Demo



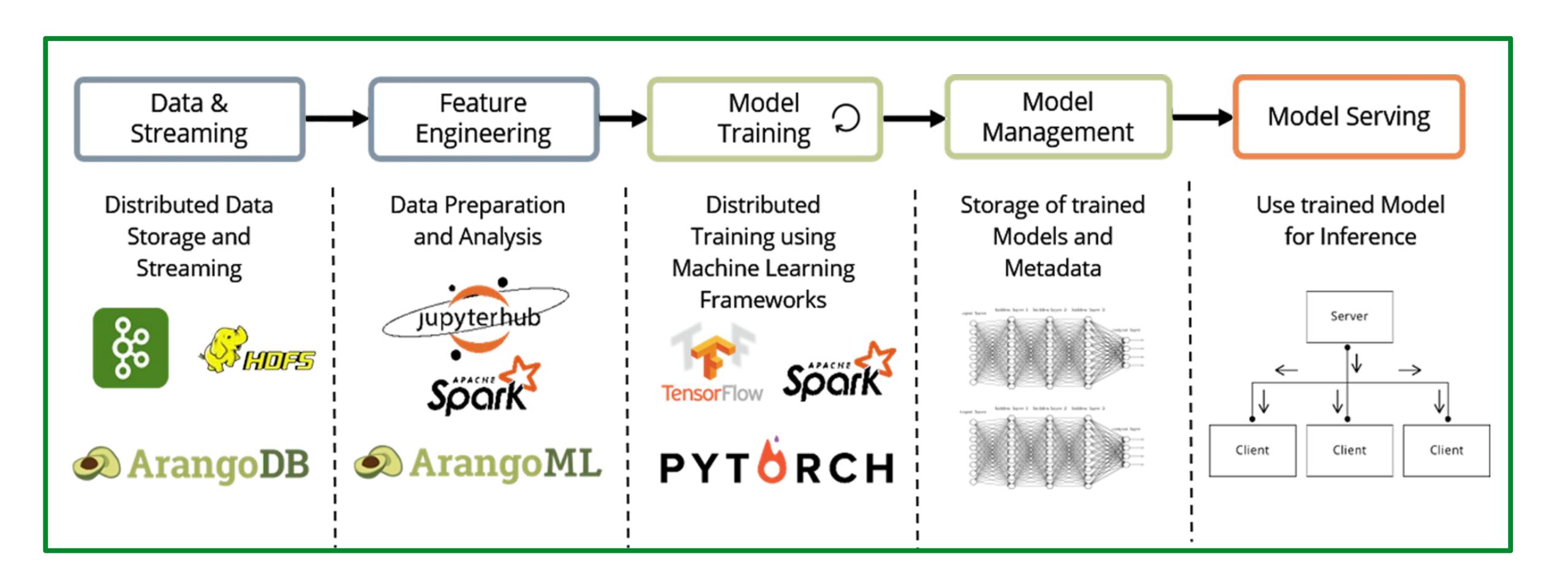
https://github.com/arangoml/knowlegegraph-demo
https://mybinder.org/v2/gh/arangoml/knowlegegr
aph-demo/master?filepath=movie data graph.ipyn

What is next?



https://ieeexplore.ieee.org/abstract/document/4700287

Databases III



Challenges

The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks

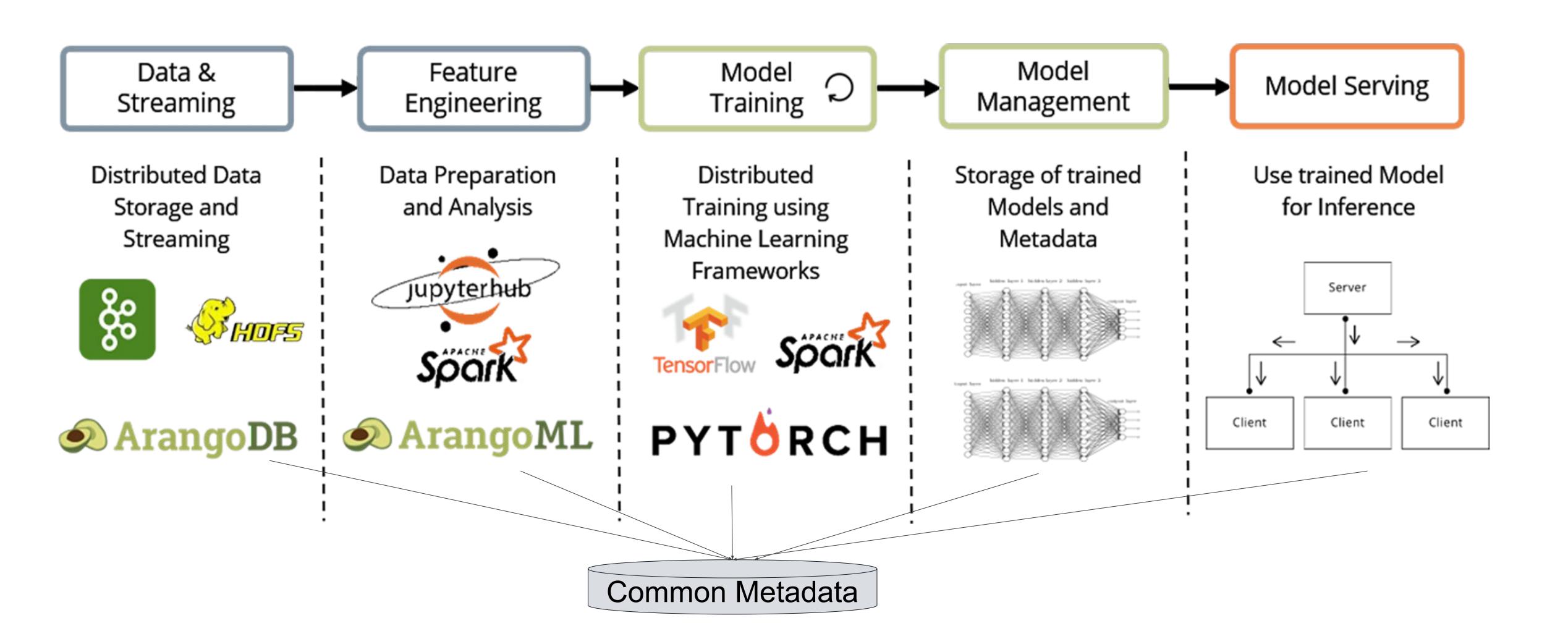
Nicholas Carlini^{1,2} Chang Liu² Úlfar Erlingsson¹ Jernej Kos³ Dawn Song²

¹Google Brain ²University of California, Berkeley ³National University of Singapore

Challenges

- Understand complete provenance of Model
 - a Understand Provenance
 - **L.** Complete version history
 - _a Audit
- Find all Models in production derived from dataset x
- Compare performance of different model performance
- Identify reusable steps
- Is my serving data distribution the same as for training data
- ...

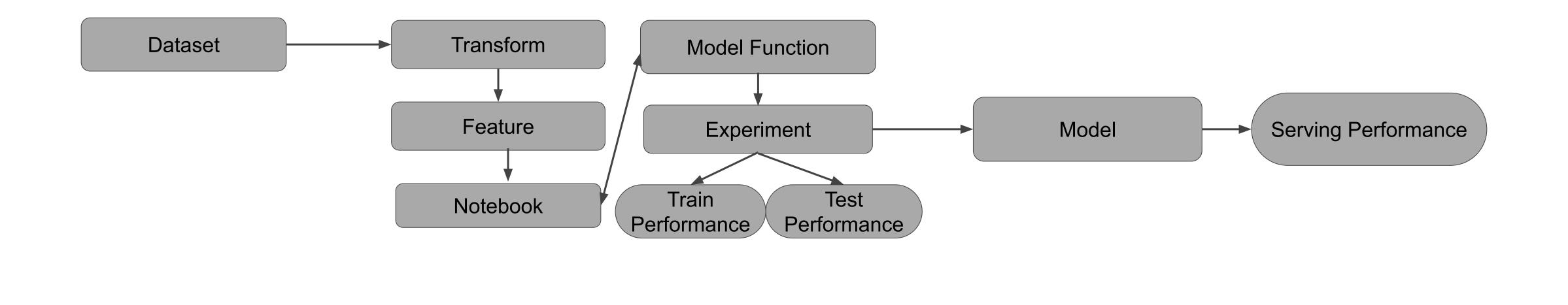
From Data to Metadata....



Metadata?

In this context, *metadata* means information about executions (runs), models, datasets, and other artifacts. *Artifacts* are the files and objects that form the inputs and outputs of the components in your ML workflow.

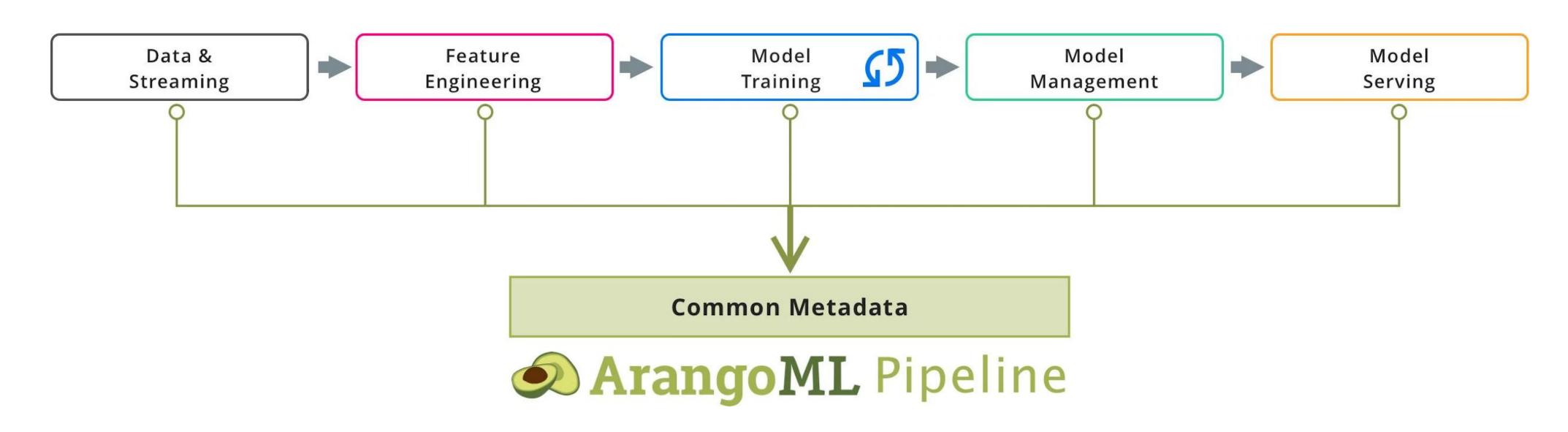
https://www.kubeflow.org/docs/components/misc/metadata/



ML Project

ArangoML Pipeline

"A common extensible metadata layer for ML pipelines which allows Data Scientists and DataOps to manage all information related to their ML pipelines in one place."



https://www.arangodb.com/2019/09/arangoml-pipeline-common-metadata-layer-machine-learning-pipelines/

Multi-Model Metadata

JSON

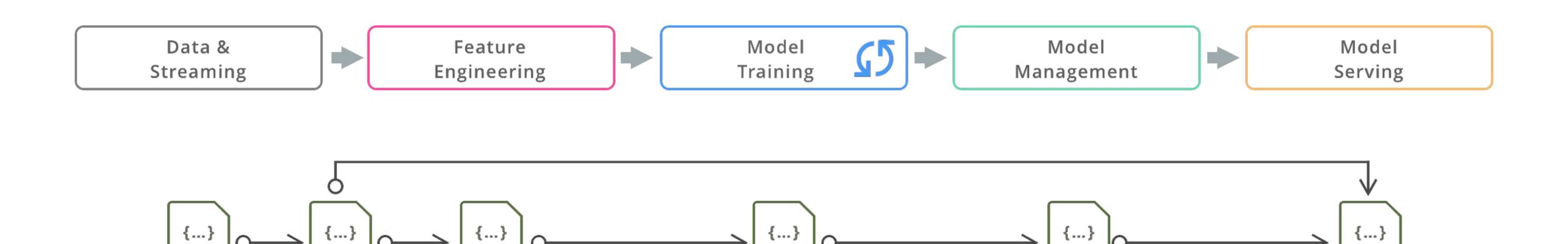
Transform

JSON

Dataset

JSON

Feature



JSON

Experiment/

Training

Statistics

{...}

JSON

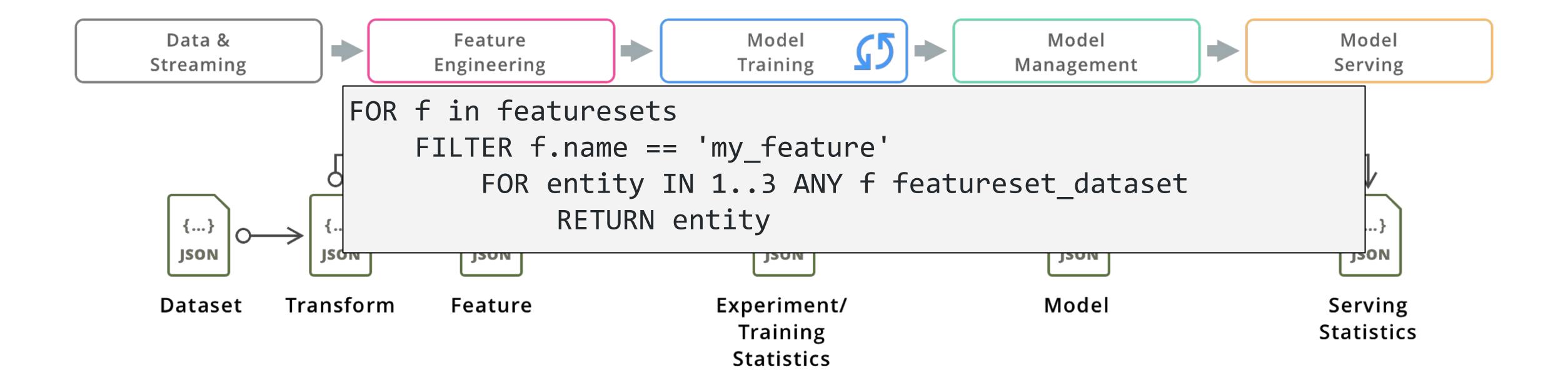
Model

JSON

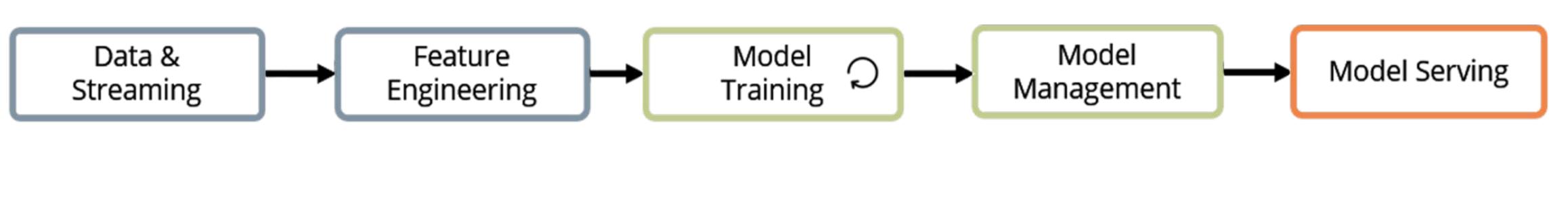
Serving

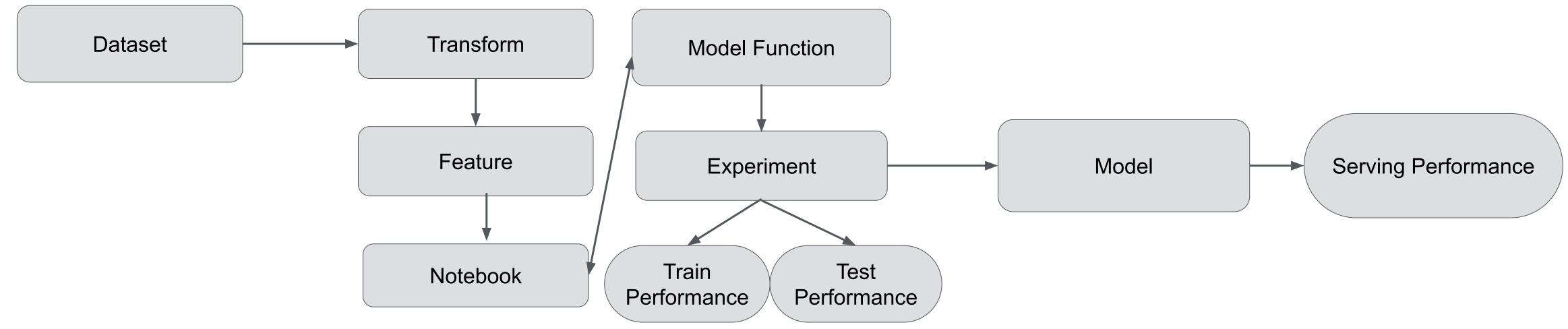
Statistics

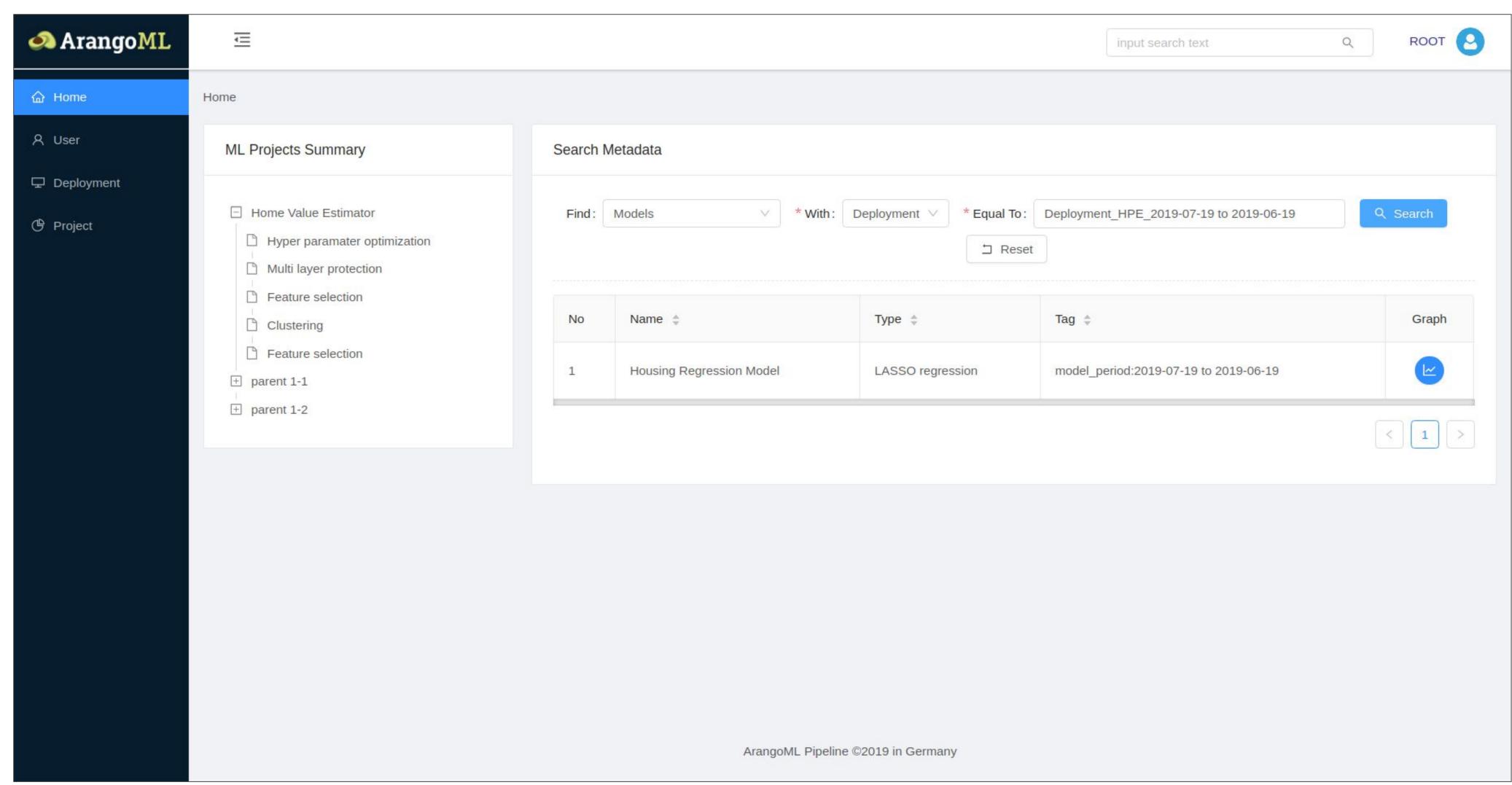
Multi-Model Metadata



ArangoML "Schema"







https://github.com/arangoml/arangopipe

Visualization

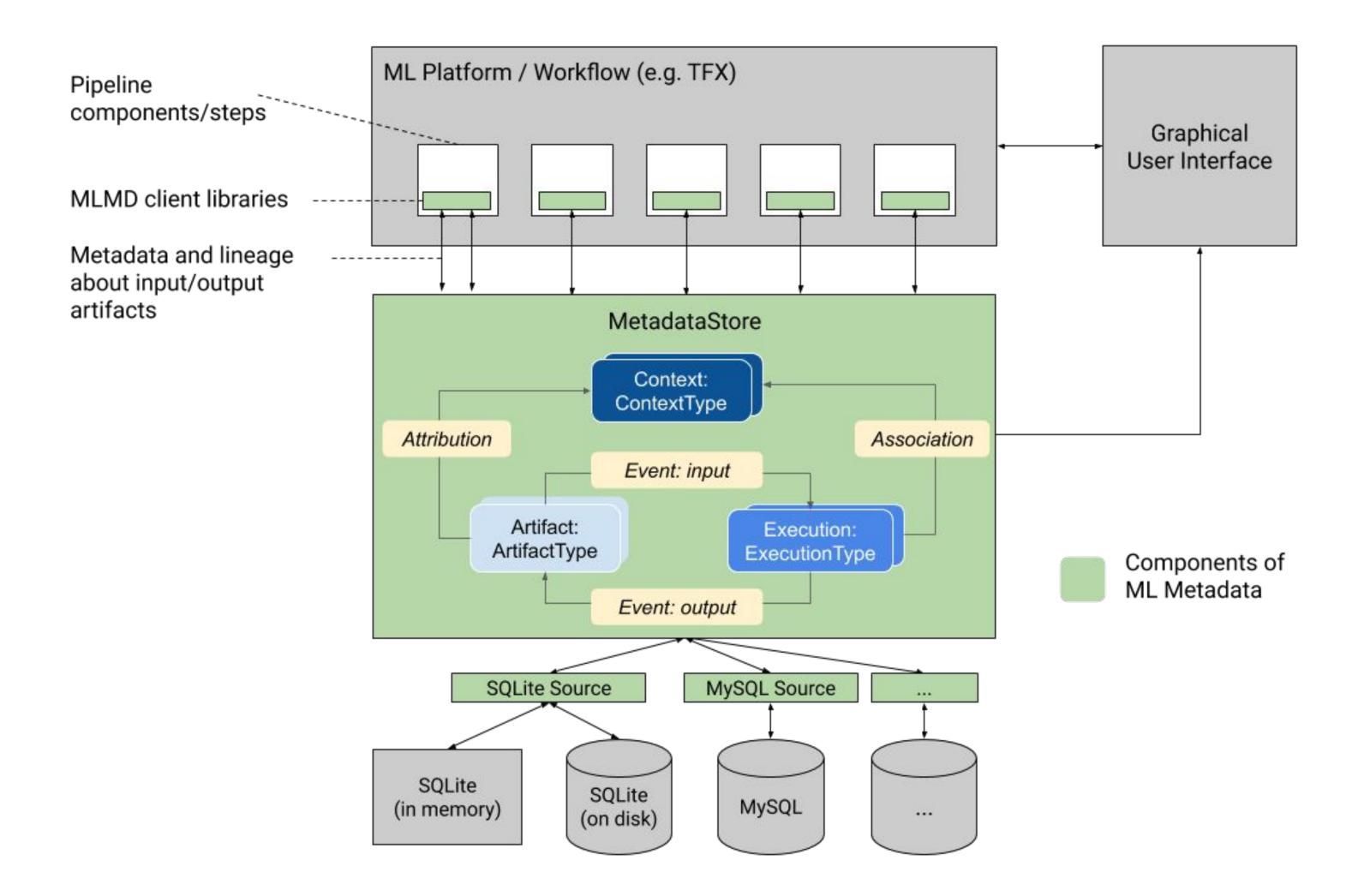
https://github.com/arangoml/arangopipe

- Python package
- HTTP API
- TFX Integration [coming shortly]

```
from arangopipe.arangopipe_api import ArangoPipe

ap = ArangoPipe(conn_config)
model_info = {"name": "hyper-param-optimization", "type": "hyper-opt-experiment"}
model_reg = ap.register_model(model_info, project = "Housing_Price_Estimation_Project")
```

TFX MLMD



https://www.tensorflow.org/tfx/guide/mlmd

Kubeflow Metadata

Documentation

About

Getting Started

Use Cases

Jupyter Notebooks

Pipelines

Fairing

Kubeflow on AWS

Kubeflow on Azure

Kubeflow on GCP

Components of

Kubeflow

Documentation / Components of Kubeflow / Miscellaneous / Metadata

Metadata

Tracking and managing metadata of machine learning workflows in Kubeflow

The goal of the Metadata project is to help Kubeflow users understand and manage their machine learning (ML) workflows by tracking and managing the metadata that the workflows produce.

What is Kubeflow?

Documentation

GitHub

v0.6

Blog

In this context, *metadata* means information about executions (runs), models, datasets, and other artifacts. *Artifacts* are the files and objects that form the inputs and outputs of the components in your ML workflow.

Alpha version

Thanks for listening!

- @arangoml
- https://github.com/arangoml/arangopipe
- Demo

https://github.com/arangoml/arangopipe/blob/master/arangopipe/arangopipe examples.ipynb

- @arangodb
- https://www.arangodb.com/
- Demo

https://github.com/arangoml/knowlegegraph-demo

Building Adaptive Knowledge Graphs Graphs vs Machine Learning

