A mixt data/knowledge-driven data science approach for complex decision making *Mental Health policy-making in LAMIC at WHO K. Gibert^(1,6)*

L. Salvador Carulla^(2,6), J. Morris⁽³⁾, A. Lora⁽⁴⁾, A. Bulbena^(5,6), S. Saxena⁽³⁾

 ⁽¹⁾ Knowledge Engineering&Machine Learning group at Intelligent Data Science and Artificial Intelligence Res.C. (KEMLG-at-IDEAI). UPC, Spain
 ⁽²⁾ Centre for Mental Health Research. ANU, Canberra, Australia
 ⁽³⁾ Dep. Mental Health and Substance Abuse. WHO, Geneva, Switzerland
 ⁽⁴⁾Dep. Mental Health. Manzoni Hospital, Lecco, Italy
 ⁽⁵⁾ Autonomous University of Barcelona, (Spain)
 ⁽⁶⁾ Working Group Clinical Management of the Spanish Society of Psychiatry

Data Council Barcelona 2019. UTOPIA 126, October 2-3th, 2019

A mixt data/knowledge driven data science approach for complex decision making Mental Health policy-making in LAMIC at WHO K. Gibert⁽¹⁾, L. Salvador Carulla⁽²⁾, J. Morris⁽³⁾, A. Lora⁽⁴⁾, A. Bulbena, S. Saxena⁽³⁾ UPC, ANU, WHO, Manzonni, UB, SEP

- WHO is the directing and coordinating authority for health within the United Nations system (www.who.int)
- WHO is responsible for:
 - providing leadership on global health matters
 - shaping the health research agenda
 - setting norms and standards
 - articulating evidence-based policy options
 - providing technical support to countries
 - monitoring and assessing health trends.

Gibert, K., L. Salvador-Carulla, J. Morris, A. Lora, S. Saxena (2017) The data mining approach as the starting point for Mental Health policy-making in low and middle income countries at World Health Organization, In Proc ISI 2017, Marrakesh, Morocco.

© K. Giber

A mixt data/knowledge driven data science approach for complex decision making Mental Health policy-making in LAMIC at WHO K. Gibert⁽¹⁾, L. Salvador Carulla⁽²⁾, J. Morris⁽³⁾, A. Lora⁽⁴⁾, A. Bulbena, S. Saxena⁽³⁾ UPC, ANU, WHO, Manzonni, UB, SEP

- WHO is the directing and coordinating authority for health within the United \bullet Nations system (www.who.int)
- WHO is responsible for:
 - providing leadership on global health matters
 - shaping the health research agenda ightarrow
 - setting norms and standards ightarrow
 - articulating evidence-based policy options
 - providing technical support to \bullet
 - monitoring and assessing health trends. •

Gibert, K., L. Salvador-Carulla, J. Morris, A. Lora, S. Saxena (20) point for Mental Health policy-making in low and middle income countries are Proc ISI 2017, Marrakesh, Morocco.

Guide mental health

policies in low and

Understanding mental health systems in LAMIC

Mental Health System:

"structure and all the activities whose primary purpose is to promote, maintain or restore mental health. The MHS includes all organizations and resources that focus on improving mental health"

Collaboration WHO, Geneva, Switzerland Guide mental health policies in low and middle income countries

WHY?

Major depression of young mothers in LAMIC important cause of neonatum mortality

First step: Understand how mental health is in LAMIC 🐠

APA (2000): *Diagnostic and Statistical Manual of Mental Disorders*. DSM-IV-TR. Washington: APA (American Psychiatric Association).

© K. Gibert

WHO-AIMS Project

Data on mental health system compiled from 42 selected LAMIC countries between Feb 2005-Feb 2008 Countries referred by their WHO Regional Advisers as those that would benefit for a WHO assessment

WHO-AIMS v2.2 instrument: 22 facets, 155 items, 256 variables

policy and legislative framework
mental health services
mental health in primary care
human resources
public information and links with other sectors
monitoring and research

+ some additional (decisional) composite indicators by WHO

+ prior expert knowledge

Janca A, Kastrup M et al. (1996)]: The WHO Short Disability Assessment Schedule... Soc Psychiatry Psychiatr Epidemiol 31: 349-54.

Profiling mental health systems Methodology

Use WHO-AIMS DB to learn a **typology** of MHS in LAMIC

- •Easy understanding of reality
- •Assessment to countries
- Clustering (CIBR) Intervention design: guidelines, mental health policies....

Experts combine items in 19 composite decisional indicators

- A 21,43% of **missing** data in original Data Base
- Missings propagate to indicators
- Difficult decision-making

Missing imputation (MIMMI)

Postprocessing

CPG, TLP

© K. Gibert

The data mining process

Gibert, K. J. Izquierdo, M. Sànchez-Marrè, S. (H) Hamilton, I. Rodríguez-Roda, G. Holmes (2018) Which method to use? An assessment of Data Mining Methods in Environmental Data Mining. Environmental Modelling and Software. Elsevier

© K. Gibert

Preprocessing

Mixed Intelligent-Multivariate Missing Imputation [Gibert 2012]

- Select a small number of quasi-full relevant variables
- Use intelligent inputation on that reduced data matrix
- (expert-based inputation)
- Multivariate clustering using the inputed variables
- Determine a partition of the data and compute local means for ALL variables
- Inpute the missing data of the remaining variables with computed local means

Trade-off Accuracy/required time

Gibert, K (2013) Mixed Intelligent-Multivariate Missing Imputation, International Journal of Computer Mathematics 91(1):85-96

Preprocessing

MIMMI method on WHO-AIMS database

	WHO- AIMSname	Meaning	KLASSname
	polplanr	Presence of policy or plan	polplanr
	legisl	Presence of legislation	Legisl
Selection	d1f5i5rec	Affordability of anitpsychotic medicine	d1f5i5rec(antipsych)
of 16 core	d1f5i6rec	Affordability of anitdepressant medicine	d1f5i6rec(antidepr)
variables	D2F1I2	Oragnization of services	D2f1i2(orgServices)
Variables	cbusrate	Community based inpatient units per 100,000 population	cbusrate
	mhrate	mental hospitals per 100 000 population	mhrate
	outpfrate	outpatient facilities per 100 000 population	outpfrate
	daytrfrate	day treatment facilities per 100 000	daytrfrate
	D4F1I11	psychiatrists per 100 000	d4f1i11(psychi)
	D4F1I12	other doctors per 100 000	D4F1I12(doctors)
	D4F1I13	nurses per 100 000	D4F1I13(nurses)
	D4F1I14	psychologists per 100 000	D4F1I14(psycho)
	D4F1I15	Social workers per 100 000	D4F1I15(socWorK)
	d3f1i3	availability of treatment and assessment manuals	d3f1i3(manuals)
	d5f2i51	formal collaborative relationship with department of primary care	d5f2i51(relprimcare)
	D6F1I1	formally defined min data set	D6F1I1(mindataset)

© K. Gibert

Preprocessing **MIMMI** method

Selection of 16 core variables:

- Characteristic information of the whole 6 domains •
- Related with decisional variables (composite indicators) igodol
- Low tax of missing data igodol

•

© K. Gibert

Preprocessing (MIMMI)

Intelligent inputation of 8 missing values

Country	Missing variable and imputed value
South Africa	outpfrate = 2.0
China	D4F1I12(Other) = 1.20
India	D4F1I13(nurses) = 0.15
China	D4F1I14(psycho) = 0.16
Paraguay	D4F1I14(psycho) = 1.4
Nepal	D4F1I15(socWorK)= 0.15
Moldova	d3f1i3(manuals) = B
Azerbaijan	d5f2i51(relprimcare) = N

Preprocessing (MIMMI) Intelligent inputation of 8 missing values

Preprocessing (MIMMI)

Intelligent inputation

Vertical inputation:

use the value of the same variable in other similar individuals

- South Africa (Outpatient Facility):
 - better developed outpatient facility net than other African countries.
 - But less developed than other upper middle income countries.

Chose a value higher than the African countries but lower than Chile (a UMIC).

Expert Knowledge

• China (rate of "other medical doctors"):

higher than other Asian countries. Very institutional system.

Choose a value in the middle between Vietnam and Thailand.

Paraguay (psychologists):

are more prevalent in Latin American countries.

Choose a high value.

 Nepal (Social workers): similar to Sri-Lanka

Preprocessing (MIMMI) Intelligent inputation of 8 missing values

Preprocessing (MIMMI)

Intelligent inputation of 8 missing values

Horizontal inputation:

check other variables of the same individual as predictors

• India (Uttaranchal) (nurses)

high where hospitals are. India do not has mental hospital

Choose a low value for the rate of nurses

 China (rate of psychologists): Mental health system medical based

Choose a very low rate of psychologists

 Azerbajan (relation with primary care): The country declared to have no treatment manuals available and few referrals between primary care and mental health services.

Choose No

Moldova (Manuals):

comparing their data with their is

ar items.

Expert Knowledge based

Preprocessing MIMMI

Inputation:

Complete the 42x16 data matrix

Clustering the full matrix *Hierarchical Ward criterion Gibert's mixed metrics [Gibert 96]*

Determine the classes (7)

Find partition

Preprocessing (MIMMI): preliminary partition

Seven classes recommended

- •C22: Afghanistan, Burundi, Congo, Eritrea, Ethiopia, Nigeria, Uganda
- •C24: Albania, Azerbaijan, China-Hunan, Dominican-Repu, El-Salvador, Georgia, Guatemala, Iran, Kosovo, Moldova, Nicaragua, Paraguay, Philippines, South-Africa, Ukraine, Uzbekistan
- •C23: Bangladeh, Bhutan, India-Uttaranc, Maldives, Nepal, Sri-Lanka, Thailar
- •C28: Chile, Panama, Uruguay
- •C11: Egypt, Iraq, Morocco, Tunisia, West-Bank•Latvia

•C17: Mongolia, Vietnam

lesta

Preprocessing (MIMMI) Imputing Data Matrix

Conditional means wrt auxiliary class and variable

	CLASSE	C22	C24	C23	C28	C11	Latvia	C17
VA RIA BLE	N = 42	$n_{c} = 7$	$n_{c} = 16$	$n_{\rm c}=8$	$n_c = 3$	$n_c = 5$	$n_{\epsilon} = 1$	$n_c=2$
totprofinh	x	1.28	13.5507	5.1017	21.15	4.53	47.23	8.775
	s	0.9711	10.0276	6.0D99	7.5041	2.6071		7.3468
	N*	0	2	2	D	1	D	D
treatpre	X	192.22	1219.4614	59.7	1037.8201	547.0175	3490.75	1251.71
	8	121.1716	1447.8447	39.4424	519.8082	550.17	2	2
	N*	ţ.	3	Б	1	1	D	1
lundpararectrail	X	1.09	0.9	0.49	1.2	1.1567	0.19	0.76
	5	0.7916	0.5522	2	D.0566	0.8864	2	2
	N*	Ċ.	7	7	1	2	D	1
comcarewor	X	0.0314	0.0856	0.0197	D.D269	0.624	0.1991	0.1313
	5	0.0083	0.0196	3	0.0067			
	N*	-13	10	7	1	4	D	1
usmhexp erca	X	0.2646	0.4961	D.2465	2.7995	0.4102	10.172	0.256
	S	0.5312	0.5059	0.2915	2.5926	0.2307		
	N*	0	1	1	D	1	D	1
d1f5i2exmhos	X	0.7783	0.7954	0.7463	0.4963	0.5768	0.804	D.636
	S	0.2019	0.2121	0.1582	0.2051	0.1106		2
	N*	1	1	4	D	1	D	1

Data preparation

Expert-based feature selection

From 256 variables, 19 relevant decisional variables where selected

Expert-based creation of decisional indicators

Ex. Lund Parameter

external contacts/days hospital

Assess on "approach of a mental health system" (hospital recovery vs social inclusion)

Gibert, K., M. Sànchez-Marrè, J. Izquierdo (2016) A Survey on Pre-processing Techniques in the Context of Environmental Data Mining. Artificial Intelligence in Communications, 29(6): 627-663, IOSPress DOI: 10.3233/AIC-160710 Lund, J. (1988). Psychiatric aspects of Down's syndrome. Acta Psychiatrica Scandinavica, 78(3), 369-374.

Profiling mental health systems Methodology

Use WHO-AIMS DB to learn a typology of MHS in LAMIC

- •Easy understanding of reality
- Assessment to countries
- Clustering (CIBR) Intervention design: guidelines, mental health policies....

Experts combine items in 19 composite decisional indicators

- A 21,43% of missing data in original Data Base
- Missings propagate to indicators
- Difficult decision-making

Gibert, K. J. Izquierdo, M. Sànchez-Marrè, S. (H) Hamilton, I. Rodríguez-Roda, G. Holmes (2018) Which method to use? An assessment of Data Mining Methods in Environmental Data Mining. Environmental Modelling and Software. Elsevier

© K. Gibert

Postprocessing CPG, TLP

Missing

imputation

(MIMMI)

Gibert, K., Izquierdo, J., Sànchez-Marrè, M., Hamilton, S. H., Rodríguez-Roda, I., & Holmes, G. (2018). Which method to use? An assessment of data mining methods in Environmental Data Science. Environmental modelling & software, 110, 3-27.

© K. Gibert

IDEA

Profiling mental health systems Methodology

Use WHO-AIMS DB to learn a typology of MHS in LAMIC

- •Easy understanding of reality
- •Assessment to countries
- Clustering (CIBR) Intervention design: guidelines, mental health policies....

Experts combine items in 19 composite decisional indicators

- A 21,43% of missing data in original Data Base
- Missings propagate to indicators
- Difficult decision-making

Missing imputation (MIMMI)

Postprocessing

CPG, TLP

Classe	Objectes
C18	Afghanistan, Burundi, Congo, Eritrea, Ethiopia, Nigeria, South-Africa, Uganda
C22	Albania, Azerbaijan, Dominican-Repu, El-Salvador, Georgia, Guatemala, Kosovo,
	Moldova, Nicaragua, Paraguay, Ukraine, Uzbekistan
C19	Bangladesh, Bhutan, India-Uttaranc, Maldives, Nepal, Sri-Lanka, Thailand, Timor-
	Leste
C6	Chile, Panama, Uruguay
C21	China-Hunan, Mongolia, Philippines, Vietnam
C20	Egypt, Iran, Iraq, Morocco, Tunisia, West-Bank
Latvia	Latvia

Class Panel Graph [Gibert 08b]

Gibert K, A. García-Rudolph, G. Rodríguez-Silva (2008): The role of KDD Support-Interpretation tools in the conceptualization of medical profiles: An application to neurorehabilitation. Acta Informatica Medica 16(4) 178-182

© K. Gibert

From CPG to Traffic Ligth Panel

Profiling mental health systems in LAMIC From CPG to Traffic Ligth Panel [Gibert 2012b] Detect particularities

Classe	n _c	Incgr	oup	totprofmh	usmhexperca	treatpre	apratiosch	1i1closepsybed	1f5i2exmhos	71mhrec10y	comcarewor	ndpararectrail	3F1i3Manuals	Legisl	Polplanr	f1i6govmhrep	,
Latvia	1																
C20	6				·							·		1			·
C21	4				. [[Ъ			<u> </u>		<mark>╢╼╾᠋-┉</mark> .			.		·
	-									Π				L			
C6	3																
C19	8			╎┝╴┍╸┍┳╴──			1 <u>7</u>					<u> </u> .		1			·
C22	12						<u> </u>			<u> </u>	<u> </u>	-		1		<u> </u>	.
											H						
C18	8										Π						
			L U	0.4		18.57 5	6.02 1	.0.5 22	12.18 0	0.	.0.0197 0.	0999 2.	nasta	P /		N W	
			O P W P		10								f ^m el	r		1	
			E E R R										w mo	1.	25		
													chC	W CI	ماند: ماند:	25	
													5110	HICU	lariur		

Gibert K, D. Conti, D. Vrecko (2012) Assisting the end-user in the interpretation of profiles for decision support. An application to wastewater treatment plants. Environmental Engineering and Management Journal 11(5): 931-944

K. Gibert

Profiling mental health systems in LAMIC From CPG to Traffic Ligth Panel Detect particularities Get semantics and polarity of variables (termometers)

Classe	nc	Incgroup	totprofmh	usmhexperca	treatpre	apratiosch	1i1closepsybed	1f5i2exmhos	71mhrec10y	comcarewor	adpararectrail	3F1i3Manuals	Legisl	Polplanr	f1i6gov mh	rep
Latvia	1			_	-	нібн	_		-		_					\perp
C20	6					T-										
C21	4								Т		Гь		1			
C6	3			MED		њ.			HIGH	Π						_
C19	8			Π								<u> </u>	1			
C22	12			Ī												_
C18	8	Low				<u>г</u>										_
	ï	L L U	0.4 0	40 ~ B	18.57 5	6.02 1	.0.5 27	2.18 0.	0.	0.0197 0.	11999 2.	nasta) o-ohl fm_l	p / r l	AP /	N W	W II i
		W W F E E R R										e e w mo	s (s (r t e h o	t h
			·													

Qualitativ	s e z	60 50	40 40	20==30	U = 20					80	100 40		
, levels					2	0		0	4	0	50		hr/100000pop
usmhex <mark>k</mark> erca	- Hurr	0	4	2	4					8		0	US\$ per capita
TreatPreval	վա	0		10	00	11111111	20)0 10		3	00	ll t	reated/100000pop
capratio	dm	0		0.5		1	0		1.5		7	.0	% (treated pacs/prev)
closepsybed	.dm	0		2		4	1		6			B	(%f totbeds) per cap
expMHosp	.lm	0 .3	0.4	[.5	0.6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.7	0.8	[1111]111).9		% from MH budget
mhrec10y	Tur	0 0	.05 1	1.1	0.	2	0.	3	[[1.4	[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	.5	%from pacs in MHos
Comecarew	.dm	0 0	.05	1.1 1.1	0.	2 2	0.	3	())))))) (1.4		1.5	%from treated pacs
Lund	dm	0	LOW	1.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.6	1	I.8 MEDI	UM	.0	HIGH	.2 c	Outcontacts/daysHsp

MEDIAN	S	60	6	20		20			B	B	8		
	B]≡	50	40	30	Ē20	Ē 10	0		= 20	30	40		3 °
Totprof (HR)	.1	0	1	0	2	0	1		4	40	50		hr/100000pop
usmhexperca	Thu		41114111	2	4					8		0	US\$ per capita
TreatPreval	du	0	4	10	00	1	20		1111111	3	00	li t	reated/100000pop
capratio	dm			0.5		1	0		1.5		41114111	11	% (treated pacs/prev)
closepsybed	Thu	0	4	2		4			6			B	(%f totbeds) per cap
expMHosp	dm	0.3	0.4	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.5 .5	0.6	() () ()	.7	0.8	11111111	.9 .9	11	% from MH budget
mhrec10y	du	٥ ۵.	.05 (.1	0.	2		3		.4 .4		.5	%from pacs in MHos
Com	S .		.05 (0.	2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3		1.4		11 1.5	%from treated pacs
of polarit	CY	Ŋ		1.3		1.6	111111111 [I.8		.0 .0	111111111111111111111111111111111111111	.2 C	Outcontacts/daysHsp

The KLASS thermometer-tool

© K. Gibert

UPC

From CPG to Traffic Ligth Panel

Detect particularities Get semmantics and polatity of variables (termometers)

Classe	nc	Incgroup	totprofmh	usmhex perca	treatpre	apratiosch	1i1closepsybed	1f5i2exmhos	71mhrec10y	comcarewor	adpararectrail	3F1i3Manuals	Legisl	Polplanr	f1i6govmh	rep
Latvia	1		_	_		_			_	_						
C20	6		h_	Π	Г <u> </u>	ī.				_ п						
C21	4								7							
C6	3					т.				-						
C19	8		1	Г		1_	П			1	Π					
C22	12			L					Ιοσ	ļ.						
C18	8			L		1		fl			af a					
		LLU	0.4	~ 10	18.57 50	1.02 1	.0.5 22	9.18 0.	0.	.0.0197 0.	M999 2.	nasta 0-011	P A	p A	N W	W
		W W F										fmel	e s		t t	i t
		E F R F										w mo	e n	6 I	e h o	h

From CPG to Traffic Ligth Panel

Detect particularities Get semmantics and polatity of variables (termometers)

Symbolic abstraction Includes semantics

Profiling mental health systems in LAMIC Traffic Ligth Panel

Color-guided permutation of rows

CLASS	Incom	HR	\$MHe	Treat pre	Cap- ratio	close beds	%\$m- hosp	LTC- pacs	comc arew	Lund	Manua	Legis	Pol- plan	Gov- Rep	_
CI	UpMid	Highst	Highst	Highst	Highst	Lowest	High++	High	High	Lowest	No	yes	yes	yes	Adequat
C6	UpMid	Mod	Mod	Mod	Low	Low	Mod	Highest	Low	High	Some	yes	yes	Some	Moderat
C22	LMid	Mod	Low	Mod	Mod	Mod	Highest	High	Mod	Mod	No	Some	Some	No	Basic
C21	LMid	Low	Low	Low	Mod	Mod	High	High	Mod	Mod	yes	No	yes	Some	
C20	LMid	Low	Low	Low	Low	Mod	High	High	Highest	Highest	yes	Some	yes	Some	
C19	LMid	Low	Low	Lowest	Lowest	High	High	Low	Low	High	Some	No	Most	Most	
C18	Low	Low	Low	Low	Low	Highst	High++	Low	Low	Mod	No	Few	Most	No	

Gibert K, D. Conti (2015) aTLP: A color-based model of uncertainty to evaluate the risk of decisions based on prototypes. Artificial Intelligence Communications 28:113-126, IOSPress

<u>© K. Giber</u>t

TLP supports expert conceptualization

Resources variables

	-					
CLASS	Incom	HR	\$MHe	Treatpr e	Cap- ratio	closebe ds
CI	UpMid	Highst	Highst	Highst	Highst	Lowest
C6	UpMid	Mod	Mod	Mod	Low	Low
C22	LMid	Mod	Low	Mod	Mod	Mod
C21	LMid	Low	Low	Low	Mod	Mod
C20	LMid	Low	Low	Low	Low	Mod
C19	LMid	Low	Low	Lowest	Lowest	High
C18	Low	Low	Low	Low	Low	Highst

High human and material resources

1

TLP supports expert conceptualization

Resources variables

IDEAI

Higher human and material resources	CLASS	Incom	HR	\$MHe	Treatp re	Cap- ratio	closeb eds
High res., low coverage	CI	UpMid	Highst	Highst	Highst	Highst	Lowest
Moderate resources	C 6	UpMid	Mod	Mod	Mod	Low	Low
Low res., moderate	C22	LMid	Mod	Low	Mod	Mod	Mod
coverage Voru Low ros	C21	LMid	Low	Low	Low	Mod	Mod
Semi-distributed	C20	LMid	Low	Low	Low	Low	Mod
Very Low res. City-oncentrated	C19	LMid	Low	Low	Lowest	Lowest	High
Scarcity	C18		Low			Low	ist
				KNOV Nev	VLEDGE v Doma	DISCOV	/ERY: el

TLP elicits clustering criteria

Powerful perspective of ALL relevant variables

CLASS	Incom	HR	\$MHe	Treat pre	Cap- ratio	close beds	%\$m- hosp	LTC- pacs	comc arew	Lund	Manua	Legis	Pol- plan	Gov- Rep	
CI	UpMid	Highst	Highst	Highst	Highst	Lowest	High++	High	High	Lowest	No	yes	yes	yes	Adequate
C6	UpMid	Mod	Mod	Mod	Low	Low	Mod	Highest	Low	High	Some	yes	yes	Some	Moderate
C22	LMid	Mod	Low	Mod	Mod	Mod	Highest	High	Mod	Mod	No	Some	Some	No	Basic
C21	LMid	Low	Low	Low	Mod	Mod	High	High	Mod	Mod	yes	No	yes	Some	
C20	LMid	Low	Low	Low	Low	Mod	High	High	Highest	Highest	yes	Some	yes	Some	
C19	LMid	Low	Low	Lowest	Lowest	High	High	Low	Low	High	Some	No	Most	Most	
C18	Low	Low	Low	Low	Low	Highst	High++	Low	Low	Mod	No	Few	Most	No	

TLP elicits clustering criteria

Induces categories of variables and classes

B L O C K		CLASS	CARE CAPACITY							CARE ARRANGEMENT					POLICY FRAMEW			
			Incom	HR	\$MHe	Treat pre	Cap- ratio	close beds	%\$m- hosp	LTC- pacs	comc arew	Lund	Manua	Legis	Pol- plan	Gov- Rep		
ı	Upper- Moderate	CI	UpMid	Highst	Highst	Highst	Highst	Lowest	High++	High	High	Lowest	No	yes	yes	yes		Adequate
		C6	UpMid	Mod	Mod	Mod	Low	Low	Mod	Highest	Low	High	Some	yes	yes	Some		Moderate
	Low-Mod	C22	LMid	Mod	Low	Mod	Mod	Mod	Highest	High	Mod	Mod	No	Some	Some	No		Basic
II	Mid-	C21	LMid	Low	Low	Low	Mod	Mod	High	High	Mod	Mod	yes	No	yes	Some		
	Limited	C20	LMid	Low	Low	Low	Low	Mod	High	High	Highest	Highest	yes	Some	yes	Some		
		C19	LMid	Low	Low	Lowest	Lowest	High	High	Low	Low	High	Some	No	Most	Most		
	Very Lim	C18	Low	Low	Low	Low	Low	Highst	High++	Low	Low	Mod	No	Few	Most	No		

Supports data-driven Ontologies

MENTAL HEALTH SYSTEMS

Knowledge Production

MHS for LAMIC ontology

Intervention plans designed for each type

© K. Gibert

Conclusions and future work

- Integral data science approach supporting health policy making
- Preprocessing crucial to clean and impute data
- MIMMI missing imputation method
 - Combines expert knowledge with conditional distributions
 - Good trade-off between precision and simplicity
 - Quicker than EM-based or Monte Carlo estimation methods
- Clustering based on rules gives understandable clusters
 - Combines expert knowledge with hierarchical clustering
 - Clusters consistent with well-known issues in the domain
- Post-processing crucial to produce actionable knowledge
 - Combines expert knowledge with conditional distributions
 - TLP is a easy to understand symbolic abstraction to support conceptualization
 - (a-TLP in progress to visualize also variances)
- Typology of MHS in LAMIC used at WHO to assess interventions

A mixt data/knowledge driven data science approach for complex decision making Mental Health policy-making in LAMIC at WHO

> K. Gibert karina.gibert@upc.edu https://www.eio.upc.edu/en/homepages/karina

KEMLG-@-IDEAI: Knowledge Engineering and Machine Learning group at Intelligent Data Science and Artificial Intelligence Research Center

Universitat Politècnica de Catalunya, Barcelona

Are there any questions?...

Data Council Barcelona 2019. UTOPIA 126, October 2-3th, 2019

