Data Council Conference | October 3rd 2019

carmen.herrero@mango.com

Hello Data Council!

- > I'm a physicist, M. Sc. and Ph.D. in Physical Oceanography
- > 9+ years working with long time series and predictive modelling
- > Joined Mango 10 months ago as Lead Data Scientist

Contents

- ightarrow Mango. Who are we?
- ightarrow Retail. A whole Universe of data
- > Use-case: markdown optimization during sale season
- > What have we learned?
- > Final remarks

KEY DATA 2017

Multinational company

A)		1	Q	I	+
CUSTOMERS		FINANCE		SUPPLIERS		EMPLOYEES	MARKET	l	ENVIRONMENT
83 COUNTRIES WITH ONLINE STORES		2,193 MILLION EUROS OF TURNOVER		+136 MILLION UNITS MANUFACTURED	Hj H	80% FEMALE EMPLOYEES	2,190 STORES		100 STORES IN SPAIN WITH TEXTILE WASTE CONTAINERS
812,723 m ² SELLING SPACE		77% of sales in foreign markets		1,256 FACTORIES USED		15,970 Employees	110 COUNTRIES IN WHICH WE ARE PRESENT		20,390 T CO, EQ. OFFSET
+6,600 MODELS DESIGNED EACH SEASON	A CONTRACTOR	15.5% of turnover in online sales	MIN	607 GARMENT AND ACCESSORIES SUPPLIERS		9.015 TRAINING HOURS IN HEALTH AND SAFETY	211 MEGASTORES		50% of sustainable cotton in 2022

Advanced Analytics

Who are we? What do we do?

The aim of the AA unit is to give support to the company's decision making process, to help become a data driven organization and to improve company's results through ML

Retail: a whole Universe of data

Retail: a whole Universe of data

Where should we **invest** effort and money?

It is important to put the focus on actions that really give you **value** and **confidence** from business

Use-case: price optimization

ACTIONABLE

All variable and costs of the production process were **available**

MEASURABLE

FIND THE OPTIMAL PRICE TO MAXIMIZE PROFIT AFTER OUTLET FOR EACH PRODUCT

Which is the optimal discount?

```
A/B testing to measure the success
```

IMPACT

Increased the mean profitability during sale season

Use-case: price optimization

Revenue

Considering all variable costs of the production process, including leftovers, find the optimal price for each product and country

Support

Give support and tools to business to take informed decisions

Knowledge

Build knowledge and make impact for future Ai Actions

Use-case: price optimization

1 Data **preparation** and insights

Understand the variable importance and select the right inputs

- ✓ Recent purchases
- ✓ Stocks
- ✓ Price elasticity
- ✓ Shops

Use-case: price optimization

2 **Build** a machine learning algorithm (I+D)

A **Random Forest** model has been built and trained with the historical data to predict product sales for each week during the sale season.

Use-case: price optimization

3 Price **optimization** considering the predicted sales and the corresponding margin

A vast matrix with all the possible price points for each week and product is built and a forecast sale prediction is given. The margin after outlet is calculated for each particular case and the optimal price value is obtained.

Combination PP	Week 1	Week 2	Week 3	Week 4	Week 5	Week ó	Week 7	Week 8
1	4.99	4.99	4.99	4.99	4.99	4.99	4.99	4.99
255	17.99	15.99	15.99	12.99	12.99	9.99	9.99	9.99
1241	25.99	25.99	19.99	17.99	15.99	12.99	12.99	12.99
2219	39.99	15.99	15.99	12.99	7.99	7.99	7.99	7.99

* Data Example (NOT REAL DATA)

Use-case: price optimization

Theoretical profit after outlet for each combination of price points

Combination PP	Week 1	Week 2	Week 3	Week 4
1	4.99	4.99	4.99	4.99
255	17.99	15.99	15.99	12.99
1241	25.99	25.99	19.99	17.99
2219	39.99	15.99	15.99	12.99

Reference	Family	Combi nation PP	margin	sales	leftover
41028827	SHORT	7	X€	А	0
41028827	SHORT	255	Highest!	A-10	10
41028827	SHORT	500	XXX€	A-25	25
41028827	SHORT	1007	XX€	A-247	247

* Data Example (NOT REAL DATA)

A/B testing analysis

What have we learned?

Once you have the **actioned** the project, and obtain a significant **impact**, you need to focus on **how to** <u>scale</u>

Measuring helps you to bring the impact to the stakeholders but also it is necessary to **understand the dynamics of the actions taken**

What have we learned?

Code: be prepared for the future

> Flexible. Tons of changes will be made

- ightarrow Scalable. You'll have to scale it, for sure
- > Documented. You're not alone
- > Organized. Keep track using tools as Git

What have we learned?

I + D: interpretability is key

- > Don't focus on precision but on getting the job done
- > You will have always to make assumptions: be aware of them

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

What have we learned?

I + D: interpretability is key

> Make sure results are understandable:

use The GrandMa principle

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

What have we learned?

Team: a solo mission is a suicide mission

> Diverse team: gender, background, experience...

ight
angle Get good engineers to help you with the

infrastructure

> Be aware of your needs: there is a huge BigData ecosystem

"You can have data without information, but you cannot have information without data."

Daniel Keys Moran, American computer programmer and science fiction writer

Final remarks

> We need to take informed decisions. Knowledge is key

There are a lot of opportunities to assist on the business decision making. Tons of room for growth and to develop I+D tools

BUT, it is important to make our DS projects actionable measurable and with an impact, otherwise, we will not succeed in the long run

Thank you

carmen.herrero@mango.com

PS. We're hiring!

MANGO