Building a 1500-Class Listing Categorizer from Implicit User Feedback

Arnau Tibau - arnau.tibau@letgo.com October 2019, Data Council Barcelona

Arnau

Luca

Julien

Philipp

Antoine

Outline

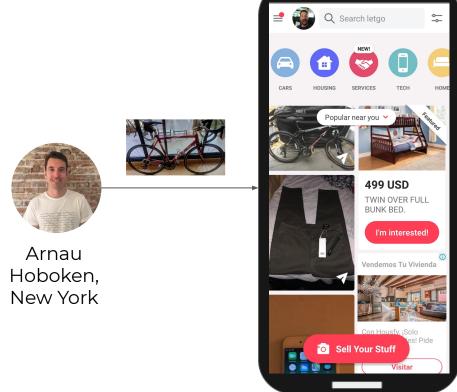
- 1. The problem of listing categorization
- 2. Building a listing categorization dataset
- 3. Building a listing taxonomy
- 4. Image-based listing categorization
- 5. Conclusions & next steps

letgo

A local two-sided marketplace - where sellers sell &

•

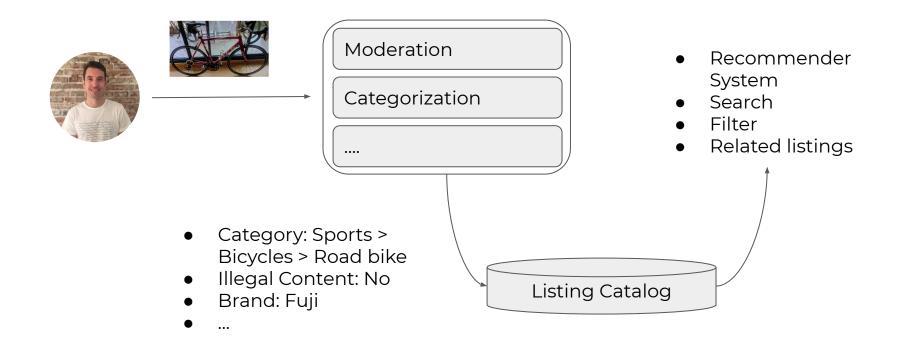
buyers buy



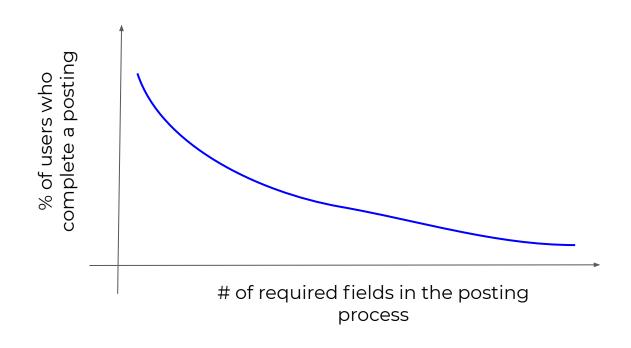
Luca Jersey City, New York

"bike"

A correct categorization is key for a good buyer experience



Why don't you just ask sellers for the category?

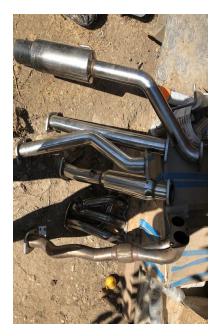


Why don't you just ask sellers for the category? (II)

Adversarial Sellers

Is this an "iphone"?

Posting mistakes



This is not a "Car"

Problem statement

Title: Joovy twin Roo+ Stroller

Description: Best stroller for infant twins in my opinion. Fits two infant car seats side by side. You pick the [...]

Price: \$50

Listing categorizer

Listing categorizer

Baby & Child >

Strollers >

Twin stroller

It's *just* a classical "supervised learning" setup

Challenges

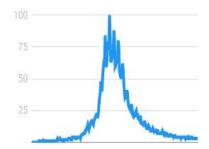
Ambiguity

A TV, a TV stand or a TV + TV Stand?

Noisy Data

Does this look like a "Cardigan"?

Open-world



"Fidget spinners" rise and demise

Adversarial Actors

This is not an "iphone"

Outline

- 1. The problem of listing categorization
- 2. Building a listing categorization dataset
- 3. Building a listing taxonomy
- 4. Image-based listing categorization
- 5. Conclusions & next steps

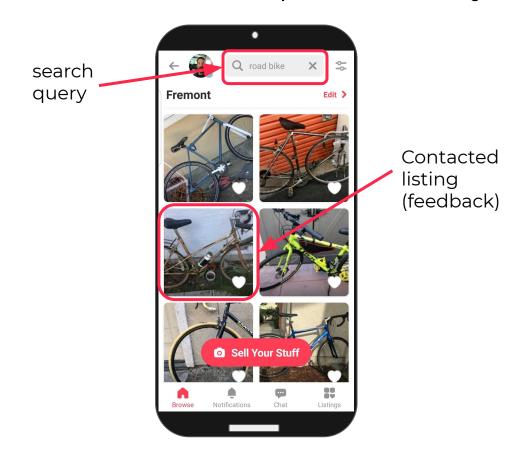
To train a model we need data and labeled data is expensive

1500 categories x 1000 samples / category = 1.5M labeled samples

	\$ / annotation (estimate)	Total Estimate*
AWS Groundtruth (internal workforce)	0.02 (aws) + 0.06 (labor)	\$120k
AWS Groundtruth (Mechanical Turk)	0.02 (aws) + 0.02 (labor)	\$60k
Google Data Labeling	? (google) + 0.025 (labor)	-

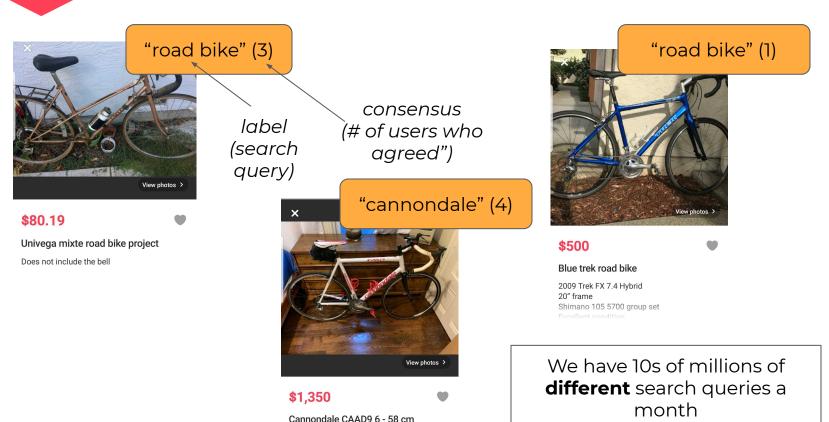
With a recommended replication factor of 3x, we're talking **\$180k - \$360k** for a moderately sized, static dataset.

Implicit user feedback provides noisy labels



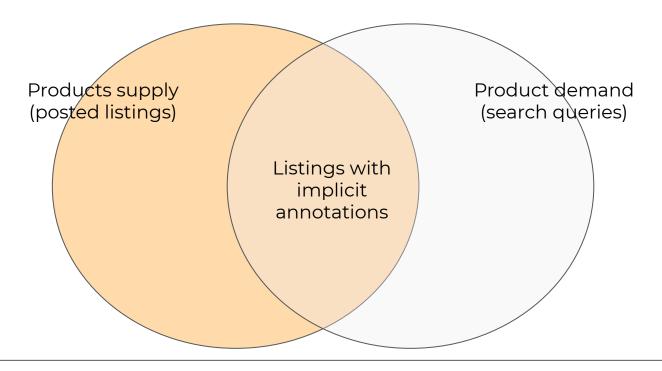
letgo

Implicit user feedback provides noisy labels (II)



Cannondale CAAD9 6 - 58 cm

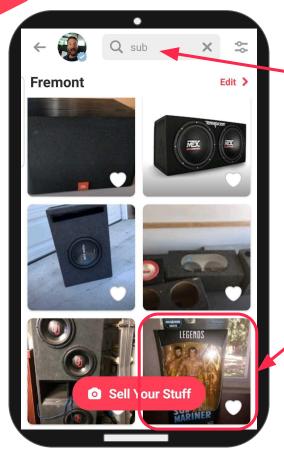
Challenges: Potential **Selection Bias**



Potential problems ahead if P(class | w/ annotations) ≠ P(class)

letgo

Challenges: Uncorrelated label noise



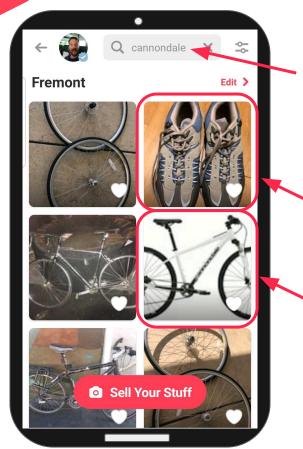
Query: "sub" (for sub-woofer)

Contacted: "Sub-mariner action figure"

- "Uncorrelated" because label error depends weakly on the listing attributes
- Sources of this type of label noise:
 - Curiosity
 - Mistakes
 - 0
- "Easy" to deal with through outlier detection

letgo

Challenges: Correlated label noise



Query: "cannondale bike"

Contacted: "cannondale shoes"

Contacted:
"cannondale
mountain bike"

- "Correlated" because label error depends strongly on the listing attributes
- Sources of this type of label noise:
 - Listing similarity
 - User interest correlation
 - Taxonomy errors
- Hard to deal with

Outline

- 1. The problem of listing categorization
- 2. Building a listing categorization dataset
- 3. Building a listing taxonomy
- 4. Image-based listing categorization
- 5. Conclusions & next steps

What is a listing taxonomy?

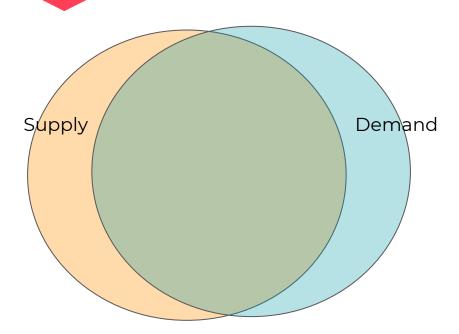
- adirondack
- bean bag
- bench
- camper chair
- commode chair
- cuddle chair
- dining chair
- feeding chair
- gaming chair
- glider chair
- highchair
- lounge chair
- massage chair
- office armchair
- office chair
- ottoman
- papasan chair
- parson chair

- armoire
- bed
- bed frame
- board
- cabinet
- couch
- chair
- chest
- desk
- dinning set
- ...

- cars
- fashion & accessories
- furniture
 - ...

The leafs of the taxonomy are the classes in our classifier...
... and the tree structure encodes the relationship between labels

What makes a good marketplace taxonomy?



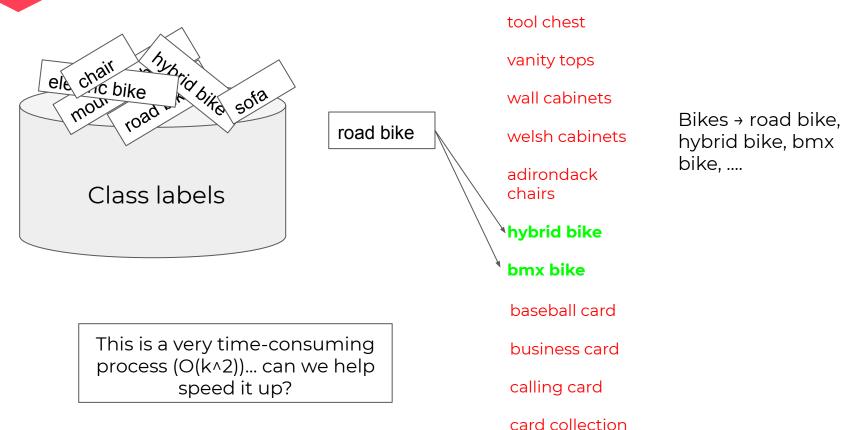
31 32 Trucks Furniture 32 27 31 2 Sports gear 32 31 28 1 3 Musical instrument Baby Toys 32 Clothing 32 Bags & Handbags Footwear Pet food

Electronics Cars & Trucks Other Auto & Parts Home & Applian... Tools & Gardening Sports & Outdoors Toys & Gaming Movies, Books & ... Baby & Child Fashion & Acces...

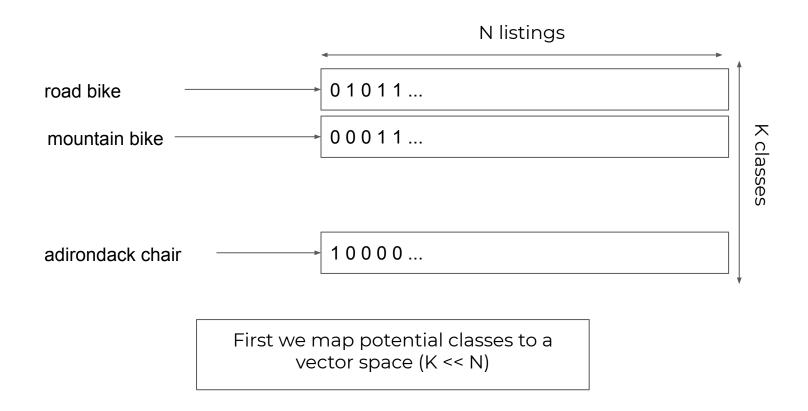
Good coverage of both supply and demand

Minimizes user confusion while offering sufficient granularity

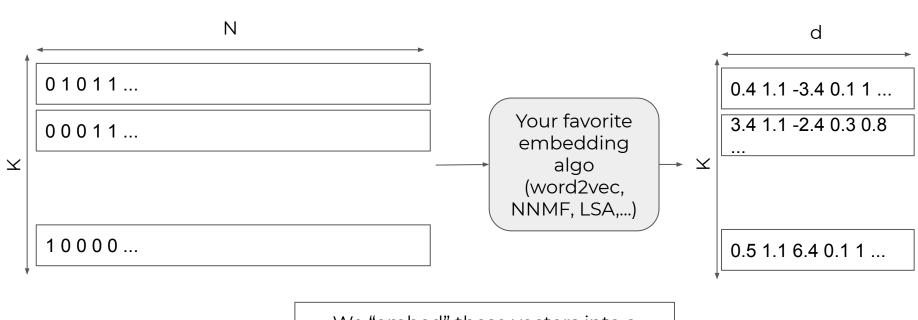
Building a taxonomy is typically a manual process



A data-driven process to define large taxonomies

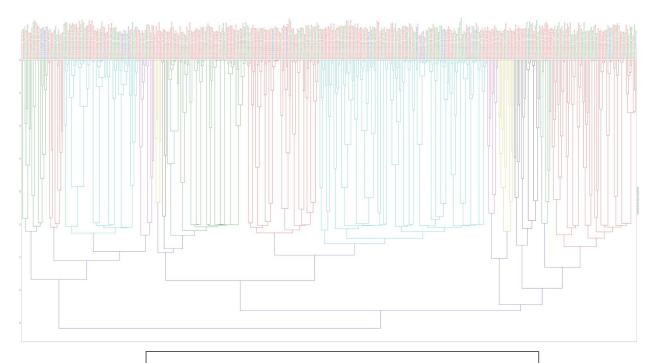


A data-driven process to define large taxonomies (II)



We "embed" these vectors into a lower-dimensional space

A data-driven process to define large taxonomies (II)

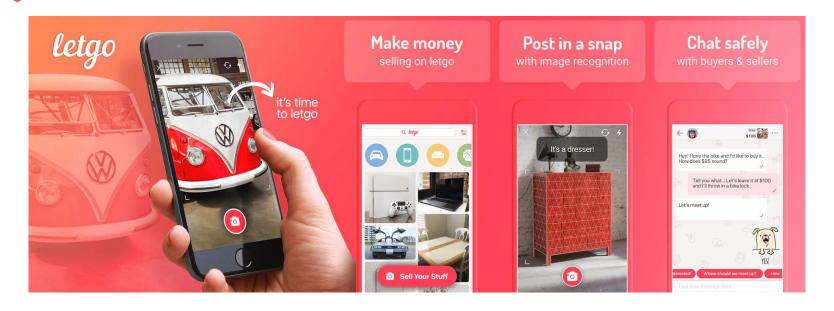


Finally we cluster those class-vectors and inspect manually (C clusters instead of K classes)

Outline

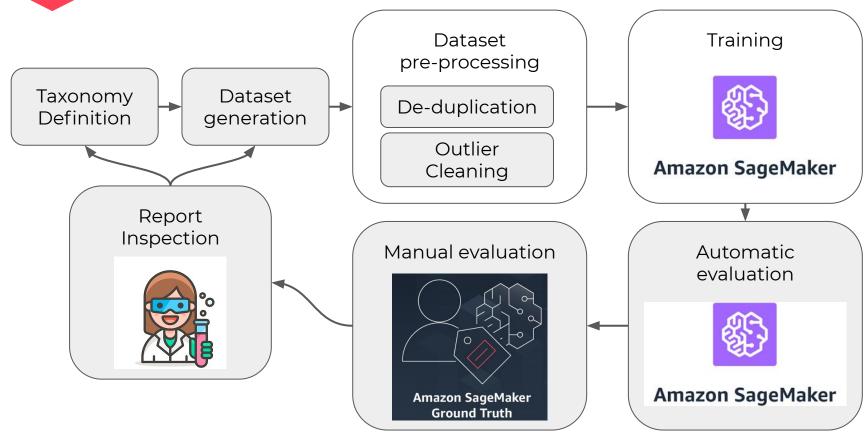
- 1. The problem of listing categorization
- 2. Building a listing categorization dataset
- 3. Building a listing taxonomy
- 4. Image-based listing categorization
- 5. Conclusions & next steps

Why image-based listing categorization?

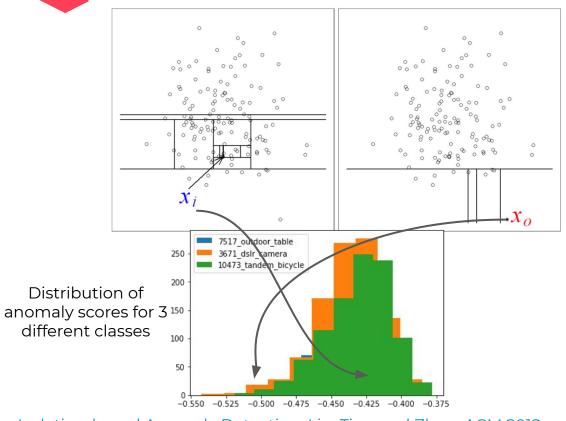


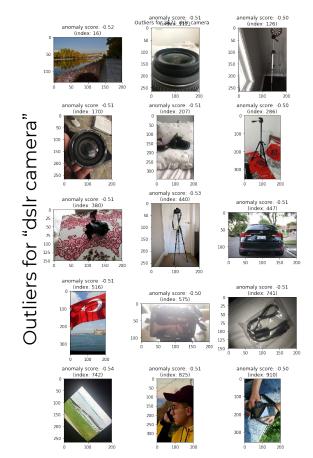
- At first, we only asked for one image at posting-time*
- Very few listings had a description
- Even if now we have more info (name, description, price), the picture and the other info should be coherent.

A virtuous training & debugging cycle

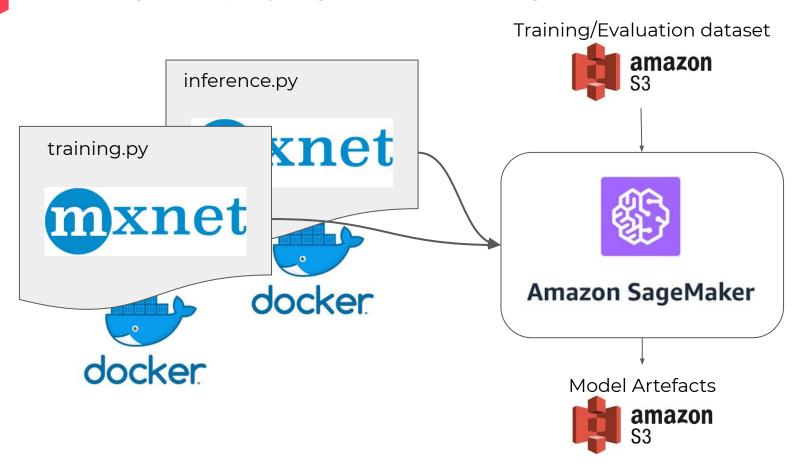


Uncorrelated label noise cleaning via Isolation Forests





Training & deploying with AWS Sagemaker's



Training & deploying with AWS Sagemaker's (II)

Pros	Cons		
 Ease-of-use Flexibility (DL framework, model ser/deserialization, data transformation) Endpoint autoscaling Integration with AWS ecosystem (IAM roles, Cloudwatch, ELB, etc) Fast & responsive maintenance 	 Debugging Inference Cost (\$\$\$) Unstable SDK Integration Testing is hard 		

Model & dataset debugging (I)

 Global metrics	Precision	Recall	Accuracy
Category			
Subcategory			
Micro-cat			

Local			
metrics	Precision	Recall	f1-score
6901_masquerade _mask	95%	97%	96%
11381_vinyl_figure	92%	94%	93%
11361_video_game	89%	96%	93%

Metrics are great to measure progress but not that great for fixing problems:

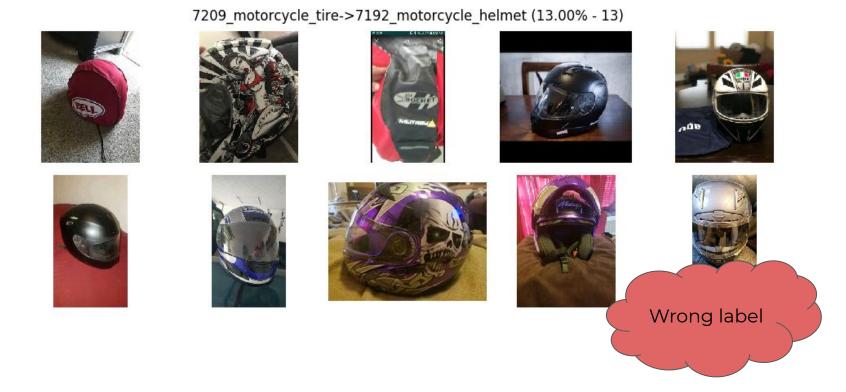
Look at the mistakes!

Model & dataset debugging (II): confusion report

1848_candle_stand->1839_candle_holder (16.00% - 16)

Model capacity

Model & dataset debugging (III): confusion report



Model & dataset debugging (IV): confusion report

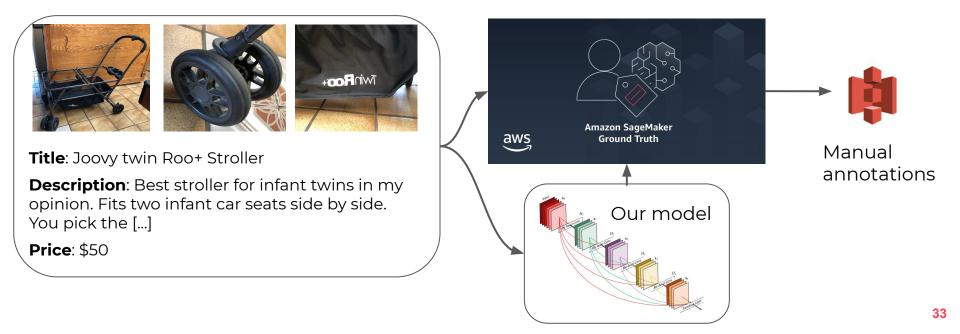
Indistinguishable from images alone

Other potential issues:

- Low sample size
- Non-disjoint classes

Manual evaluation

- Noisy labels means we can't trust our accuracy metrics
- Customer perception ≠ metrics
- Gathering human labels → EASY PEASY?



Manual evaluation challenges (II)

- What do we ask for? right/wrong, choose correct one?
- What do we show? All images, text, category tree?

Same predictions, different category tree → 10% difference in manually evaluated accuracy

Outline

- 1. The problem of listing categorization
- 2. Building a listing taxonomy
- 3. Building a listing categorization dataset
- 4. Image-based listing categorization
- 5. Conclusions & next steps

Conclusions & next steps

- Implicit feedback is a cost-effective way of annotating data
- Performance evaluation is not trivial
- Building pipelines with **iteration** in mind is KEY
- AWS Sagemaker provides a good trade-off between flexibility and ease of use

Next steps:

- **Resolving ambiguities** → multi-image and multi-modal models
- Handling correlated label noise → Noise-aware models

Thanks for your attention! Any questions? arnau.tibau@letgo.com

We're hiring!

Check out our openings here:
we.letgo.com/careers