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@Spina89
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RADICALBIT PRODUCTS

Radicalbit is a highly specialized software firm, founded in Milan, in 2015, focused on the 
design and development of products dedicated to Event Stream Processing solutions, daily 
working to combine streaming technologies, Machine Learning and AI with a self-service 
approach.
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DISCLAIMER (AGAIN)

During this talk, you’re going to listen about some buzzwords

● Event Stream Processing

● Machine Learning

You might also hear about topics you already know, and a few you might not ;)

● Lambda v.s. Kappa architectures

● Machine Learning Logistics

● Online Machine Learning
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AGENDA

1. Events Stream Processing

2. Machine Learning

3. Model Serving on Kafka

4. Online Learning on Kafka

5. Conclusion
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Events Stream Processing
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Data Streams
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Unbounded

Immutable 

Unknown

t

Batch is stream-able

Storable

Transformable
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LAMBDA ARCHITECTURE
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LAMBDA ARCHITECTURE ISSUE

9

SOURCES

EVENT STREAM PROCESSING

BATCH PROCESSING

MERGED 
VIEW

BATCH 
LAYER

SPEED 
LAYER

SERVING 
LAYER

$$$!

$$$!



© 2019– All rights reserved

KAPPA ARCHITECTURE
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KAPPA ARCHITECTURE: REQUIREMENTS
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KAPPA ARCHITECTURE: REQUIREMENTS
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KAPPA ARCHITECTURE: REQUIREMENTS
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KAPPA ARCHITECTURE: REQUIREMENTS
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KAFKA

“ Apache Kafka is a distributed streaming 
platform. 

- Publish and subscribe to streams of 
records, similar to a message queue or 
enterprise messaging system

- Store streams of records in a 
fault-tolerant durable way

- Process streams of records as they occur ”

15 © 2019– All rights reserved
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KAFKA OFFSETS

16 © 2019– All rights reserved

Data reprocessing  means “resetting offsets”
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KAFKA MODULES

1. Consumer API

2. Producer API

3. Connect  API

4. Streams  API
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KAFKA AS STANDARD STREAMING ENABLER

“Kafka at the core of tens of thousands production use-cases”
Jay Kreps, Kafka Summit - New York, 2019

18
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RNA AND THE KAPPA ARCHITECTURE
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Radicalbit platform has been optimized to take full advantage of Kafka core features such as Kafka Connect, the Schema registry, 
and Kafka Streams but can be used to manage data pipelines also over Apache Flink or Spark Streaming with code portability
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WHAT ABOUT ML?

20
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Blending Machine Learning with Streaming
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TARGETED ML TASKS

● Models Serving

● Online Machine Learning

22
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Streaming Models Serving

and the magic of machine learning logistics
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STREAMING MODELS SERVING

● Serve models in a event stream processing architecture

● It’s a Machine learning logistics issue (1)

○ Organisations need Data Scientists and Data Engineers

○ New Tools make it harder (2)

● Fragmented solution space

○ Framework based: Tensorflow Serving, Spark, Openscoring

○ Cloud based: Google, IBM, MS Azure, Amazon

24

(1) Ted Dunning & Ellen Friedman - Machine Learning Logistics - OREILLY

(2) Boris Lublinsky - Serving Machine Learning Models - OREILLY
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SOLUTIONS TO ML ENTROPY

1. STANDARD BASED

Define a youNameIt-independent format to represent a wide range of ML models

● PMML (PFA) - traditional learning

● ONNX - deep learning

● MLEAP - not a STD

25
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SOLUTIONS TO ML ENTROPY

2. CONTAINER BASED

Creating containers wrapping environments natively aimed at models deployment

Exposing a communication protocol for serving (usually a REST endpoint)

● Seldon core(1)

● Clipper(2)

● MLFlow(3)

26

(1) https://www.seldon.io/open-source/ 
(2) http://clipper.ai/ 
(3) https://mlflow.org/ 

https://www.seldon.io/open-source/
http://clipper.ai/
https://mlflow.org/
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PROS and CONS(1)

STANDARD BASED

PROS Performance, flexibility, many people are happy

CONS Adoption, algorithms

CONTAINER BASED

PROS Repeatability, adoption is not a problem, everybody is happy

CONS Performance depends on systems, devops competence

27

(1) https://qconsp.com/sp2018/system/files/presentation-slides/qconsp18-deployingml-may18-npentreath.pdf 

https://qconsp.com/sp2018/system/files/presentation-slides/qconsp18-deployingml-may18-npentreath.pdf
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SERVING AS A SERVICE WITH KAFKA

The goal

Attempting to serve seamless Standards, Containers, and Tools using Kafka

● No constraints about models deployment (it has not to be even a ML model!)

● It potentially has not to be even a ML model!

28



© 2019– All rights reserved

SERVING AS A SERVICE WITH KAFKA

Our predictive k-pipelines shall:

● dynamically serve the evolution of trained models
○ models often change in behavior during their long-lasting lifetime
○ updates

● apply simultaneously multiple models against the same stream, the same model to 
many streams

29

{
  “modeld”: “model_1”,
  “eventData”: “...”
}

{
  “modeld”: “model_1”,
  “eventData”: “...”
}

{
  “modeld”: “model_1”,
  “eventData”: “...”
}

{
  “modeld”: “model_1”,
  “eventData”: “...”
}

SVM

CNN

RF
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KAFKA STREAMS APIs

30

● Kafka Streams is not a DSPE, is a library(1)

● By Kafka Streams APIs, users  define a processor topology

● Two API levels

○ Kafka Streams DSL

○ Processor API

(1) https://kafka.apache.org/23/documentation/streams/ 

https://kafka.apache.org/23/documentation/streams/
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SERVING AS A SERVICE: KS-H
2

O Example

31

● Gartner 2019 magic quadrant for Machine Learning

● Most of the code is open source

● High support for algorithms

● H
2

O flow

Main features

● well-built Rest API layer

● POJO and MOJO formats + client library
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KSH
2

O - THE CONTROL STREAM

32

{
…
“id”: “unsupervised_cusomers_1”,
“algorithm”: “kmeans”,
“format”: “mojo”,
“exp_date”: null,
“more_info”: “ ... ”
… 

}
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KSH
2

O - THE CONTROL STREAM (2)

33

1 - to - 1 Bind

Model Repository Server → Control Stream
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KSH
2

O - FEEDING A METADATA TABLE

{ 
…
“id”: “unsupervised_cusomers_1”,
“algorithm”: “kmeans”,
“format”: “mojo”
“exp_date”: null
“more_info”: “ ... ”
… 

}

TASK 1

TASK 2

TASK n

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

GlobalKTable
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KSH
2

O - THE DATA STREAM

TASK 1

TASK 2

TASK n

{
“modelId”: 
“model_1”,
“eventData”: 
“...”

}

{
“modelId”: 
“model_2”,
“eventData”: 
“...”

}

{
“modelId”: 
“model_1”,
“eventData”: 
“...”

}

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

GlobalKTable



© 2019– All rights reserved36

KSH
2

O - LAZY MODELING LOADING

I’M A TASK!

ID1 /../.. m1 more

ID2 /../.. m2 more

POJO model{
“modelId”: “ID1”,
“eventData”: 
“...”

}
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KSH
2

O - MODEL STORAGE AND FAULT TOLERANCE

On restore, lazy uploading applies models’ recovering

T1

T2

T3

T4

ID1 /../.. m1 more

ID2 /../.. m2 more

ID1 /../.. m1 more

ID2 /../.. m2 more

ID1 /../.. m1 more

ID2 /../.. m2 more

ID1 /../.. m1 more

ID2 /../.. m2 more

RESTORED

RESTORED

RESTORED

RESTORED

ID1 /../.. m1 more

ID2 /../.. m2 more

POJO
{

“modelId”: “ID1”,
“eventData”: “...”

} T2



© 2019– All rights reserved38

THE KS-H
2

O ARCHITECTURE

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

TASK 1

TASK 2

TASK n{
“modeld”: “model_2”,
“eventData”: “...”

}

{
“modeld”: “model_1”,
“eventData”: “...”

}

{
…
“id”: 
“unsupervised_cusomers_1”,
“algorithm”: “kmeans”,
“format”: “mojo”
“exp_date”: null
“more_info”: “ ... ”
… 

}

Configuration
● Empty predictions strategy
● NaN management
● UDF
● … 

{
“UserDefinedOutput”: 
{ … },
“prediction”: { 
/*PREDICTION OBJECT*/
} 

}

MOJO

MOJO

POJO

ks-h2o - https://github.com/radicalbit 

https://github.com/radicalbit
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TOWARDS A GENERIC ARCHITECTURE

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

TASK 1

{
…
“id”: 
“unsupervised_cusomers_1”,
“algorithm”: “kmeans”,
“format”: “mojo”
“exp_date”: null
“more_info”: “ ... ”
… 

}

POJO

First generalisation

Given a control message, how to build the shared state
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TOWARDS A GENERIC ARCHITECTURE

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

TASK n{
“modeld”: “model_2”,
“eventData”: “...”

}
MOJO

Second generalisation

Given the record to score, how to build the model
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TOWARDS A GENERIC ARCHITECTURE

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

TASK n{
“modeld”: “model_2”,
“eventData”: “...”

}
MOJO

Third generalisation

Given the record to score, implement the scoring method
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THE KS-H
2

O ARCHITECTURE

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

TASK 1

TASK 2

TASK n{
“modeld”: “model_2”,
“eventData”: “...”

}

{
“modeld”: “model_1”,
“eventData”: “...”

}

{
…
“id”: 
“unsupervised_cusomers_1”,
“algorithm”: “kmeans”,
“format”: “mojo”
“exp_date”: null
“more_info”: “ ... ”
… 

}

Configuration
● Empty predictions strategy
● NaN management
● UDF
● … 

{
“UserDefinedOutput”: 
{ … },
“prediction”: { 
/*PREDICTION OBJECT*/
} 

}

MOJO

MOJO

POJO

https://github.com/radicalbit 

ks-h2o - https://github.com/FlinkML/flink-jpmml 

https://github.com/radicalbit
https://github.com/FlinkML/flink-jpmml
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SERVING STANDARD MODELS DEPLOYMENTS

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

TASK 1

TASK 2

TASK n{
“modeld”: “model_2”,
“eventData”: “...”

}

{
“modeld”: “model_1”,
“eventData”: “...”

}

Configuration
● Empty predictions strategy
● NaN management
● UDF
● … 

{
“UserDefinedOutput”: 
{ … },
“prediction”: { 
/*PREDICTION OBJECT*/
} 

}

PMML

PMML

PMML

flink-jpmml - https://github.com/FlinkML/flink-jpmml 

{
…
“id”: 
“unsupervised_cusomers_1”,
“algorithm”: “svm”,
“format”: “PMML”
“model_path”: /opt/mdls
“more_info”: “ ... ”
… 

}

https://github.com/FlinkML/flink-jpmml
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SERVING CONTAINERIZED MODELS DEPLOYMENTS

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

TASK 1

TASK 2

TASK n{
“modeld”: “model_2”,
“eventData”: “...”

}

{
“modeld”: “model_1”,
“eventData”: “...”

}

Configuration
● Empty predictions strategy
● NaN management
● UDF
● … 

{
“UserDefinedOutput”: 
{ … },
“prediction”: { 
/*PREDICTION OBJECT*/
} 

}

REST

REST

REST
client

{
…
“id”: “rnn-1”,
“algorithm”: “net”,
“format”: “Tensorflow”
“serve_url”: 
https://serve.com/opt/mdls
… 

}
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KS-OML

Online Machine Learning using Kafka Streams
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MACHINE LEARNING, TRAINING
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ONLINE LEARNING IS ABOUT A PORTION OF DATA

t

DIM 3

WEIGHT 0.8

COLOR R

DIM 3

WEIGHT 1.6

COLOR O

DIM 3

WEIGHT 0.3

COLOR G
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KS-OML - ONLINE LEARNING CHALLENGES

1. Computational Model

TASK
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1. Computational Model

KS-OML - ONLINE LEARNING CHALLENGES

TASK
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2. Evolving Data - or the long-standing issue of the Concept Drift

KS-OML - ONLINE LEARNING CHALLENGES

October, 20th November, 20th December, 20th

PURCHASE

PURCHASE

PURCHASE

t

PURCHASE

PURCHASE

PURCHASE

t

PURCHASE
PURCHASE

PURCHASE PURCHASE

PURCHASE
PURCHASE

t

PURCHASE PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE
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Growing academic interest
Online Machine Learning in Big Data Streams, 2018, András Benczúr, Levente Kocsis, Róbert Pálovics

Still rare productionized OML implementations

The value

1. When the ability to fast adapt is more important than the best performance
Newspaper domestic affairs drift example

2. When keeping data offline is not possible
healthcare data, not reachable data

3. Resource savings

ONLINE MACHINE LEARNING STATE
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Online Machine Learning on Kafka architecture

Main objective

all-contained operator with configurable algorithms suite

First Implementation: passive-aggressive algorithm, Daniele Tria

Second Implementation: soft confidence-weighted algo, Seyedmasih Hosseinimotlagh

KS-OML

(1) Online Passive-Aggressive Algorithms - Crammer, Dekel, Keshet, Shalev-Shwartz, Singer

http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf

(2) Soft confidence-weighted Algorithms - Wang, Zaho, Hoi

https://arxiv.org/ftp/arxiv/papers/1206/1206.4612.pdf

http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf
https://arxiv.org/ftp/arxiv/papers/1206/1206.4612.pdf
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● margin based algorithm
● able to solve binary class, multiclass and regression problems
● feedback concept

● for binary class, given 
○ y

t
 the true label

○ x
t
 the feature vector 

○ w
t
 the weighted vector of the model

● y
t
(x

t
・w

t
) = margin margin > 0 → correct prediction sign(x

t
・w

t
) = y

t

● why passive-aggressive ?
○ if margin ≥ +1 → do nothing
○ else → enforce the margin

KS-OML - PASSIVE AGGRESSIVE ALGORITHM
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KS-OML - HIGH-LEVEL WORKFLOW

TASK

“NOT A CUBE!”

TASK

“EHM, IT WAS ACTUALLY...”

bad prediction → enforce 
Aggressive!
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KS-OML - HIGH-LEVEL WORKFLOW

TASK

“CUBE!”

TASK

“YOU WERE RIGHT!”

good prediction
margin < 1 → enforce 
Aggressive!
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KS-OML - HIGH-LEVEL WORKFLOW

TASK

“CUBE!”

TASK

“YOU WERE RIGHT!”

good prediction
margin > 1 → do nothing
Passive
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KS-OML - INPUT STREAMS

1. Main Event Stream : UnlabeledData
2. Feedback Event Stream : LabeledData

- Connected by the same Scala case class
- written in the same topic “data”

topic “data”

LabeledData

UnlabeledData
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KS-OML - THE OPERATOR

topic “data” Binary
Processor

event Store

model Store

When UnlabeledData
- get model from store
- compute prediction
- store event by hashing with prediction
- emit prediction

When LabeledData
- get event and model from stores
- check loss function margin
- eventually update the model
- delete the event from store
- emit again if required
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KS-OML - RESULTS

BANKNOTES DATASET (binary) IRIS DATASET (multiclass)

First RUN - -

Second RUN
accuracy: 0.949671 
precision: 0.97872

accuracy: 1.0 precision: 1.0

Third RUN
accuracy: 0.950747 
precision: 0.98391

accuracy: 1.0 precision: 1.0
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1. Feedback algos are good if you get the feedback a.s.a.p

2. Passive Aggressive is good when you can suffer of cold start

3. Passive Aggressive is adaptive

4. It works. Cool!

KS-OML - TAKEAWAYS
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Pouring the blend
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Model Serving

Streams are the perfect fit

Kafka is a natural solution for distribution and performance - but you need to tackle 
Kappa challenges!

Growing desire of an unique abstraction (both low and high level)

Online Learning

Increasing interest, industry still immature

Global shared streams, or states, even stores are fundamental to Machine Learning

62

CONCLUSION
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THANKS!
Office hours 12.45 - 13.30

Your questions are welcome!

<radicalbit.team/>
info@radicalbit.io
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REFERENCES

https://medium.com/value-stream-design/online-machine-learning-515556ff72c5 
https://medium.com/analytics-vidhya/data-streams-and-online-machine-learning-in-python-a382e9e8d06a 

64

https://medium.com/value-stream-design/online-machine-learning-515556ff72c5
https://medium.com/analytics-vidhya/data-streams-and-online-machine-learning-in-python-a382e9e8d06a
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Bonus Slides
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MACHINE LEARNING
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MACHINE LEARNING, THEN

67

It’s
 a “C

UBE” !

DIM WEIGHT COLOR

3 0.8 “R”
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MACHINE LEARNING, TRAINING
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MACHINE LEARNING, TRAINING
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MACHINE LEARNING, SCORING

70

SMOOTH BIG FAST GREAT 
DATA ARCHITECTURE

“CUBE!”
“SPHERE!”

“CYLINDER!”

CYLINDER SPHERE CUBE

M
O
DE

L
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BLENDING ISSUES - MAIN GOALS

Main goal is introducing the above mentioned features in a native event stream 
platform, whereby: 

● data is not finite and is unknown

● domain semantic changes over time

● processing logic might change over time

● applications evolve dynamically

● …

71
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KSH
2

O
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KSH
2

O - THE DATA STREAM

TASK 1

TASK 2

TASK n

{
“modeld”: 
“model_1”,
“eventData”: 
“...”

}

{
“modeld”: 
“model_2”,
“eventData”: 
“...”

}

{
“modeld”: 
“model_1”,
“eventData”: 
“...”

}

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo … 

deep_net deeplearning pojo ...

GlobalKTable
LeftJoin
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● KTable is referring to a stream as of a changelog

KSH
2

O - KTABLE

1 kafka

{

  “k”: 1,

  “value”: “kafka”

}

1 kafka

2 mommy

{

  “k”: 2,

  “value”: “mommy”

}

1 streams

2 mommy

{

  “k”: 1,

  “value”: “streams”

}

1 2 3
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● GlobalKTable is a KTable that is global in terms of topic supervision

KSH
2

O - KTABLE

( 1, kafka )

( 2, mommy )

( 1, streams )

1 kafka

1 streams

2 mommy

APP 
1

APP 
2

Partition 1

Partition 2

KTable
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● GlobalKTable is a KTable that is global in terms of topic supervision

KSH
2

O - KTABLE

1 streams

2 mommy

1 streams

2 mommy

( 1, kafka )

( 2, mommy )

( 1, streams )

1 kafka

1 streams

2 mommy

APP 
1

APP 
2

APP 
1

APP 
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Why don’t partitioning accordingly model stream and data stream?
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KSH
2

O - DEMO

https://docs.google.com/file/d/1kxBmDqgrYVIbhcRT9TrTTXHiFA8Ebl8d/preview
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OML tools

● Apache SAMOA 
Large-Scale Learning from Data Streams with Apache SAMOA, 2018 
Nicolas Kourtellis, Gianmarco De Francisci Morales, and Albert Bifet

● side ML libraries on Apache Flink, Apache Spark, Apache Storm

KS-OML - ONLINE MACHINE LEARNING STATE
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KS-OML - RESULTS

Multi-class problem
GENERATED DATASET

KS - OML 
Accuracy

Python “batch” implementation 
Accuracy

First RUN -  0.905

Second RUN 0.99749374 0.99

Third RUN 0.9987469 0.995


