
Blending Event Stream Processing with Machine Learning
using the Kafka Ecosystem

Data Council, Barcelona, Oct 2nd, 2019

© 2019– All rights reserved

DISCLAIMER

A bit of me.

Andrea Spina
Head of R&D @Radicalbit

andrea.spina@radicalbit.io

@Spina89

andrea-spina

2

mailto:andrea.spina@radicalbit.io

© 2019– All rights reserved

RADICALBIT PRODUCTS

Radicalbit is a highly specialized software firm, founded in Milan, in 2015, focused on the
design and development of products dedicated to Event Stream Processing solutions, daily
working to combine streaming technologies, Machine Learning and AI with a self-service
approach.

3 © 2019– All rights reserved

© 2019– All rights reserved

DISCLAIMER (AGAIN)

During this talk, you’re going to listen about some buzzwords

● Event Stream Processing

● Machine Learning

You might also hear about topics you already know, and a few you might not ;)

● Lambda v.s. Kappa architectures

● Machine Learning Logistics

● Online Machine Learning

4 © 2019– All rights reserved

© 2019– All rights reserved

AGENDA

1. Events Stream Processing

2. Machine Learning

3. Model Serving on Kafka

4. Online Learning on Kafka

5. Conclusion

5 © 2019– All rights reserved

© 2019 – All rights reserved

Events Stream Processing

© 2019– All rights reserved

Data Streams

7 © 2019– All rights reserved

Unbounded

Immutable

Unknown

t

Batch is stream-able

Storable

Transformable

© 2019– All rights reserved

LAMBDA ARCHITECTURE

8

SOURCES

EVENT STREAM PROCESSING

BATCH PROCESSING

MERGED
VIEW

BATCH
LAYER

SPEED
LAYER

SERVING
LAYER

© 2019– All rights reserved

LAMBDA ARCHITECTURE ISSUE

9

SOURCES

EVENT STREAM PROCESSING

BATCH PROCESSING

MERGED
VIEW

BATCH
LAYER

SPEED
LAYER

SERVING
LAYER

$$$!

$$$!

© 2019– All rights reserved

KAPPA ARCHITECTURE

10

CLIENT APPRaw Input Sources

Topic_n

Topic_n+1

Job_Version_n

Job_Version_n+1

Output_Table_n

Output_Table_n+1

Log Store / Replay
Layer

Streaming
processing system

Serving DB

© 2019– All rights reserved

KAPPA ARCHITECTURE: REQUIREMENTS

11

CLIENT APPRaw Input Sources

Topic_n

Topic_n+1

Job_Version_n

Job_Version_n+1

Output_Table_n

Output_Table_n+1

Log Store / Replay
Layer

Streaming
processing system

Serving DB

1. Low Latency / High throughput

© 2019– All rights reserved

KAPPA ARCHITECTURE: REQUIREMENTS

12

CLIENT APPRaw Input Sources

Topic_n

Topic_n+1

Job_Version_n

Job_Version_n+1

Output_Table_n

Output_Table_n+1

Log Store / Replay
Layer

Streaming
processing system

Serving DB

1. Low Latency / High throughput
2. Agile data-reprocessing method

© 2019– All rights reserved

KAPPA ARCHITECTURE: REQUIREMENTS

13

CLIENT APPRaw Input Sources

Topic_n

Topic_n+1

Job_Version_n

Job_Version_n+1

Output_Table_n

Output_Table_n+1

Log Store / Replay
Layer

Streaming
processing system

Serving DB

1. Low Latency / High throughput
2. Agile data-reprocessing method
3. Long-time retention message system

© 2019– All rights reserved

KAPPA ARCHITECTURE: REQUIREMENTS

14

CLIENT APPRaw Input Sources

Topic_n

Topic_n+1

Job_Version_n

Job_Version_n+1

Output_Table_n

Output_Table_n+1

Log Store / Replay
Layer

Streaming
processing system

Serving DB

1. Low Latency / High throughput
2. Agile data-reprocessing method
3. Long-time retention message system

© 2019– All rights reserved

KAFKA

“ Apache Kafka is a distributed streaming
platform.

- Publish and subscribe to streams of
records, similar to a message queue or
enterprise messaging system

- Store streams of records in a
fault-tolerant durable way

- Process streams of records as they occur ”

15 © 2019– All rights reserved

© 2019– All rights reserved

KAFKA OFFSETS

16 © 2019– All rights reserved

Data reprocessing means “resetting offsets”

© 2019– All rights reserved

KAFKA MODULES

1. Consumer API

2. Producer API

3. Connect API

4. Streams API

17 © 2019– All rights reserved

© 2019– All rights reserved

KAFKA AS STANDARD STREAMING ENABLER

“Kafka at the core of tens of thousands production use-cases”
Jay Kreps, Kafka Summit - New York, 2019

18

© 2019– All rights reserved

RNA AND THE KAPPA ARCHITECTURE

19

Radicalbit platform has been optimized to take full advantage of Kafka core features such as Kafka Connect, the Schema registry,
and Kafka Streams but can be used to manage data pipelines also over Apache Flink or Spark Streaming with code portability

© 2019– All rights reserved

WHAT ABOUT ML?

20

© 2019 – All rights reserved

Blending Machine Learning with Streaming

© 2019– All rights reserved

TARGETED ML TASKS

● Models Serving

● Online Machine Learning

22

© 2019 – All rights reserved

Streaming Models Serving

and the magic of machine learning logistics

© 2019– All rights reserved

STREAMING MODELS SERVING

● Serve models in a event stream processing architecture

● It’s a Machine learning logistics issue (1)

○ Organisations need Data Scientists and Data Engineers

○ New Tools make it harder (2)

● Fragmented solution space

○ Framework based: Tensorflow Serving, Spark, Openscoring

○ Cloud based: Google, IBM, MS Azure, Amazon

24

(1) Ted Dunning & Ellen Friedman - Machine Learning Logistics - OREILLY

(2) Boris Lublinsky - Serving Machine Learning Models - OREILLY

© 2019– All rights reserved

SOLUTIONS TO ML ENTROPY

1. STANDARD BASED

Define a youNameIt-independent format to represent a wide range of ML models

● PMML (PFA) - traditional learning

● ONNX - deep learning

● MLEAP - not a STD

25

© 2019– All rights reserved

SOLUTIONS TO ML ENTROPY

2. CONTAINER BASED

Creating containers wrapping environments natively aimed at models deployment

Exposing a communication protocol for serving (usually a REST endpoint)

● Seldon core(1)

● Clipper(2)

● MLFlow(3)

26

(1) https://www.seldon.io/open-source/
(2) http://clipper.ai/
(3) https://mlflow.org/

https://www.seldon.io/open-source/
http://clipper.ai/
https://mlflow.org/

© 2019– All rights reserved

PROS and CONS(1)

STANDARD BASED

PROS Performance, flexibility, many people are happy

CONS Adoption, algorithms

CONTAINER BASED

PROS Repeatability, adoption is not a problem, everybody is happy

CONS Performance depends on systems, devops competence

27

(1) https://qconsp.com/sp2018/system/files/presentation-slides/qconsp18-deployingml-may18-npentreath.pdf

https://qconsp.com/sp2018/system/files/presentation-slides/qconsp18-deployingml-may18-npentreath.pdf

© 2019– All rights reserved

SERVING AS A SERVICE WITH KAFKA

The goal

Attempting to serve seamless Standards, Containers, and Tools using Kafka

● No constraints about models deployment (it has not to be even a ML model!)

● It potentially has not to be even a ML model!

28

© 2019– All rights reserved

SERVING AS A SERVICE WITH KAFKA

Our predictive k-pipelines shall:

● dynamically serve the evolution of trained models
○ models often change in behavior during their long-lasting lifetime
○ updates

● apply simultaneously multiple models against the same stream, the same model to
many streams

29

{
 “modeld”: “model_1”,
 “eventData”: “...”
}

{
 “modeld”: “model_1”,
 “eventData”: “...”
}

{
 “modeld”: “model_1”,
 “eventData”: “...”
}

{
 “modeld”: “model_1”,
 “eventData”: “...”
}

SVM

CNN

RF

© 2019– All rights reserved

KAFKA STREAMS APIs

30

● Kafka Streams is not a DSPE, is a library(1)

● By Kafka Streams APIs, users define a processor topology

● Two API levels

○ Kafka Streams DSL

○ Processor API

(1) https://kafka.apache.org/23/documentation/streams/

https://kafka.apache.org/23/documentation/streams/

© 2019– All rights reserved

SERVING AS A SERVICE: KS-H
2

O Example

31

● Gartner 2019 magic quadrant for Machine Learning

● Most of the code is open source

● High support for algorithms

● H
2

O flow

Main features

● well-built Rest API layer

● POJO and MOJO formats + client library

© 2019– All rights reserved

KSH
2

O - THE CONTROL STREAM

32

{
…
“id”: “unsupervised_cusomers_1”,
“algorithm”: “kmeans”,
“format”: “mojo”,
“exp_date”: null,
“more_info”: “ ... ”
…

}

© 2019– All rights reserved

KSH
2

O - THE CONTROL STREAM (2)

33

1 - to - 1 Bind

Model Repository Server → Control Stream

© 2019– All rights reserved34

KSH
2

O - FEEDING A METADATA TABLE

{
…
“id”: “unsupervised_cusomers_1”,
“algorithm”: “kmeans”,
“format”: “mojo”
“exp_date”: null
“more_info”: “ ... ”
…

}

TASK 1

TASK 2

TASK n

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

GlobalKTable

© 2019– All rights reserved35

KSH
2

O - THE DATA STREAM

TASK 1

TASK 2

TASK n

{
“modelId”:
“model_1”,
“eventData”:
“...”

}

{
“modelId”:
“model_2”,
“eventData”:
“...”

}

{
“modelId”:
“model_1”,
“eventData”:
“...”

}

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

GlobalKTable

© 2019– All rights reserved36

KSH
2

O - LAZY MODELING LOADING

I’M A TASK!

ID1 /../.. m1 more

ID2 /../.. m2 more

POJO model{
“modelId”: “ID1”,
“eventData”:
“...”

}

© 2019– All rights reserved37

KSH
2

O - MODEL STORAGE AND FAULT TOLERANCE

On restore, lazy uploading applies models’ recovering

T1

T2

T3

T4

ID1 /../.. m1 more

ID2 /../.. m2 more

ID1 /../.. m1 more

ID2 /../.. m2 more

ID1 /../.. m1 more

ID2 /../.. m2 more

ID1 /../.. m1 more

ID2 /../.. m2 more

RESTORED

RESTORED

RESTORED

RESTORED

ID1 /../.. m1 more

ID2 /../.. m2 more

POJO
{

“modelId”: “ID1”,
“eventData”: “...”

} T2

© 2019– All rights reserved38

THE KS-H
2

O ARCHITECTURE

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

TASK 1

TASK 2

TASK n{
“modeld”: “model_2”,
“eventData”: “...”

}

{
“modeld”: “model_1”,
“eventData”: “...”

}

{
…
“id”:
“unsupervised_cusomers_1”,
“algorithm”: “kmeans”,
“format”: “mojo”
“exp_date”: null
“more_info”: “ ... ”
…

}

Configuration
● Empty predictions strategy
● NaN management
● UDF
● …

{
“UserDefinedOutput”:
{ … },
“prediction”: {
/*PREDICTION OBJECT*/
}

}

MOJO

MOJO

POJO

ks-h2o - https://github.com/radicalbit

https://github.com/radicalbit

© 2019– All rights reserved39

TOWARDS A GENERIC ARCHITECTURE

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

TASK 1

{
…
“id”:
“unsupervised_cusomers_1”,
“algorithm”: “kmeans”,
“format”: “mojo”
“exp_date”: null
“more_info”: “ ... ”
…

}

POJO

First generalisation

Given a control message, how to build the shared state

© 2019– All rights reserved40

TOWARDS A GENERIC ARCHITECTURE

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

TASK n{
“modeld”: “model_2”,
“eventData”: “...”

}
MOJO

Second generalisation

Given the record to score, how to build the model

© 2019– All rights reserved41

TOWARDS A GENERIC ARCHITECTURE

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

TASK n{
“modeld”: “model_2”,
“eventData”: “...”

}
MOJO

Third generalisation

Given the record to score, implement the scoring method

© 2019– All rights reserved42

THE KS-H
2

O ARCHITECTURE

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

TASK 1

TASK 2

TASK n{
“modeld”: “model_2”,
“eventData”: “...”

}

{
“modeld”: “model_1”,
“eventData”: “...”

}

{
…
“id”:
“unsupervised_cusomers_1”,
“algorithm”: “kmeans”,
“format”: “mojo”
“exp_date”: null
“more_info”: “ ... ”
…

}

Configuration
● Empty predictions strategy
● NaN management
● UDF
● …

{
“UserDefinedOutput”:
{ … },
“prediction”: {
/*PREDICTION OBJECT*/
}

}

MOJO

MOJO

POJO

https://github.com/radicalbit

ks-h2o - https://github.com/FlinkML/flink-jpmml

https://github.com/radicalbit
https://github.com/FlinkML/flink-jpmml

© 2019– All rights reserved43

SERVING STANDARD MODELS DEPLOYMENTS

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

TASK 1

TASK 2

TASK n{
“modeld”: “model_2”,
“eventData”: “...”

}

{
“modeld”: “model_1”,
“eventData”: “...”

}

Configuration
● Empty predictions strategy
● NaN management
● UDF
● …

{
“UserDefinedOutput”:
{ … },
“prediction”: {
/*PREDICTION OBJECT*/
}

}

PMML

PMML

PMML

flink-jpmml - https://github.com/FlinkML/flink-jpmml

{
…
“id”:
“unsupervised_cusomers_1”,
“algorithm”: “svm”,
“format”: “PMML”
“model_path”: /opt/mdls
“more_info”: “ ... ”
…

}

https://github.com/FlinkML/flink-jpmml

© 2019– All rights reserved44

SERVING CONTAINERIZED MODELS DEPLOYMENTS

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

TASK 1

TASK 2

TASK n{
“modeld”: “model_2”,
“eventData”: “...”

}

{
“modeld”: “model_1”,
“eventData”: “...”

}

Configuration
● Empty predictions strategy
● NaN management
● UDF
● …

{
“UserDefinedOutput”:
{ … },
“prediction”: {
/*PREDICTION OBJECT*/
}

}

REST

REST

REST
client

{
…
“id”: “rnn-1”,
“algorithm”: “net”,
“format”: “Tensorflow”
“serve_url”:
https://serve.com/opt/mdls
…

}

© 2019 – All rights reserved

KS-OML

Online Machine Learning using Kafka Streams

© 2019– All rights reserved

MACHINE LEARNING, TRAINING

46

DIM WEIGHT COLOR

3 0.8 R

1 0.2 b

1 1.2 y

4 2.1 g

3 0.9 r

2 1.0 r

12 0.2 b

1 0.3 g

1 0.4 y

3 0.1 b

3 0.2 g

4 2.0 r

4 3.1 c

3 0.8 R

1 0.2 b

1 1.2 y

© 2019– All rights reserved47

ONLINE LEARNING IS ABOUT A PORTION OF DATA

t

DIM 3

WEIGHT 0.8

COLOR R

DIM 3

WEIGHT 1.6

COLOR O

DIM 3

WEIGHT 0.3

COLOR G

© 2019– All rights reserved48

KS-OML - ONLINE LEARNING CHALLENGES

1. Computational Model

TASK

© 2019– All rights reserved49

1. Computational Model

KS-OML - ONLINE LEARNING CHALLENGES

TASK

© 2019– All rights reserved50

2. Evolving Data - or the long-standing issue of the Concept Drift

KS-OML - ONLINE LEARNING CHALLENGES

October, 20th November, 20th December, 20th

PURCHASE

PURCHASE

PURCHASE

t

PURCHASE

PURCHASE

PURCHASE

t

PURCHASE
PURCHASE

PURCHASE PURCHASE

PURCHASE
PURCHASE

t

PURCHASE PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

PURCHASE

© 2019– All rights reserved51

Growing academic interest
Online Machine Learning in Big Data Streams, 2018, András Benczúr, Levente Kocsis, Róbert Pálovics

Still rare productionized OML implementations

The value

1. When the ability to fast adapt is more important than the best performance
Newspaper domestic affairs drift example

2. When keeping data offline is not possible
healthcare data, not reachable data

3. Resource savings

ONLINE MACHINE LEARNING STATE

© 2019– All rights reserved52

Online Machine Learning on Kafka architecture

Main objective

all-contained operator with configurable algorithms suite

First Implementation: passive-aggressive algorithm, Daniele Tria

Second Implementation: soft confidence-weighted algo, Seyedmasih Hosseinimotlagh

KS-OML

(1) Online Passive-Aggressive Algorithms - Crammer, Dekel, Keshet, Shalev-Shwartz, Singer

http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf

(2) Soft confidence-weighted Algorithms - Wang, Zaho, Hoi

https://arxiv.org/ftp/arxiv/papers/1206/1206.4612.pdf

http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf
https://arxiv.org/ftp/arxiv/papers/1206/1206.4612.pdf

© 2019– All rights reserved53

● margin based algorithm
● able to solve binary class, multiclass and regression problems
● feedback concept

● for binary class, given
○ y

t
 the true label

○ x
t
 the feature vector

○ w
t
 the weighted vector of the model

● y
t
(x

t
・w

t
) = margin margin > 0 → correct prediction sign(x

t
・w

t
) = y

t

● why passive-aggressive ?
○ if margin ≥ +1 → do nothing
○ else → enforce the margin

KS-OML - PASSIVE AGGRESSIVE ALGORITHM

© 2019– All rights reserved54

KS-OML - HIGH-LEVEL WORKFLOW

TASK

“NOT A CUBE!”

TASK

“EHM, IT WAS ACTUALLY...”

bad prediction → enforce
Aggressive!

© 2019– All rights reserved55

KS-OML - HIGH-LEVEL WORKFLOW

TASK

“CUBE!”

TASK

“YOU WERE RIGHT!”

good prediction
margin < 1 → enforce
Aggressive!

© 2019– All rights reserved56

KS-OML - HIGH-LEVEL WORKFLOW

TASK

“CUBE!”

TASK

“YOU WERE RIGHT!”

good prediction
margin > 1 → do nothing
Passive

© 2019– All rights reserved57

KS-OML - INPUT STREAMS

1. Main Event Stream : UnlabeledData
2. Feedback Event Stream : LabeledData

- Connected by the same Scala case class
- written in the same topic “data”

topic “data”

LabeledData

UnlabeledData

© 2019– All rights reserved58

KS-OML - THE OPERATOR

topic “data” Binary
Processor

event Store

model Store

When UnlabeledData
- get model from store
- compute prediction
- store event by hashing with prediction
- emit prediction

When LabeledData
- get event and model from stores
- check loss function margin
- eventually update the model
- delete the event from store
- emit again if required

© 2019– All rights reserved59

KS-OML - RESULTS

BANKNOTES DATASET (binary) IRIS DATASET (multiclass)

First RUN - -

Second RUN
accuracy: 0.949671
precision: 0.97872

accuracy: 1.0 precision: 1.0

Third RUN
accuracy: 0.950747
precision: 0.98391

accuracy: 1.0 precision: 1.0

© 2019– All rights reserved60

1. Feedback algos are good if you get the feedback a.s.a.p

2. Passive Aggressive is good when you can suffer of cold start

3. Passive Aggressive is adaptive

4. It works. Cool!

KS-OML - TAKEAWAYS

© 2019 – All rights reserved

Pouring the blend

© 2019– All rights reserved

Model Serving

Streams are the perfect fit

Kafka is a natural solution for distribution and performance - but you need to tackle
Kappa challenges!

Growing desire of an unique abstraction (both low and high level)

Online Learning

Increasing interest, industry still immature

Global shared streams, or states, even stores are fundamental to Machine Learning

62

CONCLUSION

© 2019– All rights reserved
© 2019 Radicalbit – all rights reserved

THANKS!
Office hours 12.45 - 13.30

Your questions are welcome!

<radicalbit.team/>
info@radicalbit.io

© 2019– All rights reserved

REFERENCES

https://medium.com/value-stream-design/online-machine-learning-515556ff72c5
https://medium.com/analytics-vidhya/data-streams-and-online-machine-learning-in-python-a382e9e8d06a

64

https://medium.com/value-stream-design/online-machine-learning-515556ff72c5
https://medium.com/analytics-vidhya/data-streams-and-online-machine-learning-in-python-a382e9e8d06a

© 2019 – All rights reserved

Bonus Slides

© 2019– All rights reserved66

MACHINE LEARNING

© 2019– All rights reserved

MACHINE LEARNING, THEN

67

It’s
 a “C

UBE” !

DIM WEIGHT COLOR

3 0.8 “R”

© 2019– All rights reserved

MACHINE LEARNING, TRAINING

68

DIM WEIGHT COLOR

3 0.8 R

1 0.2 b

1 1.2 y

4 2.1 g

3 0.9 r

2 1.0 r

12 0.2 b

1 0.3 g

1 0.4 y

3 0.1 b

3 0.2 g

4 2.0 r

4 3.1 c

3 0.8 R

1 0.2 b

1 1.2 y

© 2019– All rights reserved

MACHINE LEARNING, TRAINING

69

DIM WEIGHT COLOR

3 0.8 R

1 0.2 b

1 1.2 y

4 2.1 g

3 0.9 r

2 1.0 r

12 0.2 b

1 0.3 g

1 0.4 y

3 0.1 b

3 0.2 g

4 2.0 r

4 3.1 c

3 0.8 R

1 0.2 b

1 1.2 y

© 2019– All rights reserved

MACHINE LEARNING, SCORING

70

SMOOTH BIG FAST GREAT
DATA ARCHITECTURE

“CUBE!”
“SPHERE!”

“CYLINDER!”

CYLINDER SPHERE CUBE

M
O
DE

L

© 2019– All rights reserved

BLENDING ISSUES - MAIN GOALS

Main goal is introducing the above mentioned features in a native event stream
platform, whereby:

● data is not finite and is unknown

● domain semantic changes over time

● processing logic might change over time

● applications evolve dynamically

● …

71

© 2019– All rights reserved72

KSH
2

O

© 2019– All rights reserved73

KSH
2

O - THE DATA STREAM

TASK 1

TASK 2

TASK n

{
“modeld”:
“model_1”,
“eventData”:
“...”

}

{
“modeld”:
“model_2”,
“eventData”:
“...”

}

{
“modeld”:
“model_1”,
“eventData”:
“...”

}

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

unsupervised_customers_1 kmeans mojo …

deep_net deeplearning pojo ...

GlobalKTable
LeftJoin

© 2019– All rights reserved74

● KTable is referring to a stream as of a changelog

KSH
2

O - KTABLE

1 kafka

{

 “k”: 1,

 “value”: “kafka”

}

1 kafka

2 mommy

{

 “k”: 2,

 “value”: “mommy”

}

1 streams

2 mommy

{

 “k”: 1,

 “value”: “streams”

}

1 2 3

© 2019– All rights reserved75

● GlobalKTable is a KTable that is global in terms of topic supervision

KSH
2

O - KTABLE

(1, kafka)

(2, mommy)

(1, streams)

1 kafka

1 streams

2 mommy

APP
1

APP
2

Partition 1

Partition 2

KTable

© 2019– All rights reserved76

● GlobalKTable is a KTable that is global in terms of topic supervision

KSH
2

O - KTABLE

1 streams

2 mommy

1 streams

2 mommy

(1, kafka)

(2, mommy)

(1, streams)

1 kafka

1 streams

2 mommy

APP
1

APP
2

APP
1

APP
2

Partition 1

Partition 2

(1, kafka)

(2, mommy)

(1, streams)

Partition 1

Partition 2

KTable GlobalKTable

© 2019– All rights reserved77

Why don’t partitioning accordingly model stream and data stream?

KSH
2

O

© 2019– All rights reserved78

KSH
2

O - DEMO

https://docs.google.com/file/d/1kxBmDqgrYVIbhcRT9TrTTXHiFA8Ebl8d/preview

© 2019– All rights reserved79

KSH
2

O

© 2019– All rights reserved80

OML tools

● Apache SAMOA
Large-Scale Learning from Data Streams with Apache SAMOA, 2018
Nicolas Kourtellis, Gianmarco De Francisci Morales, and Albert Bifet

● side ML libraries on Apache Flink, Apache Spark, Apache Storm

KS-OML - ONLINE MACHINE LEARNING STATE

© 2019– All rights reserved81

KS-OML - RESULTS

Multi-class problem
GENERATED DATASET

KS - OML
Accuracy

Python “batch” implementation
Accuracy

First RUN - 0.905

Second RUN 0.99749374 0.99

Third RUN 0.9987469 0.995

