
Why we defined a
metalanguage for SQL
Lewis Hemens

We need a scalable solution for managing data
transformation processes that works for data engineers,

analysts and scientists

Why we love SQL

SQL is growing in popularity thanks to modern data warehouses

➔ A common language for data definitions across roles
➔ Modern warehouse SQL engines scale extremely well
➔ Easy to iterate, thanks execution usually being one-click
➔ Relatively easy to debug

But it has some problems...

Why doesn’t SQL scale?

It’s hard to adopt software engineering best practices

➔ Release processes
➔ Version control
➔ Unit tests
➔ Code reuse

Why are these hard, and how can we fix them?

Understanding SQL

SQL is a declarative query language

Declarative programming

When you say what you want

Imperative programming

When you say how to get
what you want

Advantages of being declarative

The fact that SQL is declarative means it has many benefits

➔ SQL queries can be parallelized
➔ SQL queries can be automatically optimized
➔ For most SQL statements there are no side effects
➔ SQL queries are guaranteed to eventually terminate

SQL is not a programming language

SQL is few features short of being a programming language

➔ SQL has little if any control flow
➔ There is no recursion or iteration*
➔ SQL is declarative and static

*Some flavors of SQL (e.g. T-SQL) add these and are turing complete

Example: writing reusable code

select

 floor(age / 5) * 5 as age_group,

 count(1) as user_count

from users

group by age_group

Example: writing reusable code

select

 floor(age / 5) * 5 as age_group,

 count(1) as user_count

from users

group by age_group
We can’t reuse this query:

the input is fixed 😭

Example: writing testable code

select

 floor(age / 5) * 5 as age_group,

 count(1) as user_count

from users

group by age_group
We can’t test this query for

the same reason 😭

Example: writing iterative code

user_tables = ["users", "user_stats", "user_events"]

for table in user_tables:

 delete from table

 where user_id in (

 select user_id from gdpr_deletion_requests

)

Example: writing iterative code

user_tables = ["users", "user_stats", "user_events"]

for table in user_tables:

 delete from table

 where user_id in (

 select user_id from gdpr_deletion_requests

)

No iteration in SQL 😭

Metaprogramming to the
rescue

What is metaprogramming?

Metaprogramming is a programming technique in which computer
programs have the ability to treat other programs as their data

Metaprogramming can be used to move computations from run-time to
compile-time

Metaprogramming example

select

 floor(age / 5) * 5 as

age_group,

 count(1) as user_count

from users

group by age_group

function ageDist(input, bucket = 5) {
 return `
 select
 floor(age / ${bucket}) *
${bucket} as age_group,
 count(1) as user_count
 from ${input}
 group by age_group` ;
}

Fixing SQL with meta programming

➔ Enable code reuse through parameterizable functions
➔ Allow some imperative programming
➔ Introduce some control flow
➔ Keep our code declarative at run-time

Dataform
framework

An open-source framework and
metalanguage for SQL

Dataform framework overview

➔ Makes it easy to write parameterized SQL
➔ Enables code reuse
➔ APIs to help build directed acyclic graphs
➔ Support for writing data assertions
➔ Support for writing SQL unit tests
➔ APIs for documenting datasets
➔ Support for managing multiple environments

Dataform compilation process

User code
+

Dataform API
Compiled graph Execution graph

➔ Imperative

➔ Sandboxed

➔ JavaScript

➔ SQLX

➔ Declarative

➔ Sandboxed

➔ Pure SQL

➔ JSON

➔ Declarative

➔ !Sandboxed

➔ Pure SQL

➔ JSON

By introducing a compilation step, we maintain a static, declarative runtime format

Compile (<1s) Build (5-10s)

Dataform example: Publishing a table

// copy_users_table .js

publish("copy_users_table")
 .type("table")
 .query(ctx => `
 select *
 from ${ctx.ref("users")}`
);

-- copy_users_table .sqlx

config {
 type: "table"
}

select *
from ${ref("users")}

(Our SQL queries are now parameterized!)

Dataform compiled graph

{

 "name": "dataform_dc_talk.copy_users_table",

 "dependencies": ["dataform_dc_talk.users"],

 "type": "table",

 "target": {

 "schema": "dataform_dc_talk",

 "name": "copy_users_table"

 },

 "query": "select * from dataform_dc_talk.users",

}

Running dataform projects

$ dataform compile
Compiling...

Compiled 56 action(s).
35 dataset(s):
 dataform_data.organisations [view]
 dataform_data.project_users [view]
 dataform_data.projects [view]
 dataform_data.sessions [table]
 dataform_data.users [view]
 ...

$ dataform run
Compiling...
Compiled successfully.
Running...

Dataset created: dataform_data.organisations [view]
Dataset created: dataform_data.project_users [view]
Dataset created: dataform_data.projects [view]
Dataset created: dataform_data.sessions [table]
Dataset created: dataform_data.users [view]
...

Dataform framework summary

It’s basically a SQL compiler.

➔ We can write any* code we like during the compilation phase
➔ Dataform’s runtime format is declarative, pure SQL with only

non-iterative control structures during the runtime phase

A note on reproducibility

➔ Executing compile on the same project with the same parameters
twice should always yield the same result

➔ Sandboxing helps enforce this, no network requests, file reads, or or
DB access possible

➔ User should avoid non deterministic algorithms (e.g. Math.random())

Dataform examples

For loops

const userTables = ["users", "user_stats", "user_events"];

userTables.forEach(tableName =>
 operate(
 `${tableName}_gdpr_cleanup`,
 ctx => `
 delete from ${ctx.ref(tableName)}
 where user_id in (
 select user_id
 from ${ctx.ref("gdpr_deletion_requests")}
)`
)
);

Unit testing

const ageDist = (input, bucket = 5) => `
 select
 floor(age / ${bucket}) * ${bucket} as age_group,
 count(1) as user_count
 from ${input}
 group by age_group` ;

publish("users_by_age")
 .query(ctx => ageDist(ctx.ref("users"), 5))
 .type("table");

Unit testing

test("ageDist_test")
 .query(ageDist(`(
 select 15 as age union all
 select 21 as age union all
 select 24 as age)` ,
 10
))
 .expected(`
 select 10 as age_group, 1 as user_count union all
 select 20 as age_group, 2 as user_count
`);

Can be run with:
dataform test

Environment sampling

publish(
 "sourcetable_view" ,
 ctx => `
 select *
 from ${ctx.ref("sourcetable")}
 where ${
 ctx.env === "staging"
 ? `rand() < ${constants.stagingSamplingRate }`
 : "true"
 }`
);

Loading data from S3

s3_load_csv("load_example_csv" , {
 path: "s3://.../sample_data.csv" ,
 schema: {
 country: "varchar(256)",
 revenue: "float8"
 },
 role: "arn:aws:iam::..." ,
 ignoreheader: true
});

create table
dataform_dc_talk.load_example_csv (
 country varchar(256),
 revenue FLOAT8
);
copy
dataform_dc_talk.load_example_csv
from 's3://.../sample_data.csv'
iam_role 'arn:aws:iam::...'
ignoreheader 1
delimiter ',';

Dataform
Web

An collaborative IDE and
deployment platform for
dataform projects

Dataform Web

What good is a new language without an IDE?

Dataform Web: a complete toolkit to manage your data warehouse

IDE for dataform projects

➔ Compiles and validates SQL graph in real time
➔ Full integration with Git, user branches and pull requests
➔ Managed continuous deployment and environments

But also:

● Pipeline orchestration, run logs and notifications
● Documentation and Data catalog

Thanks!

Dataform framework: github.com/dataform-co/dataform

Dataform docs: docs.dataform.co

Examples from this talk: github.com/dataform-co/dataform-dc-talk

Dataform web IDE: dataform.co

https://github.com/dataform-co/dataform
https://docs.dataform.co
https://github.com/dataform-co/dataform-dc-talk
https://dataform.co

Questions?

