ch GoodData

\

WTF is an Analytics Lake

|
il

Building an open data service layer with Arrow,
DuckDB and Semantic Layer

3

R

e /}

Ny

Raise your hands!
Who likes writing boilerplate code?

Eoy é"’ (’Y o
R ¢

IIEEP IIIIWII | KNOW THATI'M IIIIT
* A GOOD DEVELOPER AND IT MAKES ME
FEEL LINE I'VE DONE SOME ACTUAL WORK

Building an Analytics Stack is Hard!

Developer Velocity

You want to build an analytics stack powering a Bl/analytics platform

With every new data service, developers have to solve the same problems again and
again. For instance:

e Server handling, interfaces
e Config management

e Routing, Load balancing

Often you spend 80% of your time with boiler-plating

Developers Wish For ...

Skeleton data service

e Implement only the service logic, e.g. pivoting

Examples

e Real and meaningful data services

Performance

e Have you ever seen a really responsive end-user experience?
e Example: Tableau server

Our Initial Motivation

GoodData 1.0

We built the first version of our analytics stack more than 15 years ago!
We combined it with large amounts of our own proprietary code

e with the technology available at that time

PostgreSQL

@i VERTICA

ERLANG

GoodData 2.0

We decided to rewrite the platform on greenfield 4 years ago

e Reuse open-source and SaaS services as much as possible
e We fell in love first with Apache Arrow and later with DuckDB

e Some prospects even ask for embedding custom data services into our platform

APACHE :
': ‘ Akrow [il pandas
python

o

X Kotlin i

Anatomy of an Analytics Lake

Physical Execution

Usually it consists of:

e Querying the data source(s) or pre-aggregations
e Post-processing the data - e.g. pivoting, ML
e Caching

We call this GD-specific stack FlexQuery
It's powered by (GD-agnostic) engine called Longbow

e Built on top of Apache Arrow, DuckDB, and Pandas (TODO: Polars)

e \We are considering an open sourcing of Longbow engine

The Importance of Semantic Layer

Business users

-> Semantic(logical) report definition - SUM(amount) BY product_category

-> Semantic layer with mapping to data - [SALES] -> [PRODUCTS]

-> Physical execution plan (SQL) - SELECT SUM(amount) FROM JOIN GROUP BY

We use Apache Calcite for translation of business requests to SQL

e Thanks to the community, especially to Julian Hyde ;-)

https://calcite.apache.org/

Analytics Lake = FlexQuery + Semantic Layer

7z Analytics Platform N w

| Dashboards
Drag & Dro
| Brag & brop e BIUI)
| Modelling
| Al ; OpenAI Amazon SageMaker
. . Analytics S W Other Al Other ML
v Y O I -
3dparty || J Semantic layer \ J
Bl UI SQL generator 0
| |
H E - FlexQuery =
= ;
b B
@ U
T E. Data Source |11 N ?;ﬁs
. s ______ , SQL&Post-sQL Connectors
[Transformations) Snowflake MotherDuck PostgreSQL AWS S3
& H server
£ !
2 v
T \ J
Custom apps L :
: b % o : FlexCache
e Y > £ e > UZ olm (Tiered Storage) Durable Storage
| Deploy custom < modules o (for Report Results & Pre-Aggregations)
N A | L= p e o
: RAM Disk

Javascript SDK """"""""""""""""""""""""""" ’
Python SDK s
ARROW

NN [4l pandas €@ puckbs setcd

AWS S3 Azure Blob Google Cloud Filesystem
Storage Storage

Why we chose Apache Arrow

Arrow format

Language-independent
Columnar memory format

Efficient for

e Analytic operations on modern hardware (CPUs, GPUs)

e Communication of services over the network

Zero-copy reads!

But You Get Much More Out of the Box!

I/O operations with the data - disk, object storages, ...
Convertors - CSV, Parquet, from JDBC, ...

Streaming computation on top of Arrow data - Acero engine
Flight RPC - API blueprint and infrastructure

Arrow Database Connectivity (ADBC) - query external data
sources

Easy to Integrate

Arrow is becoming de facto standard

e Even big players like Snowflake(JDBC, 2020) are adopting it

Other technologies we found valuable and integrated:

e T[ransform
o Pandas (2.0), Polars
o DuckDB

e Federate
o DuckDB

https://www.snowflake.com/blog/fetching-query-results-from-snowflake-just-got-a-lot-faster-with-apache-arrow/

What we set out to build

FlexCache - tiered storage
Memory <-> Disk <-> Object Storage (S3, ABS, GCS)
Arrow tables

Policies
e Various rules for promoting, demoting
e Enforce limits, isolate tenants, define replicas
e |everage for pricing

"memory", f t e = 'S12M', i to = "mapped_disk",
= 60, mo i "mapped_disk", sp = "parking_lot",

"disk_mapped", mz light_size ', 5 l_to = "parking_lot", to = "parking_lot"

(& N

A i\
Memory flemory mory nory
% g’, Memory-mapped ry-mapped -mapped mapped ped Non-Durable
@© © disk disk lisk sk
(g = & > 4 A -4
Disk Disk Nisk sk
v & 4 ¥ =4

7 Durable Storage ~
)
01 Durable

AWS S3 Google Cloud Storage Filesystem Others...
Storage (Azure)

Data Source Connectors

TurboODBC -> ADBC
e Fallback to JDBC is possible
Flexible deployment / Limit enforcement

e Max connections, timeouts, ...

e Per node or per data source type

Streaming to FlexCache

DB drivers perf 2 shars | [& | [A

Date range
This month -

Overall Average Duration By Database

W Avg Java jdbc 2k W Avg Java jdbc
2
W Avg Python adbc 1,574.00 W Avg Python adbc

1,284.00

1,088.33 W Avg Python turbodbc
Tk
1933 619.33 77267
0
postgres vertica
0 200 400 600 800 1000 1200 1400 1600 Database

By Fetched Rows - Small By Fetched Rows - Large

W Avg Java jdbc W Avg Python adbc M Avg Python turbedbc W Avg Java jdbc B Avg Python adbc B Avg Python turbodbc

0 .5k
6,782.00
200 193.50
:
ig5 - 4,465.50
110.50

100 2,959.00

67.00 25k

50 I 4350 1,533.00 -
e 9.50
g &0 100 E 100 0]
100 100_000 10_000 1_000 1_000_000 5_000_000

Limit Limit

Result Post-Processing

Dataframe operations

e Even easier to implement new operations than modules - dataframe IN/OUT
e Pivoting, sorting, paging for Bl

e Three ML algorithms in Beta, created in a few days

Federation

e Query hybrid data sources, stream to FlexCache
e Object stores, databases
e Query FlexCache with DuckDB

Real UX/DX

From Developers to Developers

Self-service drag&drop
- freeing hands of
developers

) 123 ABC

E Date
commit
123 Comment count

¢ Commit ID

Count of commit comments

Count of commits

Contribution of TOP ... 2

[2 Average days to solve

Contribution - count of merge...

Count of merged pull requests

| Count of non draft pull requests

Count of pull requests
123 Days to solve
ec Pull request ID

[:5) Sum days to solve

Contribution - stargazers

Repo ID

~2C Repo name

123 Stargazers count

Sum of stargazers

123 Watches count

used on 1 dashboard

Contribution - stargazers

8C OR (& HERE 4

Contribution of TOP 25%
users - merged PR

Metric

SELECT SUM(SELECT Count of
merged pull requests BY User ID
WHERE TOP(25%) OF (Count of
merged pull requests)
WITHIN(ALL User ID)) / Count of

merged pull requests

contribution_of_top_25_users
_-_merged_pr

Edit

: 4
FlexAl Assistant Verbose A% XK

Jira

ave as

o add metric Jira days due date exceeded to the bar chart S:
insight

® &

Sum of Jira Days to Solve and Days Due Date Exceeded by Jira Issue Type

W m_jira_days_to_solve_sum M m_jira_days_due_date_exceeded_sum

Must not forget ‘ 6
about Al chat bot - =

Jira issue type name
|

We do not accept any liability for the generated information as it may not be accurate

DX - Analytics Lake
with Ul SDK

About this dashboard

This is a demo dashboard created to showcase a complete data pipeline with GoodData for VS Code.

Read more about the dashboard contents in the article on Pluto. If you're interested in technical details -

check out the technical article or the source code on GitHub.

How big is Pluto, anyway?

Pluto planetary system Earth planetary system
_ Ws -
nix [

500 750 1000 1250 0 1K 2 3K 4K 5K 6k 7K

Mean Radius, km Mean Radius, km

DX - Analytics Lake
with Python SDK
- connect

" Jupyter report_execution (autosaved) A

File Edit View Insert Cell Kernel Widgets Help Trusted & |Py!h0n3((p1

B+ | A B 2 ¥ PR HB| C W | Code v =

In [S]=

In [4]:

Demo for how GoodData Python SDK can be used inside notebooks

GoodData Python SDK is an open-source set of libraries derived from GoodData OpenAPI specification. It provides an additional layer of abstraction o
of the raw APIs. Besides gooddata-sdk (core) library, we provide gooddata-pandas exposing report results as data frames.

Import libraries

M from pathlib import Path
import pandas as pd
from gooddata sdk import GoodDataSdk
from gooddata pandas import GoodPandas

Init GoodData

M profiles= Path.home() / ".gooddata" / "profiles.yaml"
gd sdk = GoodDataSdk.create from profile(profile="demo cicd", profiles path=profiles)
gd_pandas = GoodPandas.create from profile(profile="demo cicd", profiles path=profiles)
workspace_id = "cicd demo production"
gd frames = gd _pandas.data frames(workspace id)

DX - Analytics Lake
with Python SDK
- query stored report

o Ju pyter report_execution Last Checkpoint: 49 seconds ago

File
B

+

Edit View Run Kernel Settings Help

X @ B » m C » Markdown v
9 sum_days_to_solve Sum days to solve
10 sum_stargazers Sum of stargazers

Execute Already Defined Report

insight df = gd_frames.for insight('contribution of top 25 users per repository')

insight df

contribution_of_top_25_users_-_merged_pr

closed_at.month repo_name
2019-09-01 gooddata-ui-sdk 0.500000
2019-10-01 gooddata-ui-sdk 0.357143
2019-11-01 gooddata-ui-sdk 0.850000
2019-12-01 gooddata-ui-sdk 0.680000
2020-01-01 gooddata-ui-sdk 0.411765
2024-02-01 gooddata-dashboard-plugi 1.000000
gooddata-python-sdk 0.750000
gooddata-ui-sdk 0.615385
2024-03-01 gooddata-python-sdk 1.000000
gooddata-ui-sdk 0.750000

121 rows x 1 columns

~ Openin...

&

Python 3 (i

Execute a Custom Report

M from gooddata sdk import ExecutionDefinition, Attribute, SimpleMetric, ObjId, RelativeDateFilter
exec_def = ExecutionDefinition(|

attributes=[
Attribute(local id="created at", label="created at.month"),

Attribute(local id="repo name", label="repo name"),

In [22]:

1.
metrics=[
SimpleMetric(local_id="count commits", item=0bjId(id="commit id", type="label"), aggregation="COUNT"),

SimpleMetric(local id="count pull requests", item=0bjId(id="count pull requests", type="metric")),

1.
DX - A l t' L k filters=[RelativeDateFilter(dataset=0bjId(id="created at", type="dataset"), granularity="YEAR", from shift=-
na y ICS a e dimensions=[["created at"], ["repo name", "measureGroup"]],

)
With Python SDK df, df metadata = gd frames.for exec def(exec def=exec def)

use result ID from computation above and generate dataframe just from it

t t df from result id, df metadata from result id = gd frames.for exec result id(

- CUS Ol I l repOr result _id=df metadata.execution response.result id,

)

df_from result id

4

out[22]:
Repo name g plugi g public-demos gooddata-python-sdk gooddata-ui-sdk
. Countof pull . Countof pull + Countof pull . Count of pull
count_commits requests count_commits requests count_commits requests count_commits requests

Created at -

Month/Year
2022-01 18.0 4.0 NaN NaN 65 22 164 nus3
2022-02 3.0 10 NaN NaN 17 5 166 92
2022-03 NaN 10 NaN NaN 8 7 301 126

DX - FlexQuery - TPC-H Q4

lect o_orderpriority, count(*) as order_count
orders

o_orderdate >= date '1993-07-01'
nd o_orderdate < date '1993-07-01' + interval '3’

nd exists

lect 1 from lineitem where 1_orderkey = o_orderkey and 1_commitdate < 1_receiptdate

o_orderpriority order by o_orderpriority

DX - FlexQuery - Federation

tpch4_exec = SqlQuery
sqgl=tpch_q4
TableData
table_name="orders"
data=ConnectorQuery
payload=orjson.dumps
"type": "parquet-file", "path": "tpch/orders.parquet”
"columns”: ["o_orderpriority”, "o_orderdate", "o_orderkey"

sink_method=qc.SinkToFlightPath(flight_path="org1l/tenant1/tpch/datasets/orders"
to _flight _descriptor(ds_id="my-s3"

TableData
table_name="1ineiten"
data=ConnectorQuery
payload=SqlPayload(sqgl="SELECT "1_orderkey", "1_commitdate", "1_receiptdate”" FROM lineitem'
sink_method=qc.SinkToFlightPath(flight_path="orgl/tenant1/tpch/datasets/lineitem"
to_flight_descriptor("postgres"

k_method=qc.SinkToFlightPath(flight_path="orgl/tenant1/tpch/reports/4.result”

DX - Call FlexQuery

qc.QuiverClient("grpc://localhost:16004"

q.flight _descriptor(tpchd4_exec.to flight descriptor 15 stream:
result: pyarrow.Table = stream.read all

result.sort by(sorting: "order_ count"

df = result.to pandas(split blocks=T self destruct=

st.bar_chart(data=df, x="o_orderpriority”, y="order_count"”

A Taste of the Future

DX - Al Explain - Using FlexCache

AIExplainAction
urce_data="orgl/tenantl/tpch/reports/4.result”

- -.TL..-
U U &= L

"max_sample size": 1000

"method"”: "OpenAIWi1thRAG"

DX - Al Explain - Chain of Commands

= AIExplainAction
source_data=SqlQuery(]
sgl=tpch_q4

=~ N
{ 1)

_method=qc.SinkToFlightPath
flight_path="orgl/tenantl/tpch/reports/4.result”

naraometersc
Ul

"max_sample_size": 1000
"method": "OpenAIWithRAG"

Al and Analytics Lake Architecture

All metadata

One Click
NLQ

GoodData Cloud

Analytics Lake

Semantic Layer

FLexQuery

"Chat" History
Feedback

Why?
- Accuracy
- Performance

Augment | search

prompt | Store 7| Embeddings

[T]
Multi shot prompting(CoT)

Vector DB

Knowledge
graph

Graph DB

OpenAl

Context:
only relevant (meta)data

[-

v
On-premise LLM
(GPU, TPU,
LPU)

SQL & Post-SQL
Transformations

~—» OtherAl

Data Sources

b
X snowflake

Data

MotherDuck

PostgreSQL
Server

Amazon
S3

Try 1t out

Live app for fun Blueprint repository

Meet with us

e Meetthe team
e Getademo

e Pickupswag

Set time with us Visit our booth - #

Admins Wish For ...

Consistent and meaningful metrics
Flexible deployment

Easy (auto)scaling

Base

Node - Arrow Flight server

Modules - config for loading modules to nodes
Shared features, e.g. requests cancellation
Tooling - CLI, operations(metrics)
Deployment options - bare metal, VM, K8S

Clients - Python, Java(Kotlin)

