
WTF is an Analytics Lake
Building an open data service layer with Arrow, 
DuckDB and Semantic Layer



Who likes writing boilerplate code?
Raise your hands!



Building an Analytics Stack is Hard!



Developer Velocity

You want to build an analytics stack powering a BI/analytics platform

With every new data service, developers have to solve the same problems again and 
again. For instance:

● Server handling, interfaces

● Config management

● Routing, Load balancing

Often you spend 80% of your time with boiler-plating



Developers Wish For …

Skeleton data service
● Implement only the service logic, e.g. pivoting

Examples
● Real and meaningful data services

Performance
● Have you ever seen a really responsive end-user experience?
● Example: Tableau server



Our Initial Motivation



GoodData 1.0

We built the first version of our analytics stack more than 15 years ago!

We combined it with large amounts of our own proprietary code

● with the technology available at that time



GoodData 2.0

We decided to rewrite the platform on greenfield 4 years ago

● Reuse open-source and SaaS services as much as possible

● We fell in love first with Apache Arrow and later with DuckDB

● Some prospects even ask for embedding custom data services into our platform



Anatomy of an Analytics Lake



Physical Execution

Usually it consists of:

● Querying the data source(s) or pre-aggregations

● Post-processing the data - e.g. pivoting, ML

● Caching

We call this GD-specific stack FlexQuery

It’s powered by (GD-agnostic) engine called Longbow

● Built on top of Apache Arrow, DuckDB, and Pandas (TODO: Polars)

● We are considering an open sourcing of Longbow engine



The Importance of Semantic Layer

Business users 

-> Semantic(logical) report definition - SUM(amount) BY product_category

-> Semantic layer with mapping to data - [SALES] -> [PRODUCTS]

-> Physical execution plan (SQL) - SELECT SUM(amount) FROM JOIN GROUP BY

We use Apache Calcite for translation of business requests to SQL

● Thanks to the community, especially to Julian Hyde ;-)

https://calcite.apache.org/


Analytics Lake = FlexQuery + Semantic Layer



Why we chose Apache Arrow



Arrow format

Language-independent 

Columnar memory format 

Efficient for

● Analytic operations on modern hardware (CPUs, GPUs)

● Communication of services over the network

Zero-copy reads!



But You Get Much More Out of the Box!

I/O operations with the data - disk, object storages, …

Convertors - CSV, Parquet, from JDBC, …

Streaming computation on top of Arrow data - Acero engine

Flight RPC - API blueprint and infrastructure

Arrow Database Connectivity (ADBC) - query external data 
sources



Easy to Integrate

Arrow is becoming de facto standard

● Even big players like Snowflake(JDBC, 2020) are adopting it

Other technologies we found valuable and integrated:

● Transform
○ Pandas (2.0), Polars

○ DuckDB

● Federate
○ DuckDB

https://www.snowflake.com/blog/fetching-query-results-from-snowflake-just-got-a-lot-faster-with-apache-arrow/


What we set out to build



FlexCache - tiered storage
Memory <-> Disk <-> Object Storage (S3, ABS, GCS)

Arrow tables

Policies

● Various rules for promoting, demoting

● Enforce limits, isolate tenants, define replicas

● Leverage for pricing





Data Source Connectors

TurboODBC -> ADBC

● Fallback to JDBC is possible

Flexible deployment / Limit enforcement

● Max connections, timeouts, …

● Per node or per data source type

Streaming to FlexCache





Result Post-Processing

Dataframe operations

● Even easier to implement new operations than modules - dataframe IN/OUT

● Pivoting, sorting, paging for BI

● Three ML algorithms in Beta, created in a few days

Federation

● Query hybrid data sources, stream to FlexCache

● Object stores, databases

● Query FlexCache with DuckDB



Real UX/DX
From Developers to Developers



Self-service drag&drop
- freeing hands of 
developers



Must not forget 
about AI chat bot



DX - Analytics Lake 
with UI SDK



DX - Analytics Lake 
with Python SDK
- connect



DX - Analytics Lake 
with Python SDK
- query stored report



DX - Analytics Lake 
with Python SDK
- custom report



DX - FlexQuery - TPC-H Q4



DX - FlexQuery - Federation



DX - Call FlexQuery



A Taste of the Future



DX - AI Explain - Using FlexCache



DX - AI Explain - Chain of Commands 



AI and Analytics Lake Architecture



Try it out

Blueprint repositoryLive app for fun



Meet with us

Visit our booth - ####Set time with us

● Meet the team

● Get a demo

● Pick up swag



Admins Wish For …

Consistent and meaningful metrics

Flexible deployment

Easy (auto)scaling



Base

Node - Arrow Flight server

Modules - config for loading modules to nodes

Shared features, e.g. requests cancellation

Tooling - CLI, operations(metrics)

Deployment options - bare metal, VM, K8S

Clients - Python, Java(Kotlin)


