
Alexandru Cristu
Senior Solution Architect

Streaming CDC data from
PostgreSQL to Snowflake

challenges and solutions

Streamkap | Data Council Austin 2024

Alexandru Cristu

● Senior Solution Architect @ Streamkap

● 15+ years background in building high throughput, low latency,

geographically distributed custom software solutions

● Passionate about data streaming and stream processing, kappa

architecture, event sourcing, CQRS

Streamkap | Data Council Austin 2024

Agenda

● Overview, architecture and setup

● Backfill, initial/incremental/blocking snapshots, pros/cons

● Postgres challenges: wal log growth, TOAST

● Snowflake challenges: most recent view, channel offsets, costs

● Pipeline challenges: complete and correct mapping,

interruptions, monitoring, streaming transforms

Streamkap | Data Council Austin 2024

Overview

● CDC - Change Data Capture refers to the process of capturing

changes made to data in a source system such as a database

● Streaming ETL (extract, transform, load) is a type of data

integration process that involves continuously extracting data

from various sources, transforming it to fit the needs of the

destination system, and loading it into the destination system in

near real-time.

Streamkap | Data Council Austin 2024

Why CDC for Streaming ETL ?

● Much lower end-to-end latency - power real-time customer

facing analytics, operations, personalization

● Lower costs

● Minimal load on source database

● Retain historical data for auditing, time travel, etc

Streamkap | Data Council Austin 2024

Architecture

Streamkap | Data Council Austin 2024

Setup PostgreSQL - privileges
CREATE USER streamkap_user PASSWORD '{password}';

-- Create a role for Streamkap

CREATE ROLE streamkap_role;

GRANT streamkap_role TO streamkap_user;

-- Grant Streamkap permissions on the database, schema and all tables to capture

GRANT CONNECT ON DATABASE "{database}" TO streamkap_role;

GRANT CREATE, USAGE ON SCHEMA "{schema}" TO streamkap_role;

GRANT SELECT ON ALL TABLES IN SCHEMA "{schema}" TO streamkap_role;

ALTER DEFAULT PRIVILEGES IN SCHEMA "{schema}" GRANT SELECT ON TABLES TO streamkap_role;

Streamkap | Data Council Austin 2024

Setup PostgreSQL - logical replication

-- Option 1: All Tables
CREATE PUBLICATION streamkap_pub FOR ALL TABLES;

-- Option 2: Specific Tables
CREATE PUBLICATION streamkap_pub FOR TABLE table1, table2, table3, ...;

-- PostgreSQL 13 or later, enable the adding of partitioned tables
-- CREATE PUBLICATION streamkap_pub FOR ALL TABLES WITH (publish_via_partition_root=true);

-- Create a logical replication slot
SELECT pg_create_logical_replication_slot('streamkap_pgoutput_slot', 'pgoutput');

-- Verify the table(s) to replicate were added to the publication
SELECT * FROM pg_publication_tables;

Streamkap | Data Council Austin 2024

Real-Time Ingestion

75
%

Debezium is the the de-facto way to
stream CDC data and replicate the
database

● All changes in the database are
written to the database log (WAL)

● Debezium connectors read the
log in real-time

Streamkap | Data Council 2024

Real-Time Ingestion

75
%

Streamkap | Data Council 2024

Debezium Connectors

75
%

● Wide support for all major databases

● Kafka Connect compatible

● Data can be snapshotted/backfilled

before moving on to streaming mode

● Practically zero impact on the database

(Streaming mode)

● Community support is excellent

Streamkap | Data Council 2024

Setup Snowflake - warehouse, user
SET user_name = UPPER('STREAMKAP_USER');
SET user_password = '{password}'; -- IMPORTANT: Make sure to change this!
SET warehouse_name = UPPER('STREAMKAP_WH'); -- Used for optional views not ingestion
SET database_name = UPPER('STREAMKAPDB');
SET schema_name = UPPER('STREAMKAP');
SET role_name = UPPER('STREAMKAP_ROLE');
SET network_policy_name = UPPER('STREAMKAP_NETWORK_ACCESS');

. . .

-- Create a Snowflake role with privileges for the Streamkap connector
USE ROLE IDENTIFIER($securityadmin_role);
CREATE ROLE IF NOT EXISTS IDENTIFIER($role_name);
GRANT

-- ALTER NETWORK POLICY STREAMKAP_NETWORK_ACCESS SET ALLOWED_IP_LIST=('x.y.z.t');
CREATE NETWORK POLICY IDENTIFIER($network_policy_name) ALLOWED_IP_LIST=('x.y.z.t');
ALTER USER IDENTIFIER($user_name) SET NETWORK_POLICY = $network_policy_name;

Streamkap | Data Council Austin 2024

Setup Snowflake - key authentication
generates an encrypted RSA private key
openssl genrsa 2048 | openssl pkcs8 -topk8 -v2 aes256 -inform PEM -out streamkap_key.p8
-passout pass:{passphrase}

generates the public key, referencing the private key
openssl rsa -in streamkap_key.p8 -pubout -out streamkap_key.pub -passin pass:{passphrase}

egrep -v '^-|^$' ./streamkap_key.pub | pbcopy

Update snowflake user
SET user_name = UPPER('STREAMKAP_USER');

USE ROLE SECURITYADMIN;

-- Replace '{public key}' below with the public key file contents
-- If you used the previous command to copy the key to your clipboard, use Ctrl+V (Windows)
-- or Cmd+V (MacOS) to replace the '{public key}' placeholder with the key
-- Key part MUST start with 'MII' excluding any headers and footers
ALTER USER STREAMKAP_USER SET RSA_PUBLIC_KEY = '{public key}';

Streamkap | Data Council Austin 2024

Snowpipe Streaming

Streamkap | Data Council Austin 2024

● low-latency loading of streaming data rows
● Use the Snowpipe Streaming API in streaming scenarios where data is

streamed via rows (for example, Apache Kafka topics) instead of written to
files

Backfill

75
%

Snapshotting refers to the process of loading existing data from

PostgreSQL into Snowflake.

● Initial Snapshots

● Incremental Snapshots

● Blocking Snapshots

Streamkap | Data Council 2024

Backfill - Initial Snapshots

75
%

A blocking snapshot run before streaming is started.

Pros:

● These can be run concurrently and are very fast
● Captures the entire current state of the database tables

Cons:

● High impact on system resources, especially for large tables
and when using higher parallelism

● Streaming is paused, for large databases WAL growth can
become an issue

● Connector restart means complete re-snapshot from scratch

Streamkap | Data Council 2024

Backfill - Incremental Snapshots

75
%

A chunked snapshot running in parallel with streaming.

Pros:

● Not causing any WAL growth
● Low impact on the source database

Cons:

● Slower than blocking snapshots
● Currently can miss TOAST-ed values

Streamkap | Data Council 2024

Backfill - Blocking Snapshots

75
%

Blocking snapshots, very similar to initial snapshots, but can be
triggered anytime.

Pros:

● Can be triggered for specific tables
● Can use additional conditions to filter records

Cons:

● Same cons as initial snapshots
● connector restart can cause a full initial snapshot

Streamkap | Data Council 2024

Declarative transformation Automated data refresh Built for data pipelines

What are Dynamic Tables?

Dynamic tables simplify data engineering by providing
automated and reliable data transformation pipelines in

Snowflake.

Snowflake - most recent view

75
%

Snowpipe streaming is append only, the complete
changes history is ingested into the snowflake target
tables.

Querying the latest view of the data requires
de-duplicating the changes history with:

● Dynamic tables
● Snowflake connector upsert mode

Streamkap | Data Council 2024

How to create
Dynamic Table?

How to

create

Dynamic

Table?

How to create
Dynamic Table?

Convert streamkap

CDC events table

to Most Recent

State table using

Dynamic Table

Snowpipe Streaming Costs

75
%

Snowpipe Streaming does not need a warehouse to run
keeping costs down

● Snowpipe Streaming has two charges: Cloud service and
migration.

● Example monthly cost running 24/7, $2 credit cost, 1 TB
○ Cloud Service: 30 days * 24 hrs * 1 client * 0.01 credits =

7.2 credits x $2 = $14.4
○ Migration: automated background process,

approximately 3-10 credits per TB of data (Assuming 6
credits per TB) = 6 credits * $2 = $12

○ Total = $26.4/TB
● Takeway: $20-$34/TB!

Streamkap | Data Council 2024

Real World Example - Snowpipe
Streaming + Dynamic Tables

75
%

“Snowflake costs for pipeline from our batch ETL tool is around 190
credits / per week. Compared to Snowpipe Streaming usage from
Streamkap which 1-2 credits per week.

In terms of modeling, around 200 credits / per week before and now it’s
around 130 credits / per week with Dynamic Tables”

Streamkap | Data Council 2024

Before: 390 credits/week - $3,354/month ($2/credit), 20 min latency

After: 132 credits/week - $1,135/month ($2/credit), 5 mins latency

4x faster and 3x cheaper

Snowflake - upsert

75
%

Connector sends bulk MERGE INTO statements to ensure the target
tables contain the latest view of the data.

Costs depend on the size of the warehouse, billing will run
continuously, warehouse will not be able to auto-suspend.

Streamkap | Data Council 2024

Snowflake - challenge with offsets

75
%

Snowpipe streaming channels maintain kafka offsets, this is
part of offering exactly once guarantees.

Replaying event with past offsets has no effect and this comes
with challenges when running maintenance work like data
conversions and kafka migrations.

Streaming CDC data, in most use case, works well with at least
once guarantees, which means in certain error scenarios some
events can be replayed leading to duplicates. However
deduplicating the latest view of the data with dynamic tables or
MERGE INTO statement is needed anyway.

Streamkap | Data Council 2024

Challenge - type mapping completeness

75
%

Streamkap | Data Council 2024

Kafka Connect/PostgreSQL Data Type Snowflake Data type

INT8/16/32/64 BYTEINT/SMALLINT/INT/
BIGINT

FLOAT32/64 FLOAT/DOUBLE

BOOLEAN BOOLEAN

BYTES BINARY

STRING VARCHAR

Type mapping/conversions

75
%

Streamkap | Data Council 2024

Kafka Connect/PostgreSQL Data Type Snowflake Data type

org.apache.kafka.connect.data.Decimal DECIMAL

org.apache.kafka.connect.data.Timestamp
io.debezium.time.ZonedTimestamp

io.debezium.time.MicroTimestamp

TIMESTAMP

org.apache.kafka.connect.data.Date DATE

io.debezium.time.Time

io.debezium.time.MicroTime

TIME(3), TIME(6)

Type mapping/conversions

75
%

Streamkap | Data Council 2024

Kafka Connect/Debezium/PostgreSQL Data Type Snowflake Data type

io.debezium.data.Json (json, hstore) VARIANT

STRUCT VARIANT

ARRAY VARIANT

io.debezium.data.geometry.Geometry

io.debezium.data.geometry.Geography

io.debezium.data.geometry.Point

VARIANT

Challenge - snowflake unavailable

75
%

We had situation where destination was unavailable for several

hours up to 2 days (403 errors).

If destination is down source must keep consuming to prevent

WAL size issues.

In most use cases Kafka can easily ingest and store events for 2

days or more. Snowflake sink connector high throughput of

100k records/sec or more, depending on the number of

tables/channels.

Streamkap | Data Council 2024

Challenge - monitoring dev/staging noise

75
%

Monitoring large number of pipelines can be challenging,

important metrics:

● Source throughput and ms lag behind source database

● Destination throughput and event lag

● Kafka throughput, topics size

Alerts/Dashboards affected by dev/staging pipelines, especially

in a larger multi-tenant environment

Streamkap | Data Council 2024

Challenge - pinpoint issues

75
%

Drilling down to table/record/field level is time consuming with

many source databases and tables.

We’ve seen use cases with 500+ tables in one database and

cases where there are 100+ databases with tens of tables each,

custom monitoring required:

● estimated/exact counts per table in source vs destination

● Periodic sampling of records from source vs destination

with consistency checking for each field

Streamkap | Data Council 2024

Challenge - TOAST handling

75
%

Update events will not receive TOAST-ed values unless they are

modified, solutions:

● REPLICA IDENTITY FULL - it will create a huge WAL size

● Debezium reselect post processor, record by record, not practical

for large write throughput where TOAST values don’t change

often.

● Stream processing - keep original values in cache and replace

missing values in future update events

Streamkap | Data Council 2024

Stream processing - TOAST

75
%

Apache flink DataSteam API generic job:

● Saves all values larger than 2kB in flink state

● On subsequent UPDATE events for the same key, replace

missing values with original values from state

● ~50mln keys, 23.6 GB state size, checkpointing in s3 every 15min

Streamkap | Data Council 2024

Stream processing - low latency
transforms

75
%

Apache flink layer can be used to apply transformations before
ingestion into snowflake:

● Data conversions, fix inconsistencies in semi-structured data
● Array unrolling, generating new record for each nested array

element
● Enrichment, windowed and non-windowed joins

If ingesting the same data in multiple destinations, applying
transforms in the steaming layer would be more cost effective.

Streamkap | Data Council 2024

Architecture - using Streamkap

Streamkap | Data Council Austin 2024

● Performance

● Monitoring

● Auto Q/A

● Auto DevOps

Thank you

Alexandru Cristu
Senior Solution Architect

Useful links

● PostgreSQL - postgresql.org
● Snowflake - docs.snowflake.com
● Debezium - debezium.io
● Kafka - kafka.apache.org
● Flink - flink.apache.org
● Streamkap - streamkap.com

Streamkap | Data Council Austin 2024

http://postgresql.org
http://docs.snowflake.com
https://debezium.io/
https://kafka.apache.org/
https://flink.apache.org/
https://streamkap.com/

