
| © Copyright 2022, InfluxData1

A 101 in time series
analytics with Apache
Arrow, Pandas and
Parquet
Zoe Steinkamp

| © Copyright 2022, InfluxData2

Zoe Steinkamp
Developer Advocate - InfluxData

2

LinkedIn

| © Copyright 2022, InfluxData3 | © Copyright 2022, InfluxData3

Agenda
● Why a time series database is important
● Tools to know
● What is apache parquet and apache arrow
● Apache arrow example
● Leveraging pandas for analytics
● Examples

○ Autocorrelation, Anomaly Detection, Forecasting
● Resources

| © Copyright 2022, InfluxData4 | © Copyright 2022, InfluxData4

Audience Questions
Have you worked with time series data?
Have you worked with a time series database?

| © Copyright 2022, InfluxData5

Why a time series database is
important

5

| © Copyright 2023, InfluxData6

Types of time series data

Quantitative values
collected regularly

over time

State changes or
values generated
irregularly over

time

Complete event or
request

propagation in a
distributed system

Metrics Events Traces

| © Copyright 2023, InfluxData7

Rise of time series as a category

7

TIME SERIESRELATIONAL DOCUMENT SEARCH

• Distributed
search

• Logs
• Geo

• High
throughput

• Large
document

• Orders
• Customers
• Records

• Events, metrics, time-stamped
• For IoT, analytics, cloud native

Time series is fastest growing
data category by far

Time series

All others

source: DB Engines

| © Copyright 2023, InfluxData8

Typical Architecture & Deployment

| © Copyright 2022, InfluxData9

Tools to know

9

| © Copyright 2023, InfluxData10

Telegraf

The open-source
agent for

collecting metrics

Driven by the
community

(600+
contributors)

Simple to
configure,
extremely

flexible

| © Copyright 2023, InfluxData11

Categories of Telegraf Plugins

11

Logging

Databases

Networking

Industrial IoT

Web

Gaming / Entertainment

Consumer IoT

Containers

Cloud

AMQP
MQTT

KNX
OPC-UA
Modbus

InfluxDB
Listener
MySQL

Cassandra

Docker
Kubernetes

Podman

NGINX
Apache

Cloudflare

Syslog
File/Tail

OpenTelemetry

AWS Cloudwatch
Google Cloud Pub Sub

NVIDIA SMI
AMD

SNMP
GNMI

Minecraft
CS:Go

Jolokia
TCP/UDP
Listener

Elasticsearch
MongoDB

| © Copyright 2023, InfluxData12

SQL Aggregate Functions

| © Copyright 2023, InfluxData13 | © Copyright 2022, InfluxData

Open Source tools

13

Pandas -
Python library used for data
manipulation. It is common for
other tools to expect a pandas
dataframe data format.

TensorFlow -
machine learning and artificial
intelligence platform. Data
scientists use TensorFlow to build
and train models using Python or
JavaScript.

ADTK -
Python package for rule-based
anomaly detection in time-series
data. ADTK is geared toward
industrial IoT use cases.

Prophet -
Python library for forecasting. It fits
the forecasting problem with a
curve-fitting exercise or creating a
mathematical model.

| © Copyright 2022, InfluxData14

What is apache parquet and
apache arrow

14

| © Copyright 2023, InfluxData15

Apache Parquet…

15

“Apache Parquet is an open source, column-oriented data file format
designed for efficient data storage and retrieval.”

● Not a runtime in-memory format

● Parquet data cannot be directly operated
on but must be decoded in large chunks

What is the difference between
Apache Arrow and Apache
Parquet?● Minimize disk usage while

storing gigabytes of data

● Efficient retrieval and
deserialization of large
amounts of columnar data

The benefits

https://dzone.com/articles/how-to-be-a-hero-with-powerful-parquet-google-and

https://dzone.com/articles/how-to-be-a-hero-with-powerful-parquet-google-and

| © Copyright 2023, InfluxData16

Comparison

| © Copyright 2023, InfluxData17

Apache Arrow is…

17

“Apache Arrow is a framework for defining in-memory columnar data
that every processing engine can use.”

● Language-agnostic standard for columnar memory

● Efficient for running large analytical workloads on modern
CPU and GPU architectures.

● It supports s a range of programming languages including
C++, Java, Python, and R.

| © Copyright 2023, InfluxData18

The problems

| © Copyright 2023, InfluxData19

The solution

| © Copyright 2023, InfluxData20

Apache Arrow is…

20

The Apache Arrow format
allows computational
routines and execution
engines to maximize their
efficiency when scanning
and iterating large chunks
of data. In particular, the
contiguous columnar
layout enables
vectorization using the
latest SIMD (Single
Instruction, Multiple Data)
operations included in
modern processors.

| © Copyright 2023, InfluxData2121

Flight SQL

| © Copyright 2023, InfluxData22

Flight vs Flight SQL

Flight
• Accepts a ticket that is

implementation specific
• Query language agnostic
• Returns arrow results

FlightSQL
• A superset of the Flight API
• SQL specific
• Designed for ORMs and UI

builders
• Implementation agnostic

What should I use in my Code?
Largely a matter of taste, but Flight supports InfluxQL

| © Copyright 2023, InfluxData23

No serialization or deserialization costs – Since Arrow data
is sent directly, there is no need to serialize or deserialize the
data, and no need to make an extra copy of the data.

| © Copyright 2023, InfluxData24

Finally Apache Arrow Flight SQL

24

“A new client-server protocol developed by the Apache Arrow
community for interacting with SQL databases that makes use of the
Arrow in-memory columnar format”

● Provides a SQL interface for
Arrow Flight

● Query execution
● Returns columnar format

Arrow Flight SQL?

● High-volume transfers of columnar
data

● Good for distributed computing
and analytics

What is Arrow Flight?

| © Copyright 2023, InfluxData25

To understand the
performance differences,
let’s try reading a CSV file
with 11 million records and
compare Pandas CSV
reader (default engine)
with PyArrow’s.

PyArrow does it 15x faster
with Arrow’s in-memory
columnar format!

| © Copyright 2023, InfluxData26

Prior to Arrow, the conversion from Spark DataFrames to Pandas was a very
inefficient process since we had to go through the costly process of serialization
and deserialization. With Arrow as the in-memory format, PySpark achieved two
advantages. There is no need to serialize or deserialize the rows
When Python receives the Arrow data, PyArrow will create a data frame from the
entire chunk of data at once instead of doing it for individual values

| © Copyright 2022, InfluxData27

Apache arrow example

27

| © Copyright 2023, InfluxData28

import pyarrow as pa

Create a array from a list of values
animal = pa.array(["sheep", "cows",
"horses", "foxes"], type=pa.string())
count = pa.array([12, 5, 2, 1],
type=pa.int8())
year = pa.array([2022, 2022, 2022,
2022], type=pa.int16())

Create a table from the arrays
table = pa.Table.from_arrays([animal,
count, year], names=['animal','count',
'year'])
print(table)

pyarrow.Table
animal: string
count: int8
year: int16

animal:
[["sheep","cows","hors
es","foxes"]]
count: [[12,5,2,1]]
year:
[[2022,2022,2022,2022]
]

Creating an Arrow table…

| © Copyright 2023, InfluxData29

from flightsql import FlightSQLClient

Read only token for demo purposes
token = ""
client = FlightSQLClient(host=””,
 token=token,

 metadata={'bucket-name':'factory'})

Execute a query against InfluxDB's Flight SQL
endpoint
query = client.execute("SELECT * FROM
iox.machine_data WHERE time > (NOW() - INTERVAL '1
DAY')")

Create reader to consume result
reader = client.do_get(query.endpoints[0].ticket)

Read all data into a pyarrow.Table
Table = reader.read_all()
print(Table)

pyarrow.Table
host: string
load: double
machineID: string
power: double
provider: string
temperature: double
time: timestamp[ns] not null
topic: string
vibration: double

host: [["9aa69b2d7e30"]]
load: [[50]]
machineID: [["machine1"]]
power: [[218]]
provider: [["Baird Ltd"]]
temperature: [[39]]
time: [[2023-02-14
12:30:41.989984916]]
topic: [["machine/machine1"]]
vibration: [[90]]

| © Copyright 2023, InfluxData30

Convert to Pandas DataFrame
df = Table.to_pandas()
df = df.sort_values(by="time")
df.head(20)

Arrow Utility functions…

PyArrow Aggregation
aggregation = Table.group_by("machineID").aggregate([("vibration",
"mean"), ("vibration", "max"),("vibration", "min")]).to_pandas()

Save the table to a Parquet file
pq.write_table(Table,
'example.parquet')

Load the table from the Parquet file
Table =
pq.read_table('example.parquet')

| © Copyright 2023, InfluxData31

Table Result

The resulting DataFrame
looks like this. We include
20 values with the head()
function just to make sure
that it returns multiple time
points for each sensor.

| © Copyright 2023, InfluxData32

Downsampling with Pandas

df_mean =
df.groupby(by=["sensor_id"]).resample(
'10min', on='time').mean().dropna()
create a copy of the downsampled
data so we can write it back to InfluxDB
Cloud powered by IOx.
df_write = df_mean.reset_index()
df_mean

The objective here is to find the
mean of our temperature, co,
and humidity fields over 10
minute intervals. Use the
groupby() function to group our
dataframe by the sensor_id
tag (or column). Then we use
the resample() and mean()
functions to downsample and
apply a mean over the
intervals, respectively.

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mean.html

| © Copyright 2023, InfluxData33

Table Result comparison

| © Copyright 2023, InfluxData34

Sending Downsampled Data back
to InfluxDB

write data back to InfluxDB Cloud powered by
IOx
client = InfluxDBClient(url=url, token=token,
org=org)
client.write_api(write_options=SYNCHRONOUS).
write(bucket=bucket, record=df_write,
data_frame_measurement_name="mean_downsa
mpled",
 data_frame_timestamp_column='time',
 data_frame_tag_columns=['sensor_id'])

Finally, we write our
downsampled data back
to InfluxDB Cloud using
the InfluxDB v2 Python
Client using the .write
method and specifying
the DataFrame we want
to write back into
InfluxDB.

| © Copyright 2022, InfluxData35

Leveraging pandas for analytics

35

| © Copyright 2023, InfluxData36

Pandas Joining Dataframes

technologies = { 'Courses':["Spark","PySpark","Python","pandas"],
 'Fee' :[20000,25000,22000,30000],
 'Duration':['30days','40days','35days','50days'],}
index_labels=['r1','r2','r3','r4']
dataframe1 = pd.DataFrame(technologies,index=index_labels)
technologies2 = {
 'Courses':["Spark","Java","Python","Go"],
 'Discount':[2000,2300,1200,2000]
 }
index_labels2=['r1','r6','r3','r5']
dataframe2 = pd.DataFrame(technologies2,index=index_labels2)
print(df1)
print(df2)

| © Copyright 2023, InfluxData37

#Join with no how parameter, defaults
left
df3=df1.join(df2, lsuffix="_left",
rsuffix="_right")

| © Copyright 2023, InfluxData38

#Join with right how parameter
df3=df1.join(df2, lsuffix="_left",
rsuffix="_right", how=’right’)

| © Copyright 2023, InfluxData39

#Join with outer how parameter
df3=df1.join(df2, lsuffix="_left",
rsuffix="_right", how=outer)

| © Copyright 2023, InfluxData40

#Join with inner how parameter
df3=df1.join(df2, lsuffix="_left",
rsuffix="_right", how='inner')

| © Copyright 2023, InfluxData41

#Pandas join on column
df3=df1.set_index('Courses').join(df2.se
t_index('Courses'), how='inner')

| © Copyright 2023, InfluxData42

#Pandas join
df3=df1.join(df2.set_index('Courses'),
how='inner', on='Courses')

| © Copyright 2023, InfluxData43

Pandas Rename Columns

rankings_pd.rename
(columns = {'test':'TEST'},
inplace = True)
After renaming the
columns
print(rankings_pd)

| © Copyright 2023, InfluxData44

Pandas Reset Index

df.reset_index()
When we reset the index,
the old index is added as a
column, and a new
sequential index is used.
df.reset_index(drop=True)
If we add the drop, the
column will not be included

| © Copyright 2022, InfluxData45

Autocorrelation Example

45

| © Copyright 2022, InfluxData46

What is autocorrelation?

The term autocorrelation refers
to the degree of similarity
between A) a given time series,
and B) a lagged version of
itself, over C) successive time
intervals. In other words,
autocorrelation is intended to
measure the relationship
between a variable’s present
value and any past values that
you may have access to.

| © Copyright 2022, InfluxData47

Autocorrelation examples

Example 1: Regression analysis
One prominent example of how
autocorrelation is commonly
used takes the form of
regression analysis using time
series data. Here, professionals
will typically use a standard
auto regressive model, a
moving average model or a
combination that is referred to
as an auto regressive
integrated moving average
model, or ARIMA for short.

Example 2: Scientific
applications of
autocorrelation
is used quite frequently in
terms of fluorescence
correlation spectroscopy,
which is a critical part of
understanding
molecular-level diffusion and
chemical reactions in certain
scientific environments.

| © Copyright 2022, InfluxData48

Examples Continued

Example 3: Global positioning
systems
one of the primary
mathematical techniques at the
heart of the GPS chip that is
embedded in smartphones

Example 4: Signal processing
a part of electrical engineering
that focuses on understanding
more about signals like sound,
images and sometimes
scientific measurements.
Example 5: Astrophysics
it helps professionals study the
spatial distribution between
celestial bodies in the universe
like galaxies.

| © Copyright 2022, InfluxData49

Determining if your time series has
autocorrelation
I am using available data from the National Oceanic and Atmospheric
Administration’s (NOAA) Center for Operational Oceanographic Products and
Services. Specifically, I will be looking at the water levels and water temperatures of
a river in Santa Monica. We will be using the influxdb python client library. A
Jupyter notebook will be linked at the end of this.

https://tidesandcurrents.noaa.gov/stations.html?type=Water+Levels
https://tidesandcurrents.noaa.gov/stations.html?type=Water+Levels
https://tidesandcurrents.noaa.gov/stations.html?type=Water+Levels

| © Copyright 2022, InfluxData50

Next I connect to the client, query my
water temperature data, and plot it.

h2O = client.query('SELECT mean("degrees") AS
"h2O_temp" FROM
"NOAA_water_database"."autogen"."h2o_temperature"
GROUP BY time(12h) LIMIT 60')

| © Copyright 2022, InfluxData51

From looking at the
plot it’s not
obviously apparent
whether or not our
data will have any
autocorrelation. For
example, I can’t
detect the presence
of seasonality,
which would yield
high autocorrelation.

| © Copyright 2022, InfluxData52

calculate the autocorrelation

Pandas.Sereis.autocorr()
This method computes the Pearson
correlation between the Series
and its shifted self.

The Pearson correlation
coefficient has a value between
-1 and 1, where 0 is no linear
correlation, >0 is a positive
correlation, and <0 is a
negative correlation.

These values are
very close to 0,
which indicates
that there is
little to no
correlation.

| © Copyright 2022, InfluxData53

However with autocorrelation plot

From this plot, we see
that values for the
ACF are within 95%
confidence interval
(represented by the
solid gray line) for
lags > 0, which
verifies that our data
doesn’t have any
autocorrelation.

| © Copyright 2022, InfluxData54

Seasonality

The ACF can also be used to uncover and verify seasonality in
time series data. Let’s take a look at the water levels from the
same dataset

54

| © Copyright 2022, InfluxData55

Uncovering seasonality with water levels

h2O_level = client.query('SELECT "water_level" FROM
"NOAA_water_database"."autogen"."h2o_feet" WHERE
"location"=\'santa_monica\' AND time >= \'2015-08-22
22:12:00\' AND time <= \'2015-08-28 03:00:00\'')

| © Copyright 2022, InfluxData56

Just by plotting the
data, it’s fairly
obvious that
seasonality probably
exists, evident by the
predictable pattern in
the data. Let’s verify
this assumption by
plotting the ACF.

| © Copyright 2022, InfluxData57

Verify by plotting the ACF

From the ACF plot above, we
can see that our seasonal
period consists of roughly
246 timesteps. While it was
easily apparent from
plotting time series in
Figure 3 that the water
level data has seasonality,
that isn’t always the case.

| © Copyright 2022, InfluxData58

In Seasonal ARIMA with
Python, author Sean
Abu shows how he must
add a seasonal
component to his
ARIMA method in order
to account for
seasonality in his
dataset. It’s a great
example of how using
ACF can help uncover
hidden trends in the
data.

https://www.seanabu.com/2016/03/22/time-series-seasonal-ARIMA-model-in-python/
https://www.seanabu.com/2016/03/22/time-series-seasonal-ARIMA-model-in-python/

| © Copyright 2022, InfluxData59

Examining trends with
autocorrelation

In order to take a look at the trend of time series data, we first
need to remove the seasonality. Lagged differencing is a simple
transformation method that can be used to remove the seasonal
component of the series. A lagged difference is defined by:
difference(t) = observation(t) - observation(t-interval)2,
where interval is the period. To calculate the lagged difference in
the water level data, I used the following function:

59

| © Copyright 2022, InfluxData60

| © Copyright 2022, InfluxData61

This is our
resulting
graph

| © Copyright 2022, InfluxData62

Including the ACF again

It might seem that we still have
seasonality in our lagged
difference. However, if we pay
attention to the y-axis in Figure 5,
we can see that the range is very
small and all the values are close
to 0.but there is a polynomial
trend. I used seasonal_decompose to
verify this.

| © Copyright 2022, InfluxData63

seasonal_decompose

Seasonal Decompose returns A object
with seasonal, trend, and residual
attributes.

| © Copyright 2022, InfluxData64

Resources + Conclusion

AutoCorrelation Blog
How not to use time series for
forecasting pitfalls

Jupyter Notebook Seasonal ARIMA with Python

| © Copyright 2022, InfluxData65

Anomaly detection and
Forecasting

65

| © Copyright 2022, InfluxData66

Some Examples of
Anomaly Detection

For Single time series:
• Autoregression
• LevelShiftAD
• SeasonalAD

For Multiple Time series:
• BIRCH
• KMEANS
• Median Absolute

Deviation(MAD)

• FBProphet
• LSTM with Keras
• statsmodels' Holt's Method.

All of the forecasting examples
leverage outside libraries.

Some Examples of
Forecasting

| © Copyright 2022, InfluxData67

AutoregressionAD algorithm

AutoregressionAD detects anomalous changes of autoregressive
behavior in time series. AutoregressionAD can capture changes
of autoregressive relationship (the relationship between a data
point and points in its near past) and could be used for cyclic (but
not seasonal) series in some situations.

| © Copyright 2022, InfluxData68

After we have acquired the data into a
pandas format

| © Copyright 2022, InfluxData69

Prepare Data for consumption

| © Copyright 2022, InfluxData70

Visualization
before the
algorithm

| © Copyright 2022, InfluxData71

Apply AutoregressionAD

from adtk.detector import AutoregressionAD
from adtk.visualization import plot
autoregression_ad = AutoregressionAD(n_steps=10, step_size=20,
c=3.0)
anomalies = autoregression_ad.fit_detect(s)
plot(s, anomaly=anomalies, ts_markersize=1, anomaly_color='red',
anomaly_tag="marker", anomaly_markersize=2);

| © Copyright 2022, InfluxData72

Apply AutoregressionAD

| © Copyright 2022, InfluxData73

Resources

73

| © Copyright 2022, InfluxData74

Try It Yourself

https://www.influxdata.com https://github.com/InfluxCommunity

| © Copyright 2022, InfluxData75

T H A N K Y O U

