

A 101 in time series analytics with Apache Arrow, Pandas and Parquet

Zoe Steinkamp

Zoe Steinkamp Developer Advocate - InfluxData

LinkedIn

Agenda

- Why a time series database is important
- Tools to know
- What is apache parquet and apache arrow
- Apache arrow example
- Leveraging pandas for analytics
- Examples
 - Autocorrelation, Anomaly Detection, Forecasting
- Resources

Audience Questions

Have you worked with time series data? Have you worked with a time series database?

Why a time series database is important

Types of time series data

Rise of time series as a category

Typical Architecture & Deployment

InfluxDB Platform

🐞 influxdata®

Tools to know

Categories of Telegraf Plugins

Consumer IoT	Industrial IoT	Databases	
AMQP MQTT	KNX OPC-UA Modbus	InfluxDB Elasticsearch Listener MongoDB MySQL	
Containers	Web	Logging	
Docker Kubernetes Podman	NGINX Apache Cloudflare	Syslog File/Tail OpenTelemetry	
Cloud	Networking	Gaming / Entertainment	
AWS Cloudwatch Google Cloud Pub Sub	Jolokia SNMP TCP/UDP GNMI Listener	NVIDIA SMI Minecraft AMD CS:Go	

SQL Aggregate Functions

- General aggregate functions
- Statistical aggregate functions

- array_agg
- avg
- count
- max
- mean
- median
- min
- sum

- corr
- covar
- covar_pop
- covar_samp
- stddev
- stddev_pop
- stddev_samp
- var
- var_pop
- var_samp

- Approximate aggregate functions
 - approx_distinct
 - approx_median
 - approx_percentile_cont
 - approx_percentile_cont_with_weight

Open Source tools

Pandas -

Python library used for data manipulation. It is common for other tools to expect a pandas dataframe data format.

ADTK -

Python package for rule-based anomaly detection in time-series data. ADTK is geared toward industrial IoT use cases. TensorFlow -

machine learning and artificial intelligence platform. Data scientists use TensorFlow to build and train models using Python or JavaScript.

Prophet -

Python library for forecasting. It fits the forecasting problem with a curve-fitting exercise or creating a mathematical model.

What is apache parquet and apache arrow

Apache Parquet...

"Apache Parquet is an open source, column-oriented data file format designed for efficient data storage and retrieval."

The benefits

- Minimize disk usage while storing gigabytes of data
- Efficient retrieval and deserialization of large amounts of columnar data

What is the difference between Apache Arrow and Apache Parquet?

- Not a runtime in-memory format
- Parquet data cannot be directly operated on but must be decoded in large chunks

Comparison

Dataset	Size on Amazon S3	Query Run time	Data Scanned	Cost
Data stored as CSV files	1 TB	236 seconds	1.15 TB	\$5.75
Data stored in Apache Parquet format*	130 GB	6.78 seconds	2.51 GB	\$0.01
Savings / Speedup	87% less with Parquet	34x faster	99% less data scanned	99.7% savings

Apache Arrow is...

"Apache Arrow is a framework for defining in-memory columnar data that every processing engine can use."

- Language-agnostic standard for columnar memory
- Efficient for running large analytical workloads on modern CPU and GPU architectures.
- It supports s a range of programming languages including
 C++, Java, Python, and R.

The problems

The solution

Apache Arrow is...

	session_id	timestamp	source_ip
Row 1	1331246660	3/8/2012 2:44PM	99.155.155.225
Row 2	1331246351	3/8/2012 2:38PM	65.87.165.114
Row 3	1331244570	3/8/2012 2:09PM	71.10.106.181
Row 4	1331261196	3/8/2012 6:46PM	76.102.156.138

The Apache Arrow format allows computational routines and execution engines to maximize their efficiency when scanning and iterating large chunks of data. In particular, the contiguous columnar layout enables vectorization using the latest SIMD (Single Instruction, Multiple Data) operations included in modern processors.

Flight vs Flight SQL

<u>Flight</u>

- Accepts a ticket that is implementation specific
- Query language agnostic
- Returns arrow results

FlightSQL

- A superset of the Flight API
- SQL specific
- Designed for ORMs and UI builders
- Implementation agnostic

What should I use in my Code?

Largely a matter of taste, but Flight supports InfluxQL

No serialization or deserialization costs – Since Arrow data is sent directly, there is no need to serialize or deserialize the data, and no need to make an extra copy of the data.

Finally Apache Arrow Flight SQL

"A new client-server protocol developed by the Apache Arrow community for interacting with SQL databases that makes use of the Arrow in-memory columnar format"

What is Arrow Flight?

- High-volume transfers of columnar data
- Good for distributed computing and analytics

Arrow Flight SQL?

- Provides a SQL interface for Arrow Flight
- Query execution
- Returns columnar format

•••

Experiment with 11M records
%%time
import pandas as pd
df_pandas = pd.read_csv('csv_pandas.csv')

CPU times: user 24.3 s, sys: 8.92 s, total: 33.2 s
Wall time: 35.5 s

```
%%time
import pyarrow as pa
from pyarrow import csv
df_arrow = csv.read_csv('csv_pandas.csv')
```

```
# CPU times: user 8.41 s, sys: 2.93 s, total: 11.3 s
# Wall time: 2.31 s
```

To understand the performance differences, let's try reading a CSV file with 11 million records and compare Pandas CSV reader (default engine) with PyArrow's.

PyArrow does it 15x faster with Arrow's in-memory columnar format!

Prior to Arrow, the conversion from Spark DataFrames to Pandas was a very inefficient process since we had to go through the costly process of serialization and deserialization. With Arrow as the in-memory format, PySpark achieved two advantages. There is no need to serialize or deserialize the rows When Python receives the Arrow data, PyArrow will create a data frame from the entire chunk of data at once instead of doing it for individual values

Apache arrow example

Creating an Arrow table...

import pyarrow as pa

```
# Create a array from a list of values
animal = pa.array(["sheep", "cows",
"horses", "foxes"], type=pa.string())
count = pa.array([12, 5, 2, 1],
type=pa.int8())
year = pa.array([2022, 2022, 2022,
2022], type=pa.int16())
```

```
# Create a table from the arrays
table = pa.Table.from_arrays([animal,
   count, year], names=['animal','count',
   'year'])
print(table)
```



```
pyarrow.Table
animal: string
count: int8
year: int16
animal:
[["sheep","cows","hors
es","foxes"]]
count: [[12,5,2,1]]
year:
[[2022,2022,2022,2022]
```

```
from flightsql import FlightSQLClient
# Read only token for demo purposes
token = ""
client = FlightSQLClient(host="",
                           token=token,
      metadata={'bucket-name':'factory'})
# Execute a query against InfluxDB's Flight SQL
endpoint
query = client.execute("SELECT * FROM
iox.machine data WHERE time > (NOW() - INTERVAL '1
DAY')")
# Create reader to consume result
reader = client.do get(query.endpoints[0].ticket)
# Read all data into a pyarrow.Table
Table = reader.read all()
print(Table)
```

29 | © Copyright 2023, InfluxData

ARROW pyarrow.Table host: string load: double machineID: string power: double provider: string temperature: double time: timestamp[ns] not null topic: string vibration: double host: [["9aa69b2d7e30"]] load: [[50]] machineID: [["machine1"]] power: [[218]] provider: [["Baird Ltd"]] temperature: [[39]] time: [[2023-02-14] 12:30:41.989984916]] topic: [["machine/machine1"]] vibration: [[90]]

APACHE


```
"mean"), ("vibration", "max"), ("vibration", "min") ]).to_pandas()
```


Table Result

	со	humidity	sensor_id	temperature	time
0	0.517422	35.139987	TLM0100	71.170208	2023-02-01 18:34:31
361	0.484613	34.874626	TLM0101	71.802606	2023-02-01 18:34:31
2527	0.394477	35.948833	TLM0203	74.779119	2023-02-01 18:34:31
722	0.513511	34.860303	TLM0102	72.012782	2023-02-01 18:34:31
2166	0.510674	35.691850	TLM0202	75.312108	2023-02-01 18:34:31
1805	0.506245	35.232817	TLM0201	74.045357	2023-02-01 18:34:31
1444	0.489873	35.769058	TLM0200	73.560425	2023-02-01 18:34:31
1083	0.415399	35.164551	TLM0103	71.340827	2023-02-01 18:34:31
723	0.517580	34.855599	TLM0102	72.055388	2023-02-01 18:34:41
1	0.530448	35.151335	TLM0100	71.180480	2023-02-01 18:34:41
362	0.467022	34.896021	TLM0101	71.835483	2023-02-01 18:34:41
1806	0.491062	35.223058	TLM0201	74.007277	2023-02-01 18:34:41
1084	0.409221	35.196949	TLM0103	71.350689	2023-02-01 18:34:41
2167	0.501382	35.710338	TLM0202	75.286829	2023-02-01 18:34:41
2528	0.413134	35.993991	TLM0203	74.819752	2023-02-01 18:34:41
1445	0.504451	35.797797	TLM0200	73.537383	2023-02-01 18:34:41
2529	0.428675	36.039681	TLM0203	74.812024	2023-02-01 18:34:51
724	0.507936	34.849071	TLM0102	72.041688	2023-02-01 18:34:51
1807	0.474696	35.180045	TLM0201	74.031949	2023-02-01 18:34:51
2	0.535308	35.104186	TLM0100	71.187633	2023-02-01 18:34:51

The resulting DataFrame looks like this. We include 20 values with the head() function just to make sure that it returns multiple time points for each sensor.

Downsampling with Pandas


```
df_mean =
df.groupby(by=["sensor_id"]).resample(
'10min', on='time').mean().dropna()
# create a copy of the downsampled
data so we can write it back to InfluxDB
Cloud powered by IOx.
df_write = df_mean.reset_index()
df_mean
```

The objective here is to find the mean of our temperature, co, and humidity fields over 10 minute intervals. Use the groupby() function to group our dataframe by the sensor id tag (or column). Then we use the resample() and mean() functions to downsample and apply a mean over the intervals, respectively.

Table Result comparison

	со	humidity	sensor_id	temperature	time
0	0.517422	35.139987	TLM0100	71.170208	2023-02-01 18:34:31
361	0.484613	34.874626	TLM0101	71.802606	2023-02-01 18:34:31
2527	0.394477	35.948833	TLM0203	74.779119	2023-02-01 18:34:31
722	0.513511	34.860303	TLM0102	72.012782	2023-02-01 18:34:31
2166	0.510674	35.691850	TLM0202	75.312108	2023-02-01 18:34:31
1805	0.506245	35.232817	TLM0201	74.045357	2023-02-01 18:34:31
1444	0.489873	35.769058	TLM0200	73.560425	2023-02-01 18:34:31
1083	0.415399	35.164551	TLM0103	71.340827	2023-02-01 18:34:31
723	0.517580	34.855599	TLM0102	72.055388	2023-02-01 18:34:41
1	0.530448	35.151335	TLM0100	71.180480	2023-02-01 18:34:41
362	0.467022	34.896021	TLM0101	71.835483	2023-02-01 18:34:41
1806	0.491062	35.223058	TLM0201	74.007277	2023-02-01 18:34:41
1084	0.409221	35.196949	TLM0103	71.350689	2023-02-01 18:34:41
2167	0.501382	35.710338	TLM0202	75.286829	2023-02-01 18:34:41
2528	0.413134	35.993991	TLM0203	74.819752	2023-02-01 18:34:41
1445	0.504451	35.797797	TLM0200	73.537383	2023-02-01 18:34:41
2529	0.428675	36.039681	TLM0203	74.812024	2023-02-01 18:34:51
724	0.507936	34.849071	TLM0102	72.041688	2023-02-01 18:34:51
1807	0.474696	35.180045	TLM0201	74.031949	2023-02-01 18:34:51
2	0.535308	35.104186	TLM0100	71.187633	2023-02-01 18:34:51

humidity temperature CO

sensor_id	time			
TLM0100	2023-02-01 18:30:00	0.574546	35.266605	71.171200
	2023-02-01 18:40:00	0.569610	35.358244	71.333793
	2023-02-01 18:50:00	0.516955	35.441879	71.289883
	2023-02-01 19:00:00	0.462129	35.193253	71.519450
	2023-02-01 19:10:00	0.416039	35.143414	71.556587
TLM0203	2023-02-03 22:50:00	0.242336	36.507586	75.153940
	2023-02-03 23:00:00	0.273699	36.562608	75.117751
	2023-02-03 23:10:00	0.258480	36.510316	74.792649
	2023-02-03 23:20:00	0.292327	36.537911	74.554340
	2023-02-03 23:30:00	0.354416	36.521472	74.556355

Sending Downsampled Data back to InfluxDB

write data back to InfluxDB Cloud powered by IOx

client = InfluxDBClient(url=url, token=token,

org=org)

client.write_api(write_options=SYNCHRONOUS). write(bucket=bucket, record=df_write,

data_frame_measurement_name="mean_downsa mpled",

data_frame_timestamp_column='time', data_frame_tag_columns=['sensor_id']) Finally, we write our downsampled data back to InfluxDB Cloud using the InfluxDB v2 Python Client using the .write method and specifying the DataFrame we want to write back into InfluxDB.

Leveraging pandas for analytics

Pandas Joining Dataframes


```
technologies = { 'Courses':["Spark","PySpark","Python","pandas"],
  'Fee' :[20000,25000,22000,30000],
                                                                                   Fee Duration
                                                                       Courses
  'Duration':['30days','40days','35days','50days'],}
                                                                                 20000
                                                                         Spark
                                                                                           30days
                                                                  r1
index labels=['r1','r2','r3','r4']
                                                                  r2
                                                                                           40days
                                                                      PySpark
                                                                                 25000
dataframe1 = pd.DataFrame(technologies,index=index labels)
                                                                        Python
                                                                  r3
                                                                                 22000
                                                                                           35days
technologies2 = {
                                                                        pandas
                                                                                           50days
                                                                                 30000
                                                                  r4
  'Courses':["Spark","Java","Python","Go"],
                                                                                Discount
                                                                     Courses
  'Discount': [2000,2300,1200,2000]
                                                                        Spark
                                                                                     2000
                                                                  r1
                                                                  r6
                                                                         Java
                                                                                     2300
                                                                      Python
                                                                  r3
                                                                                     1200
index labels2=['r1','r6','r3','r5']
                                                                  r5
                                                                                     2000
                                                                           Go
dataframe2 = pd.DataFrame(technologies2,index=index labels2)
print(df1)
print(df2)
```


	Courses	Fee D	uratior	1 I				
r1	Spark	20000	30days	5			ARRUW	
r2	PySpark	25000	40days	5				
r3	Python	22000	35days	5				
r4	pandas	30000	50days	5	#Join	with no how param	eter, defaul	lts
	Courses	Discount			left			
r1	Spark	2000			df3=d	f1.join(df2, lsuffix="	_left",	
r6	Java	2300			rsuffix	="_right")		
r3	Python	1200						
r5	Go	2000	li -					
	Course	es_left	Fee	Dur	ration	Courses_right	Discoun	it
	r1	Spark	20000	Э	80days	Spark	2000.	0
	r2 I	PySpark	25000	4	l0days	NaN	Na	N
	r3	Python	22000	Э	35days	Python	1200.	0
	r4	pandas	30000	5	60days	NaN	Na	N

	Courses	Fee D	uration
r1	Spa <u>r</u> k	20000	30days
r2	PySpark	25000	40days
r3	Python	22000	35days
r4	pandas	30000	50days
	Courses	Discount	
r1	Spark	2000	
r6	Java	2300	1
r3	Python	1200	Real Provide State
r5	Go	2000	
	Courses	loft	Eee Durat

#Join with right how parameter df3=df1.join(df2, lsuffix="_left", rsuffix="_right", how='right')

	Courses_left	Fee	Duration	Courses_right	Discount
r1	Spark	20000.0	30days	Spark	2000
r6	NaN	NaN	NaN	Java	2300
r3	Python	22000.0	35days	Python	1200
r5	NaN	NaN	NaN	Go	2000

	Courses	Fee D	uration
r1	Spark	20000	30days
r2	PySpark	25000	40days
r3	Python	22000	35days
r4	pandas	30000	50days
	Courses	Discount	
r1	Spark	2000	
r6	Java	2300	
r3	Python	1200	
r5	Go	2000	

#Join with outer how parameter df3=df1.join(df2, lsuffix="_left", rsuffix="_right", how=outer)

	Courses_left	Fee	Duration	Courses_right	Discount	
r1	Spark	20000.0	30days	Spark	2000.0	
<u>r2</u>	PySpark	25000.0	40days	NaN	NaN	
r3	Python	22000.0	35days	Python	1200.0	
r4	pandas	30000.0	50days	NaN	NaN	
r5	NaN	NaN	NaN	Go	2000.0	
r6	NaN	NaN	NaN	Java	2300.0	

	Courses	Fee [Duration
r1	Spark	20000	30days
r2	PySpark	25000	40days
r3	Python	22000	35days
r4	pandas	30000	50days
	Courses	Discount	
r1	Spark	2000)
r6	Java	2300)
r3	Python	1200)
r5	Go	2000) _

#Join with inner how parameter df3=df1.join(df2, lsuffix="_left", rsuffix="_right", how='inner')

	Courses_left	Fee	Duration	Courses_right	Discount
r1	Spark	20000	30days	Spark	2000
r3	Python	22000	35days	Python	1200

r1 r2 r3 r4 r1 r6 r3	Courses Spark 2 PySpark 2 Python 2 pandas 3 Courses D3 Spark Java Python	Fee Dura 20000 30 25000 40 22000 32 30000 50 iscount 2000 2300 1200 2000	ation Odays Odays Odays Odays	#Pandas df3=df1.s t_index('C	join on column et_index('Courses').join(df2.se Courses'), how='inner')
	Courses Spark Pvthon	Fe 5 2000 2200	e Du	ration 30days 35davs	Discount 2000 1200

	Courses	Fee	Duration
r1	Spark	20000	30days
r2	PySpark	25000	40days
r3	Python	22000	35days
r4	pandas	30000	50days
	Courses	Discoun	it
r1	Spark	200	0
r6	Java	230	0
r3	Python	120	0
r5	Go	200	0

#Pandas join
df3=df1.join(df2.set_index('Courses'),
how='inner', on='Courses')

	Courses	Fee	Duration	Discount	
r1	Spark	20000	30days	2000	
r3	Python	22000	35days	1200	

Pandas Rename Columns

	test	odi	t20
0	India	England	Pakistan
1	South Africa	India	India
2	England	New <u>Zealand</u>	Australia
3	New Zealand	South Africa	England
4	Australia	Pakistan	New Zealand

	TEST	odi	t20
0	India	England	Pakistan
1	South Africa	India	India
2	England	New Zealand	Australia
3	New Zealand	South Africa	England
4	Australia	Pakistan	New Zealand

rankings_pd.rename
(columns = {'test':'TEST'},
inplace = True)
After renaming the
columns
print(rankings_pd)

Pandas Reset Index

df.reset_index() When we reset the index, the old index is added as a column, and a new sequential index is used. df.reset_index(drop=True) If we add the drop, the column will not be included

	class	<pre>max_speed</pre>
falco	on bird	389.0
parro	ot bird	24.0
lion	mammal	80.5
monke	y mammal	NaN
	··········	
	index cla	ss max_speed
0 1	falcon bi	.rd 389.0
1 p	barrot bi	.rd 24.0
2	lion mamm	al 80.5
3 n	nonkey mamm	nal NaN

Autocorrelation Example

What is autocorrelation?

The term autocorrelation refers to the degree of similarity between A) a given time series, and B) a lagged version of itself, over C) successive time intervals. In other words, autocorrelation is intended to measure the relationship between a variable's present value and any past values that you may have access to.

Autocorrelation examples

Example 1: Regression analysis

One prominent example of how autocorrelation is commonly used takes the form of regression analysis using time series data. Here, professionals will typically use a standard auto regressive model, a moving average model or a combination that is referred to as an auto regressive integrated moving average model, or ARIMA for short.

Example 2: Scientific applications of autocorrelation

is used quite frequently in terms of fluorescence correlation spectroscopy, which is a critical part of understanding molecular-level diffusion and chemical reactions in certain scientific environments.

Examples Continued

Example 3: Global positioning systems

one of the primary mathematical techniques at the heart of the GPS chip that is embedded in smartphones Example 4: Signal processing

a part of electrical engineering that focuses on understanding more about signals like sound, images and sometimes scientific measurements.

Example 5: Astrophysics

it helps professionals study the spatial distribution between celestial bodies in the universe like galaxies.

Determining if your time series has autocorrelation

I am using available data from the National Oceanic and Atmospheric Administration's (NOAA) Center for Operational Oceanographic Products and Services. Specifically, I will be looking at the water levels and water temperatures of a river in Santa Monica. We will be using the influxdb python client library. A Jupyter notebook will be linked at the end of this.

Dataset:

1 curl https://s3.amazonaws.com/noaa.water-database/NOAA_data.txt -o NOAA_data.txt

influx -import -path=NOAA_data.txt -precision=s -database=NOAA_water_database

🏈 influxdata

Next I connect to the client, query my water temperature data, and plot it.

client = InfluxDBClient(host='localhost', port=8086)

h20 = client.query('SELECT mean("degrees") AS "h20_temp" FROM "NOAA_water_database"."autogen"."h2o_t

h20_points = [p for p in h20.get_points()]

```
h20_df = pd.DataFrame(h20_points)
```

```
h20_df['time_step'] = range(0,len(h20_df['time']))
```

```
h20_df.plot(kind='line',x='time_step',y='h20_temp')
```

```
plt.show()
```

2

3

4

5

6

```
h20 = client.query('SELECT mean("degrees") AS
"h20_temp" FROM
"NOAA_water_database"."autogen"."h2o_temperature"
GROUP BY time(12h) LIMIT 60')
```


Fig 1. H2O temperature vs. timestep

From looking at the plot it's not obviously apparent whether or not our data will have any autocorrelation. For example, I can't detect the presence of seasonality, which would yield high autocorrelation.

calculate the autocorrelation

shift_1 = h20_df['h20_temp'].autocorr(lag=1)
print(shift_1)
-0.07205847740103073
0.17849760131784975

These values are very close to 0, which indicates that there is little to no correlation.

Pandas.Sereis.autocorr()

This method computes the Pearson correlation between the Series and its shifted self. The Pearson correlation coefficient has a value between -1 and 1, where 0 is no linear correlation, >0 is a positive correlation, and <0 is a negative correlation.

However with autocorrelation plot

plot_acf(h20_df['h20_temp'], lags=20)
plt.show()

Fig 2. Autocorrelation plot for H2O temperatures

From this plot, we see that values for the ACF are within 95% confidence interval (represented by the solid gray line) for lags > 0, which verifies that our data doesn't have any autocorrelation.

Seasonality

The ACF can also be used to uncover and verify seasonality in time series data. Let's take a look at the water levels from the same dataset

Uncovering seasonality with water levels

```
Client = InfluxDBClient(host='localhost', port=8086)
h20_level = client.query('SELECT "water_level" FROM "NOAA_water_database"."autogen"."h20_feet" WHERE
h20_level_points = [p for p in h20_level.get_points()]
h20_level_df = pd.DataFrame(h20_level_points)
h20_level_df['time_step'] = range(0,len(h20_level_df['time']))
h20_level_df.plot(kind='line',x='time_step',y='water_level')
plt.show()
```

```
h20_level = client.query('SELECT "water_level" FROM
"NOAA_water_database"."autogen"."h20_feet" WHERE
"location"=\'santa_monica\' AND time >= \'2015-08-22
22:12:00\' AND time <= \'2015-08-28 03:00:00\'')
```


Fig 3. H2O level vs. timestep

Just by plotting the data, it's fairly obvious that seasonality probably exists, evident by the predictable pattern in the data. Let's verify this assumption by plotting the ACF.

Verify by plotting the ACF

plot_acf(h20_level_df['water_level'], lags=400)
plt.show()

From the ACF plot above, we can see that our seasonal period consists of roughly 246 timesteps. While it was easily apparent from plotting time series in Figure 3 that the water level data has seasonality, that isn't always the case.

Fig. 5: Monthly Ridership vs. Year. Source: Seasonal ARIMA with Python

In Seasonal ARIMA with Python, author Sean Abu shows how he must add a seasonal component to his **ARIMA** method in order to account for seasonality in his dataset. It's a great example of how using ACF can help uncover hidden trends in the data.

Examining trends with autocorrelation

In order to take a look at the trend of time series data, we first need to remove the seasonality. Lagged differencing is a simple transformation method that can be used to remove the seasonal component of the series. A lagged difference is defined by:

difference(t) = observation(t) - observation(t-interval)2,

where interval is the period. To calculate the lagged difference in the water level data, I used the following function:

```
def difference(dataset, interval):
    diff = list()
    for i in range(interval, len(dataset)):
        value = dataset[i] - dataset[i - interval]
        diff.append(value)
    return pd.DataFrame(diff, columns = ["water_level_diff"])
h20_level_diff = difference(h20_level_df['water_level'], 246)
h20_level_diff['time_step'] = range(0,len(h20_level_diff['water_level_diff']))
h20_level_diff.plot(kind='line',x='time_step',y='water_level_diff')
plt.show()
```


Fig. 6: Lagged difference for H2O levels

Including the ACF again

plot_acf(h20_level_diff['water_level_diff'], lags=300)
plt.show()

It might seem that we still have seasonality in our lagged difference. However, if we pay attention to the y-axis in Figure 5, we can see that the range is very small and all the values are close to 0.but there is a polynomial trend. I used seasonal_decompose to verify this.

Fig. 7: ACF of lagged difference for H2O levels

seasonal_decompose

from statsmodels.tsa.seasonal import seasonal_decompose
from matplotlib import pyplot
result = seasonal_decompose(h20['water_level'], model='additive', freq=250)
result.plot()
pyplot.show()

Seasonal Decompose returns A object with seasonal, trend, and residual attributes.

Resources + Conclusion

AutoCorrelation Blog

Jupyter Notebook

How not to use time series for forecasting pitfalls

Anomaly detection and Forecasting

Some Examples of Anomaly Detection

Some Examples of Forecasting

For Single time series:

- Autoregression
- LevelShiftAD
- SeasonalAD

For Multiple Time series:

- BIRCH
- KMEANS
- Median Absolute Deviation(MAD)

FBProphet

- LSTM with Keras
- statsmodels' Holt's Method.

All of the forecasting examples leverage outside libraries.

AutoregressionAD algorithm

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

AutoregressionAD detects anomalous changes of autoregressive behavior in time series. AutoregressionAD can capture changes of autoregressive relationship (the relationship between a data point and points in its near past) and could be used for cyclic (but not seasonal) series in some situations.

After we have acquired the data into a pandas format

```
s = pd.read_csv('./sample_data/sample-data.csv')
s.head()
```

	timestamp	value	label
0	1469376000	0.847300	0
1	1469376300	-0.036137	0
2	1469376600	0.074292	0
3	1469376900	0.074292	0
4	1469377200	-0.036137	0

Prepare Data for consumption

```
s.drop(['label'], axis=1, inplace=True)
s["timestamp"] = pd.to_datetime(s["timestamp"], unit='s')
s = s.set_index("timestamp")
s.head()
value
```

timestamp

2016-07-24 16:00:00	0.847300
2016-07-24 16:05:00	-0.036137
2016-07-24 16:10:00	0.074292
2016-07-24 16:15:00	0.074292
2016-07-24 16:20:00	-0.036137

s.plot()

<AxesSubplot:xlabel='timestamp'>

Visualization before the algorithm

Apply AutoregressionAD

```
from adtk.data import validate_series
```

```
# This functoin will check some common critical issues of time series that may cause problems
s = validate_series(s)
```

```
from adtk.detector import AutoregressionAD
from adtk.visualization import plot
autoregression_ad = AutoregressionAD(n_steps=10, step_size=20,
c=3.0)
anomalies = autoregression_ad.fit_detect(s)
plot(s, anomaly=anomalies, ts_markersize=1, anomaly_color='red',
anomaly_tag="marker", anomaly_markersize=2);
```


Apply AutoregressionAD

Resources

Try It Yourself

https://github.com/InfluxCommunity

https://www.influxdata.com

ΤΗΑΝΚ ΥΟυ