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Audience Questions
Have you worked with time series data?
Have you worked with a time series database? 
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Why a time series database is 
important

5
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Types of time series data

Quantitative values 
collected regularly 

over time

State changes or 
values generated 
irregularly over 

time

Complete event or 
request 

propagation in a 
distributed system

Metrics Events Traces
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Rise of time series as a category

7

TIME SERIESRELATIONAL DOCUMENT SEARCH

• Distributed 
search

• Logs
• Geo

• High 
throughput

• Large 
document  

• Orders
• Customers
• Records

• Events, metrics, time-stamped
• For IoT, analytics, cloud native

Time series is fastest growing 
data category by far

Time series

All others

source: DB Engines
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Typical Architecture & Deployment
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Tools to know
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Telegraf

The open-source 
agent for 

collecting metrics

Driven by the 
community 

(600+ 
contributors)

Simple to 
configure, 
extremely 

flexible
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Categories of Telegraf Plugins
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Logging

Databases

Networking

Industrial IoT 

Web

Gaming / Entertainment

Consumer IoT

Containers

Cloud

AMQP
MQTT

KNX
OPC-UA
Modbus

InfluxDB 
Listener
MySQL

Cassandra

Docker
Kubernetes

Podman

NGINX
Apache

Cloudflare

Syslog
File/Tail

OpenTelemetry

AWS Cloudwatch
Google Cloud Pub Sub

NVIDIA SMI
AMD

SNMP
GNMI

Minecraft
CS:Go

Jolokia
TCP/UDP 
Listener

Elasticsearch
MongoDB
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SQL Aggregate Functions
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Open Source tools

13

Pandas - 
Python library used for data 
manipulation. It is common for 
other tools to expect a pandas 
dataframe data format.

TensorFlow  - 
machine learning and artificial 
intelligence platform. Data 
scientists use TensorFlow to build 
and train models using Python or 
JavaScript. 

ADTK  - 
Python package for rule-based 
anomaly detection in time-series 
data. ADTK is geared toward 
industrial IoT use cases.

Prophet - 
Python library for forecasting. It fits 
the forecasting problem with a 
curve-fitting exercise or creating a 
mathematical model.
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What is apache parquet and 
apache arrow

14
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Apache Parquet…
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“Apache Parquet is an open source, column-oriented data file format 
designed for efficient data storage and retrieval.”

● Not a runtime in-memory format

● Parquet data cannot be directly operated 
on but must be decoded in large chunks

What is the difference between 
Apache Arrow and Apache 
Parquet?● Minimize disk usage while 

storing gigabytes of data

● Efficient retrieval and 
deserialization of large 
amounts of columnar data 

The benefits

https://dzone.com/articles/how-to-be-a-hero-with-powerful-parquet-google-and

https://dzone.com/articles/how-to-be-a-hero-with-powerful-parquet-google-and
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Comparison
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Apache Arrow is…

17

“Apache Arrow is a framework for defining in-memory columnar data 
that every processing engine can use.”

● Language-agnostic standard for columnar memory

● Efficient for running large analytical workloads on modern 
CPU and GPU architectures. 

● It supports s a range of programming languages including 
C++, Java, Python, and R.
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The problems
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The solution
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Apache Arrow is…

20

The Apache Arrow format 
allows computational 
routines and execution 
engines to maximize their 
efficiency when scanning 
and iterating large chunks 
of data. In particular, the 
contiguous columnar 
layout enables 
vectorization using the 
latest SIMD (Single 
Instruction, Multiple Data) 
operations included in 
modern processors.
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Flight SQL
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Flight vs Flight SQL

Flight
• Accepts a ticket that is 

implementation specific
• Query language agnostic
• Returns arrow results

FlightSQL
• A superset of the Flight API
• SQL specific
• Designed for ORMs and UI 

builders
• Implementation agnostic

What should I use in my Code?
Largely a matter of taste, but Flight supports InfluxQL
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No serialization or deserialization costs – Since Arrow data 
is sent directly, there is no need to serialize or deserialize the 
data, and no need to make an extra copy of the data.
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Finally Apache Arrow Flight SQL

24

“A new client-server protocol developed by the Apache Arrow 
community for interacting with SQL databases that makes use of the 
Arrow in-memory columnar format”

● Provides a SQL interface for 
Arrow Flight

● Query execution
● Returns columnar format

Arrow Flight SQL?

● High-volume transfers of columnar 
data

● Good for distributed computing 
and analytics

What is Arrow Flight?
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To understand the 
performance differences, 
let’s try reading a CSV file 
with 11 million records and 
compare Pandas CSV 
reader (default engine) 
with PyArrow’s.

PyArrow does it 15x faster 
with Arrow’s in-memory 
columnar format!
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Prior to Arrow, the conversion from Spark DataFrames to Pandas was a very 
inefficient process since we had to go through the costly process of serialization 
and deserialization. With Arrow as the in-memory format, PySpark achieved two 
advantages. There is no need to serialize or deserialize the rows
When Python receives the Arrow data, PyArrow will create a data frame from the 
entire chunk of data at once instead of doing it for individual values
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Apache arrow example

27
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import pyarrow as pa

# Create a array from a list of values
animal = pa.array(["sheep", "cows", 
"horses", "foxes"], type=pa.string())
count = pa.array([12, 5, 2, 1], 
type=pa.int8())
year = pa.array([2022, 2022, 2022, 
2022], type=pa.int16())

# Create a table from the arrays
table = pa.Table.from_arrays([animal, 
count, year], names=['animal','count', 
'year'])
print(table)

pyarrow.Table
animal: string
count: int8
year: int16
----
animal: 
[["sheep","cows","hors
es","foxes"]]
count: [[12,5,2,1]]
year: 
[[2022,2022,2022,2022]
]

Creating an Arrow table…
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from flightsql import FlightSQLClient

# Read only token for demo purposes
token = ""
client = FlightSQLClient(host=””,
                        token=token,   

   metadata={'bucket-name':'factory'})

# Execute a query against InfluxDB's Flight SQL 
endpoint                        
query = client.execute("SELECT * FROM 
iox.machine_data WHERE time > (NOW() - INTERVAL '1 
DAY')")
 
# Create reader to consume result
reader = client.do_get(query.endpoints[0].ticket)

# Read all data into a pyarrow.Table
Table = reader.read_all()
print(Table)

pyarrow.Table
host: string
load: double
machineID: string
power: double
provider: string
temperature: double
time: timestamp[ns] not null
topic: string
vibration: double
----
host: [["9aa69b2d7e30"]]
load: [[50]]
machineID: [["machine1"]]
power: [[218]]
provider: [["Baird Ltd"]]
temperature: [[39]]
time: [[2023-02-14 
12:30:41.989984916]]
topic: [["machine/machine1"]]
vibration: [[90]]
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# Convert to Pandas DataFrame
df = Table.to_pandas()
df = df.sort_values(by="time")
df.head(20)

Arrow Utility functions…

# PyArrow Aggregation
aggregation = Table.group_by("machineID").aggregate([("vibration", 
"mean"), ("vibration", "max"),("vibration", "min") ]).to_pandas()

# Save the table to a Parquet file
pq.write_table(Table, 
'example.parquet')

# Load the table from the Parquet file
Table = 
pq.read_table('example.parquet')



|  © Copyright 2023,  InfluxData31

Table Result

The resulting DataFrame 
looks like this. We include 
20 values with the head() 
function just to make sure 
that it returns multiple time 
points for each sensor.



|  © Copyright 2023,  InfluxData32

Downsampling with Pandas

df_mean = 
df.groupby(by=["sensor_id"]).resample(
'10min', on='time').mean().dropna() 
# create a copy of the downsampled 
data so we can write it back to InfluxDB 
Cloud powered by IOx. 
df_write = df_mean.reset_index()
df_mean

The objective here is to find the 
mean of our temperature, co, 
and humidity fields over 10 
minute intervals. Use the 
groupby() function to group our 
dataframe by the sensor_id 
tag (or column). Then we use 
the resample() and mean() 
functions to downsample and 
apply a mean over the 
intervals, respectively.

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.groupby.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.mean.html
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Table Result comparison
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Sending Downsampled Data back 
to InfluxDB

# write data back to InfluxDB Cloud powered by 
IOx
client = InfluxDBClient(url=url, token=token, 
org=org)
client.write_api(write_options=SYNCHRONOUS).
write(bucket=bucket, record=df_write,        
data_frame_measurement_name="mean_downsa
mpled",
 data_frame_timestamp_column='time',
 data_frame_tag_columns=['sensor_id'])

Finally, we write our 
downsampled data back 
to InfluxDB Cloud using 
the InfluxDB v2 Python 
Client using the .write 
method and specifying 
the DataFrame we want 
to write back into 
InfluxDB.
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Leveraging pandas for analytics

35
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Pandas Joining Dataframes

technologies = { 'Courses':["Spark","PySpark","Python","pandas"],
    'Fee' :[20000,25000,22000,30000],
    'Duration':['30days','40days','35days','50days'],}
index_labels=['r1','r2','r3','r4']
dataframe1 = pd.DataFrame(technologies,index=index_labels)
technologies2 = {
    'Courses':["Spark","Java","Python","Go"],
    'Discount':[2000,2300,1200,2000]
              }
index_labels2=['r1','r6','r3','r5']
dataframe2 = pd.DataFrame(technologies2,index=index_labels2)
print(df1)
print(df2)
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#Join with no how parameter, defaults 
left
df3=df1.join(df2, lsuffix="_left", 
rsuffix="_right")
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#Join with right how parameter
df3=df1.join(df2, lsuffix="_left", 
rsuffix="_right", how=’right’)
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#Join with outer how parameter
df3=df1.join(df2, lsuffix="_left", 
rsuffix="_right", how=outer)
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#Join with inner how parameter
df3=df1.join(df2, lsuffix="_left", 
rsuffix="_right", how='inner')



|  © Copyright 2023,  InfluxData41

#Pandas join on column
df3=df1.set_index('Courses').join(df2.se
t_index('Courses'), how='inner')
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#Pandas join
df3=df1.join(df2.set_index('Courses'), 
how='inner', on='Courses')
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Pandas Rename Columns

rankings_pd.rename
(columns = {'test':'TEST'}, 
inplace = True)
# After renaming the 
columns
print(rankings_pd)



|  © Copyright 2023,  InfluxData44

Pandas Reset Index

df.reset_index()
When we reset the index, 
the old index is added as a 
column, and a new 
sequential index is used.
df.reset_index(drop=True)
If we add the drop, the 
column will not be included
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Autocorrelation Example

45
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What is autocorrelation?

The term autocorrelation refers 
to the degree of similarity 
between A) a given time series, 
and B) a lagged version of 
itself, over C) successive time 
intervals. In other words, 
autocorrelation is intended to 
measure the relationship 
between a variable’s present 
value and any past values that 
you may have access to.
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Autocorrelation examples

Example 1: Regression analysis
One prominent example of how 
autocorrelation is commonly 
used takes the form of 
regression analysis using time 
series data. Here, professionals 
will typically use a standard 
auto regressive model, a 
moving average model or a 
combination that is referred to 
as an auto regressive 
integrated moving average 
model, or ARIMA for short.

Example 2: Scientific 
applications of 
autocorrelation
is used quite frequently in 
terms of fluorescence 
correlation spectroscopy, 
which is a critical part of 
understanding 
molecular-level diffusion and 
chemical reactions in certain 
scientific environments.
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Examples Continued

Example 3: Global positioning 
systems
one of the primary 
mathematical techniques at the 
heart of the GPS chip that is 
embedded in smartphones

Example 4: Signal processing
a part of electrical engineering 
that focuses on understanding 
more about signals like sound, 
images and sometimes 
scientific measurements.
Example 5: Astrophysics
it helps professionals study the 
spatial distribution between 
celestial bodies in the universe 
like galaxies.
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Determining if your time series has 
autocorrelation
I am using available data from the National Oceanic and Atmospheric 
Administration’s (NOAA) Center for Operational Oceanographic Products and 
Services. Specifically, I will be looking at the water levels and water temperatures of 
a river in Santa Monica. We will be using the influxdb python client library.  A 
Jupyter notebook will be linked at the end of this.

https://tidesandcurrents.noaa.gov/stations.html?type=Water+Levels
https://tidesandcurrents.noaa.gov/stations.html?type=Water+Levels
https://tidesandcurrents.noaa.gov/stations.html?type=Water+Levels


|  © Copyright 2022,  InfluxData50

Next I connect to the client, query my 
water temperature data, and plot it.

h2O = client.query('SELECT mean("degrees") AS 
"h2O_temp" FROM 
"NOAA_water_database"."autogen"."h2o_temperature"  
GROUP BY time(12h) LIMIT 60')
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From looking at the 
plot it’s not 
obviously apparent 
whether or not our 
data will have any 
autocorrelation. For 
example, I can’t 
detect the presence 
of seasonality, 
which would yield 
high autocorrelation.
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calculate the autocorrelation

Pandas.Sereis.autocorr() 
This method computes the Pearson 
correlation between the Series 
and its shifted self.

The Pearson correlation 
coefficient has a value between 
-1 and 1, where 0 is no linear 
correlation, >0 is a  positive 
correlation, and <0  is a 
negative correlation.

These values are 
very close to 0, 
which indicates 
that there is 
little to no 
correlation.
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However with autocorrelation plot

From this plot, we see 
that values for the 
ACF are within 95% 
confidence interval 
(represented by the 
solid gray line) for 
lags > 0, which 
verifies that our data 
doesn’t have any 
autocorrelation.
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Seasonality

The ACF can also be used to uncover and verify seasonality in 
time series data. Let’s take a look at the water levels from the 
same dataset

54
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Uncovering seasonality with water levels

h2O_level = client.query('SELECT "water_level" FROM 
"NOAA_water_database"."autogen"."h2o_feet" WHERE 
"location"=\'santa_monica\' AND time >= \'2015-08-22 
22:12:00\' AND time <= \'2015-08-28 03:00:00\'')
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Just by plotting the 
data, it’s fairly 
obvious that 
seasonality probably 
exists, evident by the 
predictable pattern in 
the data. Let’s verify 
this assumption by 
plotting the ACF.
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Verify by plotting the ACF

From the ACF plot above, we 
can see that our seasonal 
period consists of roughly 
246 timesteps. While it was 
easily apparent from 
plotting time series in 
Figure 3 that the water 
level data has seasonality, 
that isn’t always the case.
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In Seasonal ARIMA with 
Python, author Sean 
Abu shows how he must 
add a seasonal 
component to his 
ARIMA method in order 
to account for 
seasonality in his 
dataset. It’s a great 
example of how using 
ACF can help uncover 
hidden trends in the 
data.

https://www.seanabu.com/2016/03/22/time-series-seasonal-ARIMA-model-in-python/
https://www.seanabu.com/2016/03/22/time-series-seasonal-ARIMA-model-in-python/
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Examining trends with 
autocorrelation

In order to take a look at the trend of time series data, we first 
need to remove the seasonality. Lagged differencing is a simple 
transformation method that can be used to remove the seasonal 
component of the series. A lagged difference is defined by:
difference(t) = observation(t) - observation(t-interval)2,
where interval is the period. To calculate the lagged difference in 
the water level data, I used the following function:

59
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This is our 
resulting 
graph



|  © Copyright 2022,  InfluxData62

Including the ACF again

It might seem that we still have 
seasonality in our lagged 
difference. However, if we pay 
attention to the y-axis in Figure 5, 
we can see that the range is very 
small and all the values are close 
to 0.but there is a polynomial 
trend. I used seasonal_decompose to 
verify this.
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seasonal_decompose

Seasonal Decompose returns A object 
with seasonal, trend, and residual 
attributes.
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Resources + Conclusion

AutoCorrelation Blog
How not to use time series for 
forecasting pitfalls

Jupyter Notebook Seasonal ARIMA with Python
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Anomaly detection and 
Forecasting

65



|  © Copyright 2022,  InfluxData66

Some Examples of 
Anomaly Detection

For Single time series:
• Autoregression
• LevelShiftAD
• SeasonalAD

For Multiple Time series:
• BIRCH
• KMEANS
• Median Absolute 

Deviation(MAD)

•  FBProphet
•  LSTM with Keras
•  statsmodels' Holt's Method.

All of the forecasting examples 
leverage outside libraries.

Some Examples of 
Forecasting
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AutoregressionAD algorithm

AutoregressionAD detects anomalous changes of autoregressive 
behavior in time series. AutoregressionAD can capture changes 
of autoregressive relationship (the relationship between a data 
point and points in its near past) and could be used for cyclic (but 
not seasonal) series in some situations.
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After we have acquired the data into a 
pandas format
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Prepare Data for consumption
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Visualization 
before the 
algorithm 
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Apply AutoregressionAD

from adtk.detector import AutoregressionAD
from adtk.visualization import plot
autoregression_ad = AutoregressionAD(n_steps=10, step_size=20, 
c=3.0)
anomalies = autoregression_ad.fit_detect(s)
plot(s, anomaly=anomalies, ts_markersize=1, anomaly_color='red', 
anomaly_tag="marker", anomaly_markersize=2);
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Apply AutoregressionAD
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Resources

73
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Try It Yourself

https://www.influxdata.com https://github.com/InfluxCommunity
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T H A N K  Y O U


