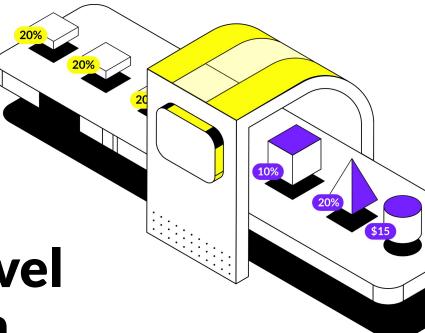
# Building a User-Level Targeting Platform





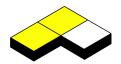
#### **Motivation**



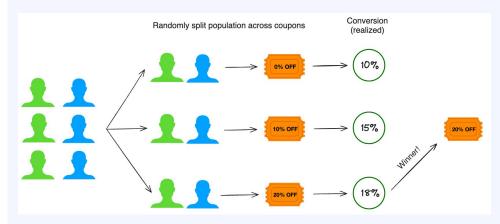
- Suppose you run an e-commerce brand selling rubber ducks
- You want to drive growth via coupons but are worried about over-couponing and brand dilution
- How do you choose your coupon strategy?



#### **Option 1: Run an A/B Test**



- Run an A/B test where you randomly send coupons to users: (No coupon, 10%-off, 20%-off)
- Analyze the test to see which coupon drives the most impact: E[Y|T]
  - Y: outcome e.g. conversion, revenue, profit
  - T: treatment, e.g. 0%, 10%, 20%
- Ship the best coupon to everyone



#### **Option 1: Run an A/B Test**



- Run an A/B test where you randomly send coupons to users: (No coupon, 10%-off, 20%-off)
- Analyze the test to see which coupon drives the most impact: E[Y|T]
  - Y: outcome e.g. conversion, revenue, profit
  - T: treatment, e.g. 0%, 10%, 20%
- Ship the best coupon to everyone

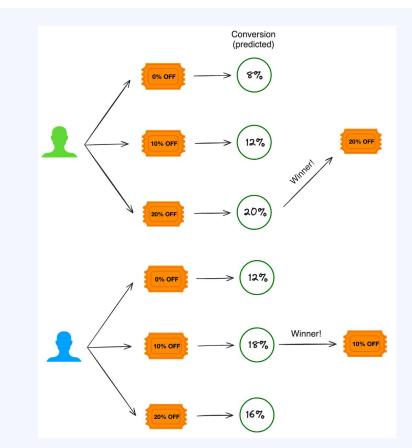
What's wrong with this?

- 1. Assumes average behavior is the best for everyone
- 2. Assumes observed behavior is consistent over time

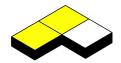
#### **Option 2: Run a Bandit**



- Use data from the A/B test to train contextual bandit: E[Y|T, X]
  - X: characteristics of each user
  - Bandit lit usually uses: E[r|a, X]
- Use model to predict which coupon to give each user (largest E[Y|T, X])
  - Some kind of optimization + explore
    - e.g. Epsilon Greedy, Thompson Sampling
  - Re-train model over time



#### **Option 2: Run a Bandit**



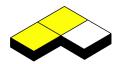
- Use data from the A/B test to train contextual bandit: E[Y|T, X]
  - X: characteristics of each user
  - Bandit lit usually uses: E[r|a, X]
- Use model to predict which coupon to give each user (largest E[Y|T, X])
  - Some kind of optimization + explore
    - e.g. Epsilon Greedy, Thompson Sampling
  - Re-train model over time

What's wrong with this?

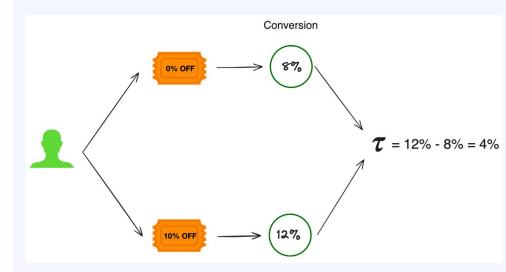
- Getting a "good" model of E[Y|T, X] can be tricky
- The effect of X on Y may be much stronger than the effect of T on Y
  - E[Y|0, X] may look very similar to E[Y|10, X]
- What we really care about is the "treatment effect": the difference in Y from 10 vs 0 for a given user (X)



#### **Heterogeneous Treatment Effect Models**



- Consider a binary treatment (10% or 0%)
- $\tau = Y(10\%) Y(0\%)$ 
  - For a specific user, how would their outcome change if we gave them a 10%-off coupon instead of 0%
- Interested in estimating E[τ|X]
  - What's the average treatment effect for a user with characteristics X



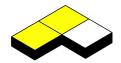
#### **Heterogeneous Treatment Effect Models**

- Consider a binary treatment (10% or 0%)
- $\tau = Y(10\%) Y(0\%)$ 
  - For a specific user, how would their outcome change if we gave them a 10%-off coupon instead of 0%
- Interested in estimating E[τ|X]
  - What's the average treatment effect for a user with characteristics X

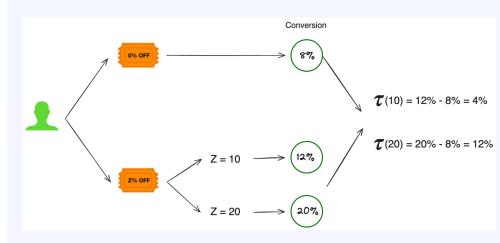
- $E[\tau|X] = E[Y(10) Y(0)|X]$ 
  - = E[Y(10)|X] E[Y(0)|X]
  - = E[Y|10, X] E[Y|0, X]
- Simplest HTE models just model E[Y|T, X]
  - S(ingle)-Learner
  - T(wo)-Learner
- But lots of literature showing that we can do better with more sophisticated models
- However, almost all assume a binary treatment, how can we handle multiple coupons?



### **Extending HTE Models to Multiple Treatments**



- $E[\tau|X]$  is based on two treatments
- Can frame it as any coupon vs no coupon and then parameterize the coupon details
  - %-off in our example
- Have to be careful about how we incorporate these treatment features into the model
  - Can't just be regular Xs



### **Extending HTE Models to Multiple Treatments**



- $E[\tau|X]$  is based on two treatments
- Can frame it as any coupon vs no coupon and then parameterize the coupon details
  - %-off in our example
- Have to be careful about how we incorporate these treatment features into the model
  - Can't just be regular Xs

- Neural nets can handle this
  - But they don't work very well with limited data
- Bayesian trees can do ok with this, but somewhat annoying to implement
- Definitely an area for more research

#### But is this all worth it?



- HTE models require a lot more work, are they actually worth it?
- Important distinctions between incentives and other things (messaging, design)
  - \$\$\$ + trade-offs
  - Have a clear "baseline" treatment that is meaningful to compare against

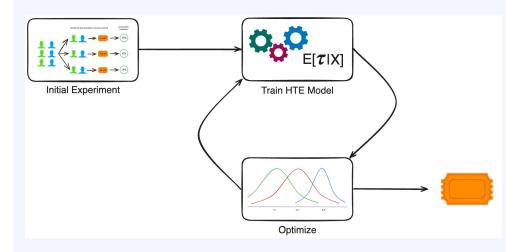




#### Putting it all together!



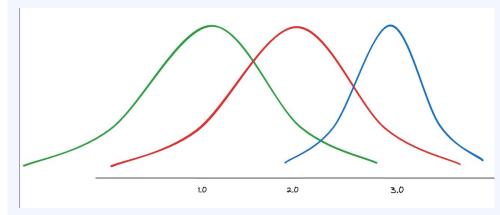
- Run initial experiment (randomly allocate three coupons)
- Train initial HTE model on experiment data
- Optimize + send coupons
- Re-train model over time



#### Optimization



- Can be pretty flexible about how you define an objective function
  - As long as you can model the inputs
- Thompson Sampling to allocate
  - Assume some uncertainty in the model predictions, take draws
  - Efficiently balance explore/exploit
  - Need a model that can handle not-completely-random data



#### **More Fun Stuff**



- Adding a new coupon
  - Can cold-start with treatment features
- Model evaluation
  - Hard to evaluate causal models
  - Current methods aren't great with small-ish data

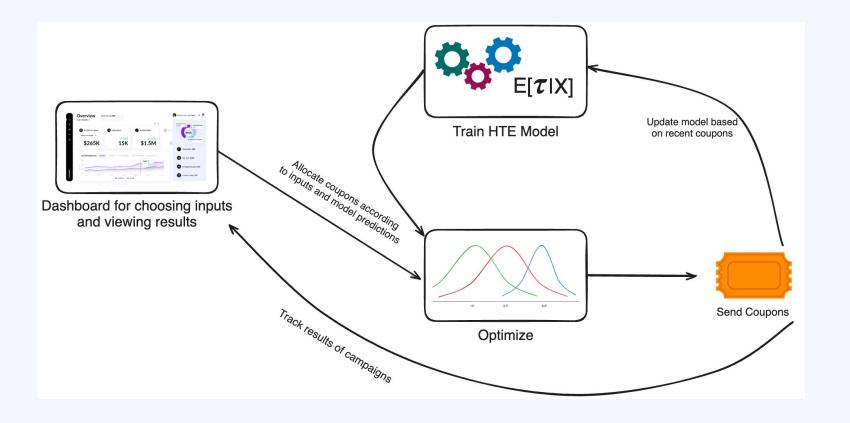
- Long-term Effects
  - LTV, surrogate models
- Allocating across multiple "campaigns"
  - Here focusing on a single example, but what if we have different ways of engaging with users?
- Cold-starting a new campaign
  - Avoid running initial experiment



#### **Building a Platform**



A



#### Conclusion



| ${\cal P}$ How can we help? | P How can we help? |                           |               |                        |             |             |                 |       |
|-----------------------------|--------------------|---------------------------|---------------|------------------------|-------------|-------------|-----------------|-------|
| Home & Garden               | Kitchen            | Health & Leisure          | Tech          | Baby & Kid             | Style       | Gifts       | Shopping        | Deals |
| We in                       | dependently revie  | w everything we recommend | I. When you t | ouy through our links, | we may earn | a commissio | n. Learn more > |       |
| STYLE > ACCESSORIES         |                    |                           |               |                        |             | _           |                 |       |
| The Bes                     | st Ru              | bber D                    | uck           | у                      |             |             |                 |       |
| By Alex Wood-Doughty        |                    |                           |               | -                      |             |             |                 |       |
| ¥ f ⊠                       | Save               |                           |               |                        |             |             |                 |       |
|                             |                    |                           |               |                        |             |             |                 |       |

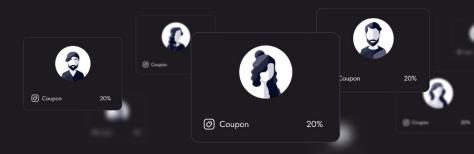


Really the only thing you could possibly ever need.

#### (a) monocle

## Create AI-powered incentives that generate profits

Deploy smart incentives that drive incremental profit without sacrificing brand equity or margins, boosting profits by 35%



#### TRUSTED BY 50+ HIGH-GROWTH ECOMMERCE EXECUTIVES

chubbies

*in*vision





F<sup>2</sup>

EVERLANE **±instacart**