== posit

[DRAFT]

he

~UT

for the Composa

Wes McKinney

Data Council Austin 2024

c

‘e Roadmap

Data Stack

Agenda

« My background

« Posit and Me

« Composable data systems: an overview
« Active growth areas in 2024

« Opportunities and Predictions

== posit

Me

Principal
Architect

Q7

VOLTRON DATA

Co-founder,
Advisor

s ™ C d
ompose

General Partner

FREILLY
e %5;?:’0

Python

for Data Analysis
ith pandas, NumPy & Jupytes

Data Wiranghng w

Author

ﬁlpandas

Creator

Zﬁig\lbh

Creator

7ﬁhmﬁ$$>

Co-creator

S LanceDB

Advisor,
Investor

== posit

Voltron Data (2021 —)

. Unlocking the potential of GPU
accelerated analytics for large
scale workloads

« Enterprise support for Apache
Arrow

« Open source partnerships
(Meta, Showflake, others)

o $115M raised, 130 headcount

and growing

data processing engine
built for composability.

Product v Company v Resources v
./’/j‘; = —97 7
/ / ///Y
%
Theseus Engine
n
The accelerator-native

T

S22 posit’

Composed
Ventures

Investing in early-
stage data
infrastructure, Al, and

Analytics

ML companies.

View Portfolio

Posit PBC

« Founded 2009, originally as RStudio

« 300-person, remote-first company

« Open source software for polyglot data science and
technical communication

» Certified B corp, no plans to go public or be acquired

. Designing for long-term resiliency, creating a 100-year
company

== posit

How Posit Makes Money

. Making open source work in the enterprise
« Products for managing the data science lifecycle
o Posit Workbench: Managed IDEs and Jupyter
Notebooks with enterprise-grade security & compliance
o Posit Connect: Publish and share interactive data apps,
notebooks, and reports
o Posit Package Manager: securely manage deploy open
source and proprietary Python and R packages

== posit

My History with Posit

. 2016: Hadley Wickham and | make Feather file format

« 2018: | partner with RStudio to create non-profit Ursa Labs
for Arrow development

« 2020: Ursa team spins out into startup, becomes Voltron
Data in 2021

« 2022: RStudio becomes Posit, embracing polyglot future

« 2023: | rejoin Posit as a principal architect

== posit

The reality is that Hadley and | think the “language wars” are stupid when the
real problem we are solving is human user interface design for data analysis.
... The programming languages are our medium for crafting accessible and
productive tools. It has long been a frustration of mine that it isn’t easier to
share code and systems between R and Python.

| found that we share a passion for the long-term vision of empowering data
scientists and building a positive relationship with the open source user community.
Critically, RStudio has avoided the “startup trap” and managed to build a sustainable
business while still investing the vast majority of its engineering resources in open
source development.

https://ursalabs.ora/blog/announcing-ursalabs/

2= posit

https://ursalabs.org/blog/announcing-ursalabs/

The reality is that Hadley and | think the “language wars” are stupid when the real
problem we are solving is human user interface design for data analysis. ... The
programming languages are our medium for crafting accessible and productive tools.
It has long been a frustration of mine that it isn’'t easier to share code and systems
between R and Python.

| found that we share a passion for the long-term vision of empowering data
scientists and building a positive relationship with the open source user
community. Critically, RStudio has avoided the “startup trap” and managed to
build a sustainable business while still investing the vast majority of its
engineering resources in open source development.

https://ursalabs.ora/blog/announcing-ursalabs/

=% posit

https://ursalabs.org/blog/announcing-ursalabs/

Sponsors

& TWO SIGMA

<ANVIDIA.
Bloomberg®

(5 intel
®Studio®

URSA LABS

Innovation Lab for Data Science Tools

Creative Solutions for Funding OSS Work

S22 posit’

The Composable Data Management System Manifesto

Pedro Pedreira Orri Erling Konstantinos Scott Schneider
Meta Platforms Inc. Meta Platforms Inc. Karanasos Meta Platforms Inc.
pedroerp@meta.com oerling@meta.com Meta Platforms Inc. scottas@meta.com

kkaranasos@meta.com

Wes McKinney Satya R Valluri Mohamed Zait Jacques Nadeau
Voltron Data Databricks Inc. Databricks Inc. Sundeck
wes@voltrondata.com satya.valluri@databricks.com mohamed.zait@databricks.com jacques@sundeck.io
VLDB 2023

=2 posit

What is a "Composable Data System™?

« Builds with open standards and protocols

« Designed around modularity, reuse, and interoperability
with other systems that use shared interfaces

« Resists “vertical integration”, builds in a virtual cycle with
relevant open source ecosystem projects

== posit

“We envision that by decomposing data management systems
into a more modular stack of reusable components, the
development of new engines can be streamlined, while reducing
maintenance costs and ultimately providing a more consistent
user experience. By clearly outlining APIs and encapsulating
responsibilities, data management software could more easily be
adapted, for example, to leverage novel devices and accelerators, as
the underlying hardware evolves. By relying on a modular stack that
reuses execution engine and language frontend, data systems code
could provide a more consistent experience and semantics to users,
from transactional to analytic systems, from stream processing to
machine learning workloads."

Pedrera et al. 2023

=% posit

“We envision that by decomposing data management systems into a
more modular stack of reusable components, the development of new
engines can be streamlined, while reducing maintenance costs and
ultimately providing a more consistent user experience. By clearly
outlining APIs and encapsulating responsibilities, data
management software could more easily be adapted, for example,
to leverage novel devices and accelerators, as the underlying
hardware evolves. By relying on a modular stack that reuses
execution engine and language frontend, data systems code could
provide a more consistent experience and semantics to users, from
transactional to analytic systems, from stream processing to machine
learning workloads."

Pedrera et al. 2023

=% posit

“We envision that by decomposing data management systems into a
more modular stack of reusable components, the development of new
engines can be streamlined, while reducing maintenance costs and
ultimately providing a more consistent user experience. By clearly
outlining APIs and encapsulating responsibilities, data management
software could more easily be adapted, for example, to leverage novel
devices and accelerators, as the underlying hardware evolves. By
relying on a modular stack that reuses execution engine and
language frontend, data systems code could provide a more
consistent experience and semantics to users, from transactional
to analytic systems, from stream processing to machine learning
workloads."

Pedrera et al. 2023

2= posit

Why now?
« 1st-Gen Big Data / Hadoop Era: 2006 - 2013

o MapReduce popularizes disaggregated storage + compute

o 2Nnd-Gen 2013 - 2021

o Vendors shift from proprietary software to delivery of services
o Open source standards emerge and are popularized
o Rapid progress in storage, networking, computing performance

o 3rd-Gen 2021-...7

o Open standards for composability become widely accepted
o Next-gen components emerge, existing systems start retrofitting with
composable pieces

== posit

Why now?

“...We foresee that composability is soon to cause
another major disruption to how data management
systems are designed. We foresee that monolithic
systems will become obsolete, and give space to a
new composable era for data management.”

Pedrera et al. 2023

== posit

The Great Data Tool Decoupling™

- Thesis: over time, user interfaces, data storage, and execution engines will
decouple and specialize

- In fact, you should really want this to happen
- Share systems among languages
- Reduce fragmentation and “lock-in”
- Shift developer focus to usability
- Prediction: we’ll be there by 2025; sooner if we all get our act together

NYC R Conference 2015
https://www.youtube.com/watch?v=stixbC/ulzM&t=264s

== posit

https://www.youtube.com/watch?v=stlxbC7uIzM&t=264s

== posit

Scalability! But at what COST?

Frank McSherry Michael Isard Derek G. Murray
Unaffiliated Unaffiliated*® Unaffiliated™

Abstract

We offer a new metric for big data platforms, COST,
or the Configuration that Outperforms a Single Thread.
The COST of a given platform for a given problem is the
hardware configuration required before the platform out-
performs a competent single-threaded implementation.
COST weighs a system’s scalability against the over-
heads introduced by the system, and indicates the actual
performance gains of the system, without rewarding sys-
tems that bring substantial but parallelizable overheads.

We survey measurements of data-parallel systems re-
cently reported in SOSP and OSDI, and find that many
systems have either a surprisingly large COST, often
hundreds of cores, or simply underperform one thread
for all of their reported configurations.

McSherry, Isard,

S0r 1000 ¢
}
\é(\
By

system B 100¢

seconds

1 ;D 1(;0 3(‘)0 1 10 l(;O 3(‘)0
cores cores

Figure 1: Scaling and performance measurements

for a data-parallel algorithm, before (system A) and

after (system B) a simple performance optimization.

The unoptimized implementation “scales™ far better,

despite (or rather, because of) its poor performance.

While this may appear to be a contrived example, we will
argue that many published big data systems more closely
resemble svstem A than thev resemble svstem B.

Murray 2015

=% posit

“The published work on big data systems... detail[s]
their systems’ impressive scalability, [but] few directly
evaluate their absolute performance against
reasonable benchmarks. To what degree are these
systems truly improving performance, as opposed to
parallelizing overheads that they themselves
introduce?”

- McSherry, Isard, Murray 2015

-
Optimization

5 dcalcite ...?

~

4 Engines

@ velo
DATA. 7
FUSION.— V
N i

/
~

/Protocols

'KcﬁERow>>>

ADBC, Flight

> Substrait

VOLTRON DATA/

Glimpse of the Composable Landscape

\L/w:,!; Lineoge'

~

/
~

: Query Interface
B is
A ”"° SHoW
. malloy, »
a Storage

IcEBERGQY @) Oic

//;/'/Parquet ’sd LanceDB

.

/

== posit

Missing pieces

« Distributed computing (Spark, Dask, Ray, “Serverless”)

« ETL modeling (dbt and others)

« Workflow / Infra Orchestration (Airflow, Dagster, Flyte, ...)
« Development Environments

. Metadata Catalogues

== posit

2016: A Cross-Language Fast
In-Memory Data Format

ARROW DY

=% posit

2017

A SHARED RUNTIME FOR DATA SCIENCE

@ FRONT-END

PYTHON

SHARED DATA SCIENCE RUNTIME

https://www.slideshare.net/wesm/data-science-without-borders-jupytercon-2017

== posit

https://www.slideshare.net/wesm/data-science-without-borders-jupytercon-2017

2= posit

Don’t Hold My Data Hostage —
A Case For Client Protocol Redesign

Mark Raasveldt Hannes Muhleisen
Centrum Wiskunde & Informatica Centrum Wiskunde & Informatica
Amsterdam, The Netherlands Amsterdam, The Netherlands
m.raasveldt@cwi.nl hannes@cwi.nl

2017

Databases Equipped for the Composable Era

« ADBC : Arrow DataBase Connectivity
« FlightSQL: An Arrow-native wire protocol for SQL systems

DATABASE

Query
A F ” Flight SQL Flight SQL
A
1
1
1
1
1

Driver Arrow Data
API

Postgres

-
’ libPQ - I
i i | ‘ Driver Protocol)g

[ADBC

Arrow Data POSTGRES

== posit

Client App The client only works with Arrow data,
T regardless of the underlying database.

— ADBC |
BigQuery Postgres JDBC ODBC
. FlightSQL —
The database only implements a T
single, Arrow-based protocol,
regardless of the actual client. Database

== posit

DuckDB: an Embeddable Analytical Database

Mark Raasveldt Hannes Miihleisen
m.raasveldt@cwi.nl hannes@cwi.nl
CWI, Amsterdam CWI, Amsterdam
2018

=% posit

~

g Layers of the Composable Cake

ZetaSQL == e | bis
PostgreSQL = Pandas
UPM/CRUX =i Language —— UPM/Crux

e

Query Optimizer

IR
(Substrait)

Figure 1: Open source modular data stack outline.

Apache Calcite
Orca

Apache Spark
Map/Reduce
Ray
Serverless

== posit

Modular Execution Engines

« Apache DataFusion (Rust)
o DuckDB (C++)

o Velox (C++)

o Theseus (C++/ CUDA)

== posit

Connecting Execution with Frontend + Optimizer

. Intermediate Representation (IR) for Queries

>* Substrait

https://substrait.io/

== posit

Modular Acceleration Projects

o Prestissimo (Velox in Presto)

« Apache DataFusion Comet (DataFusion in Spark)

« Apache Gluten (incubating) (Velox in Spark)

== posit

A Multi-Engine Data Stack?

« Why be locked into one full-stack execution engine (like
Spark)?

« Cost/performance/latency varies greatly across workload
shapes and sizes

« You can do a lot with DuckDB, but actual big data does still
exist

== posit

MotherDuck

< GO BACK TO BLOG

BIG DATA 1S DEAD

2023/02/07
BY JORDAN TIGANI

=2 posit

Barriers to a multi-engine data stack

« SQL dialects are non-portable
and feature a wide spectrum of

supported features
o sqlglot is helping with this!

. Deciding which engine-to-use is
non-trivial

« Diverse orchestration and
infrastructure requirements

== posit

Magpie: Python at Speed and Scale using Cloud Backends

Alekh Jindal K. Venkatesh Emani Maureen Daum®
Gray Systems Lab, Microsoft Gray Systems Lab, Microsoft University of Washington
alekh.jindal@microsoft.com k.emani@microsoft.com mdaum@cs.washington.edu
Olga Poppe Brandon Haynes Anna Pavlenko
Gray Systems Lab, Microsoft Gray Systems Lab, Microsoft Gray Systems Lab, Microsoft
olga.poppe@microsoft.com brandon.haynes@microsoft.com annapa@microsoft.com
Ayushi Gupta® Karthik Ramachandra Carlo Curino
Apple Microsoft Azure Data Gray Systems Lab, Microsoft
ayushi.iiit@gmail.com karam@microsoft.com carlo.curino@microsoft.com
Andreas Mueller Wentao Wu Hiren Patel
Gray Systems Lab, Microsoft Microsoft Research Microsoft
andreas.mueller@microsoft.com wentao.wu@microsoft.com hirenp@microsoft.com

CIDR 2021

=2 posit

CIDR’21, January 10-13, 2021, Chaminade, CA

= A
Pythonic Environment egthon
, x
Unified Dataframe API I::l pandas
> <
. .-
PyFroid Compiler
Magpie y P m-®

Cross Optimization

Common Data Layer AﬁROW>>>

Middleware QO

\ J
7 Y 2\
Polyengines O A .} SOL Nati
& Mappers Azure Synapse Koal Alch\e'mg e P
L Analytics oatas J Python ®puthon
Database ", Spgliz E:hb . ﬁ I- I itel
Backends * N — Bt oo ¥))
oogie
Ms'ggsgft Spark PostgreSQL MADIib B|gQuery sQL Server PENCaAs ¢
.)\

Figure 3: Our vision for a more simplified, unified, and effi-
cient data science stack.

=2 posit

~

>

Enter the Bird §j\ ibis-project.org

« An effort to harmonize the best of modern SQL with

Pythonic fluent data frames

« Fixing a long list of shortcomings in the pandas API

« Leverage the benefits of a modern PL when creating
complex analytical SQL queries

« Bringing portability (> 20 backends supported) to provide a
unified Python API for a multi-engine data stack

S22 posit’

left = ents.filter(.known for titles.length() > 0).limit(10 000)
right = left.view()
shared titles = (

left
.join(right, left.nconst != right.nconst)

.select(
s.startswith("known for titles"),

left name="primary name",
right name="primary name right",

.filter(.known for titles.intersect(.known for titles right).length() > 0)
.group_by(name="1left name")

.agg(together with= .right name.collect())
.mutate(together with= .together with.unique().sort())

)

shared titles

https://ibis-project.org/posts/bigquery-arrays/

== posit

Other Ibis Notes

o Created in 2015 at the same time as Arrow

« Strong focus on deep SQL support

« Helps automating the drudgery of tedious multi-step DDL
workflows in databases

S22 posit’

> Why this matters

SPACE: Scale, performance, and cost efficiency

https://voltrondata.com/theseus

Theseus 10TB] Theseus 30TB] Theseus 100TB [Spark 10TB [} Spark 30TB

T Total Runtime (minutes)

200

180

o *—

100 Node Count

80 @\@{

60 e Theseus 100TB @ Spark 30TB
70N
w O ®®

) %-0
2) — Th 30TB
0 a4 o @ @ Theseus 10TB
$0 $50 $100 $150 $200 $250 $300 $350 $400 $450 $500

Cluster Cost Per Hour =

== posit

A Future Multi-Engine Stack

« An execution engine tailored for different data scales

o <=1TB: DuckDB and Friends
o 1-10TB: Spark, Dask, Ray, etc.
o > 10TB: Hardware-accelerated Processing (e.g. Theseus)

« A portable language front end (Ibis, Malloy, PRQL, or a
standard transpilable SQL)

« Arrow-native APl and wire transport

== posit

S pOSit’" oooz. : J‘

Closing Thoughts - 'f"

il 1

e
e g

ssted 50 3

