
[DRAFT] The Future Roadmap
for the Composable Data Stack
Wes McKinney
Data Council Austin 2024

⌵⌵

Agenda

● My background
● Posit and Me
● Composable data systems: an overview
● Active growth areas in 2024
● Opportunities and Predictions

⌵⌵

Me

Principal
Architect General Partner

Co-founder,
Advisor

Ibis

Creator Co-creator

Creator Advisor,
Investor

Author

⌵⌵

Voltron Data (2021 —)

● Unlocking the potential of GPU
accelerated analytics for large
scale workloads

● Enterprise support for Apache
Arrow

● Open source partnerships
(Meta, Snowflake, others)

● $115M raised, 130 headcount
and growing

⌵⌵

⌵⌵

Posit PBC

● Founded 2009, originally as RStudio
● 300-person, remote-first company
● Open source software for polyglot data science and

technical communication
● Certified B corp, no plans to go public or be acquired
● Designing for long-term resiliency, creating a 100-year

company

⌵⌵

How Posit Makes Money

● Making open source work in the enterprise
● Products for managing the data science lifecycle

○ Posit Workbench: Managed IDEs and Jupyter
Notebooks with enterprise-grade security & compliance

○ Posit Connect: Publish and share interactive data apps,
notebooks, and reports

○ Posit Package Manager: securely manage deploy open
source and proprietary Python and R packages

⌵⌵

My History with Posit

● 2016: Hadley Wickham and I make Feather file format
● 2018: I partner with RStudio to create non-profit Ursa Labs

for Arrow development
● 2020: Ursa team spins out into startup, becomes Voltron

Data in 2021
● 2022: RStudio becomes Posit, embracing polyglot future
● 2023: I rejoin Posit as a principal architect

⌵⌵

https://ursalabs.org/blog/announcing-ursalabs/

The reality is that Hadley and I think the “language wars” are stupid when the
real problem we are solving is human user interface design for data analysis.
… The programming languages are our medium for crafting accessible and
productive tools. It has long been a frustration of mine that it isn’t easier to
share code and systems between R and Python.
…
I found that we share a passion for the long-term vision of empowering data
scientists and building a positive relationship with the open source user community.
Critically, RStudio has avoided the “startup trap” and managed to build a sustainable
business while still investing the vast majority of its engineering resources in open
source development.

https://ursalabs.org/blog/announcing-ursalabs/

⌵⌵

https://ursalabs.org/blog/announcing-ursalabs/

The reality is that Hadley and I think the “language wars” are stupid when the real
problem we are solving is human user interface design for data analysis. … The
programming languages are our medium for crafting accessible and productive tools.
It has long been a frustration of mine that it isn’t easier to share code and systems
between R and Python.
…
I found that we share a passion for the long-term vision of empowering data
scientists and building a positive relationship with the open source user
community. Critically, RStudio has avoided the “startup trap” and managed to
build a sustainable business while still investing the vast majority of its
engineering resources in open source development.

https://ursalabs.org/blog/announcing-ursalabs/

⌵⌵

Creative Solutions for Funding OSS Work

Sponsors

⌵⌵

VLDB 2023

⌵⌵

What is a “Composable Data System”?

● Builds with open standards and protocols
● Designed around modularity, reuse, and interoperability

with other systems that use shared interfaces
● Resists “vertical integration”, builds in a virtual cycle with

relevant open source ecosystem projects

⌵⌵
“We envision that by decomposing data management systems
into a more modular stack of reusable components, the
development of new engines can be streamlined, while reducing
maintenance costs and ultimately providing a more consistent
user experience. By clearly outlining APIs and encapsulating
responsibilities, data management software could more easily be
adapted, for example, to leverage novel devices and accelerators, as
the underlying hardware evolves. By relying on a modular stack that
reuses execution engine and language frontend, data systems code
could provide a more consistent experience and semantics to users,
from transactional to analytic systems, from stream processing to
machine learning workloads."

Pedrera et al. 2023

⌵⌵
“We envision that by decomposing data management systems into a
more modular stack of reusable components, the development of new
engines can be streamlined, while reducing maintenance costs and
ultimately providing a more consistent user experience. By clearly
outlining APIs and encapsulating responsibilities, data
management software could more easily be adapted, for example,
to leverage novel devices and accelerators, as the underlying
hardware evolves. By relying on a modular stack that reuses
execution engine and language frontend, data systems code could
provide a more consistent experience and semantics to users, from
transactional to analytic systems, from stream processing to machine
learning workloads."

Pedrera et al. 2023

⌵⌵
“We envision that by decomposing data management systems into a
more modular stack of reusable components, the development of new
engines can be streamlined, while reducing maintenance costs and
ultimately providing a more consistent user experience. By clearly
outlining APIs and encapsulating responsibilities, data management
software could more easily be adapted, for example, to leverage novel
devices and accelerators, as the underlying hardware evolves. By
relying on a modular stack that reuses execution engine and
language frontend, data systems code could provide a more
consistent experience and semantics to users, from transactional
to analytic systems, from stream processing to machine learning
workloads."

Pedrera et al. 2023

⌵⌵

Why now?
● 1st-Gen Big Data / Hadoop Era: 2006 - 2013

○ MapReduce popularizes disaggregated storage + compute
● 2nd-Gen 2013 - 2021

○ Vendors shift from proprietary software to delivery of services
○ Open source standards emerge and are popularized
○ Rapid progress in storage, networking, computing performance

● 3rd-Gen 2021 - … ?
○ Open standards for composability become widely accepted
○ Next-gen components emerge, existing systems start retrofitting with

composable pieces

⌵⌵

Why now?

“...We foresee that composability is soon to cause
another major disruption to how data management
systems are designed. We foresee that monolithic
systems will become obsolete, and give space to a
new composable era for data management.”

Pedrera et al. 2023

⌵⌵

NYC R Conference 2015
https://www.youtube.com/watch?v=stlxbC7uIzM&t=264s

https://www.youtube.com/watch?v=stlxbC7uIzM&t=264s

⌵⌵

McSherry, Isard, Murray 2015

⌵⌵

“The published work on big data systems… detail[s]
their systems’ impressive scalability, [but] few directly
evaluate their absolute performance against
reasonable benchmarks. To what degree are these
systems truly improving performance, as opposed to
parallelizing overheads that they themselves
introduce?”

- McSherry, Isard, Murray 2015

⌵⌵

Glimpse of the Composable Landscape

Engines
Substrait

ADBC, Flight Storage

Protocols
Query InterfaceOptimization

…?

⌵⌵

Missing pieces

● Distributed computing (Spark, Dask, Ray, “Serverless”)
● ETL modeling (dbt and others)
● Workflow / Infra Orchestration (Airflow, Dagster, Flyte, …)
● Development Environments
● Metadata Catalogues

⌵⌵

2016: A Cross-Language Fast
In-Memory Data Format

⌵⌵

https://www.slideshare.net/wesm/data-science-without-borders-jupytercon-2017

2017

https://www.slideshare.net/wesm/data-science-without-borders-jupytercon-2017

⌵⌵

2017

⌵⌵

Databases Equipped for the Composable Era

● ADBC : Arrow DataBase Connectivity
● FlightSQL: An Arrow-native wire protocol for SQL systems

⌵⌵

⌵⌵

2018

⌵⌵
Layers of the Composable Cake

⌵⌵

Modular Execution Engines

● Apache DataFusion (Rust)
● DuckDB (C++)
● Velox (C++)
● Theseus (C++ / CUDA)

⌵⌵

Connecting Execution with Frontend + Optimizer

● Intermediate Representation (IR) for Queries

Substrait
https://substrait.io/

⌵⌵

Modular Acceleration Projects

● Prestissimo (Velox in Presto)

● Apache DataFusion Comet (DataFusion in Spark)

● Apache Gluten (incubating) (Velox in Spark)

⌵⌵

A Multi-Engine Data Stack?

● Why be locked into one full-stack execution engine (like
Spark)?

● Cost/performance/latency varies greatly across workload
shapes and sizes

● You can do a lot with DuckDB, but actual big data does still
exist

⌵⌵

⌵⌵

Barriers to a multi-engine data stack

● SQL dialects are non-portable
and feature a wide spectrum of
supported features
○ sqlglot is helping with this!

● Deciding which engine-to-use is
non-trivial

● Diverse orchestration and
infrastructure requirements

⌵⌵

CIDR 2021

⌵⌵

⌵⌵

Enter the Bird

● An effort to harmonize the best of modern SQL with
Pythonic fluent data frames

● Fixing a long list of shortcomings in the pandas API
● Leverage the benefits of a modern PL when creating

complex analytical SQL queries
● Bringing portability (> 20 backends supported) to provide a

unified Python API for a multi-engine data stack

ibis-project.org

⌵⌵

https://ibis-project.org/posts/bigquery-arrays/

⌵⌵

Other Ibis Notes

● Created in 2015 at the same time as Arrow
● Strong focus on deep SQL support
● Helps automating the drudgery of tedious multi-step DDL

workflows in databases

⌵⌵
Why this matters https://voltrondata.com/theseus

⌵⌵

A Future Multi-Engine Stack

● An execution engine tailored for different data scales
○ <= 1TB: DuckDB and Friends

○ 1 - 10TB: Spark, Dask, Ray, etc.

○ > 10TB: Hardware-accelerated Processing (e.g. Theseus)

● A portable language front end (Ibis, Malloy, PRQL, or a

standard transpilable SQL)

● Arrow-native API and wire transport

Closing Thoughts

