 HoneyHive

HoneyHive Perplexity Clone v~ / Evaluations / c3dc7397-64e8-4e2d-bd5f-d3b0bb10786e

® i world_events sonar-online v1 completed ()
«® Discover
o

N Created: Feb 29, 2024, 03:33:38 PM
) SYauations Run ID: c3dc7397-64e8-4e2d-bd5f-d3060bb10786e

@ Datastore

AllEvents v measuring metrics.tokens_per_second v calculated as Average

S8 Datasets

Evaluators tokens_per_second
@
°
M ® siudio 88.28 Average
Playground —
Library 30 40 50 60 70 80 90 100 110 120 130 140 “.“
o L S PR Ut e

count

completion_length

Applications g N - Ll

0 200 400 600 800 1000 1200

Filter
€ Events 20
TYPE TIMESTAMP STATUS SOURCE EVENT NAME LATENCY QUTPUTS
&> Settings
Model = 1709238818.852 Success evaluation SONAR Model Event 2420.496 ms {*content™:*The Indus Valley Civilization, also known as the Harappan C

[*rontant™ - ## Oeniew nf tha Third Rattla nf Paninat\n\n### Hictari

Madal 1700238822 805 Riiize avaliation SONAR Madal Fuant 4454 Q84 me

About me

Worked on GenAl at Microsoft starting 2021

Co-founded HoneyHive in late 2022 to build tooling for Al
applications

At HoneyHive

- Worked with multiple teams on architecting Al evaluation systems
- Conversed with all major builders & researchers in the space
- Application layer, model layer, infra layer
- Multi-agent systems, Text-2-SQL, Financial QA, Al Search
Engines, etc. - from Fortune 50 to pre-seed startups

CCC

HoneyHive

% HoneyHive

Two simple questions to cover today

Can | trust my Al application?

How do | build that trust?

+ 1 practical example of an evaluation system

% HoneyHive

How will we get to this?

Can | trust my application?

- How do | assess trust? What's evaluation?

- How did people in the past (DevOps/MLOps) evaluate systems?
- How do those ideas translate to GenAl? Why is it tricky?

- How do | measure performance in that context?

How do | build trust?

- Based on these past insights, how do | build a repeatable eval system today?
- An example evaluation system for a multi-agent system

% HoneyHive

What could go wrong with Al?

Bard/Perplexity/You.com lies to you
Customer support bot makes false promises to customers
Financial QA bot provides the wrong insight at a critical moment

Data extractor misses key features in the unstructured data

Trust is very hard to rebuild once broken.

% HoneyHive

To assess trustworthiness, we evaluate

Will my application perform well in front of my users?
When it doesn’t, can | tell what went wrong?

Can | stop it from doing something bad in the first place?

% HoneyHive

How is this done?

To assess how well it will perform

See how your application performs in a close simulation of production
To assess what went wrong

Find which part of your application didn’t behave as expected
To stop something bad from happening

Continuously test your application while building

Find a tell-tale sign of something going wrong live & stop it

How was this done in the past?

'/ HoneyHive

Will it do well? What went wrong? Can | stop it from failing?
Software User Acceptance Testing Regression Analysis E2E tests
Unit tests Integration tests
Exception handling
Classical ML Offline batch evaluation Embedding drift Validation loss

Shapley values

Live guardrails

How to think about these ways of evaluation?

3 pieces of an eval
What are you evaluating - aka configuration / variant
What are you evaluating against - aka dataset

What are you measuring - aka evaluators

Putting it together

- We evaluate a configuration against a dataset using evaluators

CCC

HoneyHive

Each stage requires different type of eval

'/ HoneyHive

Configuration Dataset Evaluator Depth / Speed
Unit Test Small Few expected Crash / Output Low / Fast
component inputs-responses | Regex
Integration Test Multiple Many expected Crash / Output High / Slow
components inputs-responses | Regex
Offline batch Production Many F1 / Recall High / Slow
evaluation model inputs-responses
from production
Live guardrail Live Live inputs Output classifiers | Low / Fast

application

% HoneyHive

How does this translate to GenAl?

The overall evaluation framework translates over

1. Run light evaluations when iterating

- As | change things in one place, are things elsewhere not breaking secretly?
- Unit tests, regression checks

2. Run heavy evaluations before deploying

- Is my application capturing the distribution in production accurately?
- Offline batch evaluations, integration tests, feedback from user acceptance testing

3. Setup fast guardrails to catch outliers live

- Is my application about to do something horrible?
- Live guardrails

[HoneyHive

But in the real world...

'/ HoneyHive
The problem is evaluators

3 acceptable summaries for OpenAl’s InstructGPT launch

- OpenAl's InstructGPT, trained with human feedback, outperforms GPT-3 by following instructions more accurately for a safer user
experience.
- InstructGPT surpasses GPT-3 using RLHF, improving instruction adherence, truthfulness, and reducing toxicity.
- InstructGPT offers businesses and developers an ethically aligned, more precise Al tool by outdoing GPT-3 in understanding user
instructions.
No fixed ground truth to count on anymore
- F1, Recall, Eval loss, Output Regex are out of the window.
1 unacceptable summary that doesn't throw an exception
- InstructGPT, offered by Anthropic, uses Al feedback to outperform GPT-3.

No deterministic failure modes to count on

- Exception handling is out the window.

'/ HoneyHive

This is why GenAl evaluation is hard

Hard to say if something went well

Subjectivity

Lack of ground truth

Non-determinism
Hard to say what went wrong

Complex apps have multiple points of failure (ex: RAG)
Hard to stop something dangerous

Humans can’t review everything in production (ex: Devin)

What's the common piece?

An intelligent application requires a more intelligent evaluator to evaluate quality

Human evaluation is very important

1. Humans can take subjectivity into account
2. They can review complex traces to root cause issues
3. Can listen to user surveys to understand common failure modes

% HoneyHive

HoneyHive
AlQ&Abot v~ / Studio / Playground 8 Docs (@) Honeyhive v

Chat Completion Saved -

Provider =
[Zz Chat Template

@& OpenAl

Msde System You are a chatbot who is knowledgeable about Al. Please answer the user's questions truthfully & concisely.
ode!

gpt-4-turbo-preview User {{ user_query }}

Hyperparameters

& Chat

Functions

Assistant v The full blossom

cial intelligence dev n uture state where Al systems ac

.
“VI be Ch eCk” surpass human-level intelligence across a broad range of cognitive tasks. This scenario, sometimes referred to as Artificial General Intelligence (AGI

Plugins implies that Al could perform any intellectual task that a human being can, but potentially at a faster rate and on a larger scale. It could lead to
significant advancements in science, medicine, technology, and many other fields, potentially solving complex problems that are currently beyond
human ability.

X Inputs However, this vision also rais ofound ethical, societal, and existential questions. Concerns include the poten r job displacement, ¢

issues, the ethical treatment of Al entities, and the risk of losing control over advanced Al systems. The timeline for achievir

g AGl is highly
{X} user_query eculative and debated among experts, with predictions rang from a few d

cades to a century or more, or even skepticism about its feas

what's the full blossoming of Al look ill bloss f Al would likely invo

benefit of all hur

% HoneyHive

How to harness “vibe check” effectively?

The mantra is: minimize cognitive burden

1. Leverage simple judgement criteria

- Binary ratings (good/bad)

- Likert scale (how good on scale of 1-5)

- Rankings (which one’s better/worse)

- Implicit feedback (rage clicks/insults/Ul interactions)

2. Surface only relevant examples

- Highlight regressions
- Select only few from different topics

3. Codify heuristics

- Codify “gut instincts” into simple if-then rules, also called “assertions”
- Assertions can be included in unit tests & live guardrails

% HoneyHive

Is this enough?

HoneyHive's mission is 6-sigma reliability for Al applications.

- b6-sigma means 3 failures per million runs.

Using basic statistics, this means testing against ~800k examples.

Alpaca Eval found that MTurk evaluators

- costed $300 per 1000 ratings
- took 10 hrs per 1000 ratings
- had 60% consistency on ratings

So, to do such a deep evaluation, will take 8000 hrs & $240,000 for humans on MTurk and an
even higher price on Scale and Surge.

https://chat.openai.com/share/737ff5f7-6654-405a-9b84-ecbe0b7ba9be

% HoneyHive

What's the alternative?

LLMs?
GPT-4 as a judge

costs $30-120 per 1000 ratings
takes 50-60 minutes per 1000 ratings
has >80% consistency

So, perhaps, LLMs-as-a-judge could serve our purpose.

HoneyHive

LLMs can be nuanced graders

event : {

event_name : vided by the retriever is relevant to the user's query

b config : {...} about whether Carlos Sainz is still at Ferrari. The first snippet indicates

) that Carlos Sainz has add C parture m Ferrari, which

hAnpuEs G il ectly answers the user's question. However, there ns to be a
outputs : { contradiction in the second snippet where it mentions Carlos Sainz as a
api_response : r for Ferrari. This could potentially confuse users and might require

'‘position": further clarification or more r nt informati The , while the
provide some useful information related to the qu

tains conflicting details

DHb¢

event : Score: 5

event_name : The conte ris highly relevant to the user's

b config : {e«.} ry. The user asked about who LH44 (Lewis Hamilton) will be driving

forin 2025, and th t clearly states that Lewis Hamilton

> inputs : {...} will be driving f ia Ferrari in 2025. This informati directly
outputs : { on, making it very useful and pertinent.
api_response :

" [{"position™:

ippet":"It's final happened! LH44
_highli i ds": ["the Scuc
tp

% HoneyHive

Some promising results

NLGEval paper found high correlation between manual review & GPT-4
SPADE paper found that models can generate relevant prompt tests
Anthropic found Constitutional Al capable of aligning models effectively

OpenAl’s Superalignment team found small models could align larger ones

Aside: We found that Mechanical Turk labellers are already using ChatGPT...

% HoneyHive

Does model-graded eval translate to a scalable evaluation
system?

1. Speed is only 10x better

8000 hrs for a person vs 800 hrs for GPT

2. Consistency is much better but not enough
The above problems could be mitigated by fine-tuning a small model.

However, the deeper problem is model bias.

HoneyHive

LLM Evaluators exhibit biases in many forms

Bias Bias Behavior Example
ORDER BIAS The tendency to give preference to an option System Star: x System Square: y
based on their order (e.g. first, second, or last) System Square: y System Star: z
CoMPASSION The tendency to observe different behaviors Model Alpaca: x Model Vicuna: y
FADE when given recognizable names as opposed to Model Vicuna: y Model Alpaca: z
anonymized aliases.
EGOCENTRIC The inclination to prioritize one’s own responses Model Star (You): z
BIAS regardless of response quality. Model Square: y
SALIENCE The tendency to prefer responses based on the System Star: The quick brown fox jumps
BiAs length of the response (more often preferring over the lazy dog.
shorter responses or longer responses). System Square: The fox jumped.

BANDWAGON The tendency to give stronger preference to ma- 85% believe that System Star is better.
EFFECT jority belief without critical evaluation.

ATTENTIONAL The inclination to give more attention to irrele- System Square likes to eat oranges and
BI1AS vant or unimportant details. apples

ukf v HoneyHive

How bad is the bias?

Model

RANDOM
GPT4

CHATGPT
INSTRUCTGPT

LLAMAV2
LLAMA

% HoneyHive

Let’s try grading each output individually

If the biases emerge in comparative scores, can scoring each output individually
mitigate biases?

- What numeric scale do we use?

Binary (good/bad)
Likert scale (1-5)

Evaluator: correct_answer MMLU Completion v Grouped By metrics.numeric_truthfulness evaluator HoneyHive

Likert vs Gets all false

Ground Truth r . cases right

on MMLU | Gets ~42%
examples .

true cases
right

Evaluator: correct_answer MMLU Completion v
| Gets ~30%
Binary vs false cases
Ground Truth i right
on MMLU . 3 | Gets ~80%
examples | e true cases
3,-. . HE - ”ght

I 1
00-0.2 02-04 04-06 06-08 08-1.0

% HoneyHive

Numeric scale biases

The most well known biases for numeric ratings are

- Bias towards extremes
- Salience bias
- Ego bias

Align with few-shot human annotations that use

- Different lengths
- Different model outputs
- Different score values

% HoneyHive

A temporary solution to the evaluator problem?

Find ways to replicate human feedback with Al

Solution: Build self-aligning Al evaluators!

Based on our insights, we find that a binary scale along with 3-10 well balanced
human annotated examples provides the least biased ratings

Automated at-scale testing requires aligned evaluators, so definitely prioritize
configuring Al evaluators that match your implicit criteria

Even if you don’t de-bias your model, LLM-as-a-judge is still useful as a “direction”

% HoneyHive

Introducing TinyJudge

We have been training a family of evaluator models

Our alpha models have been optimized to provide accurate ratings on open-ended
evaluation criteria - protecting against known biases

Smaller evaluator (7B) serves as
- Fast, live, coarse-grained guardrail
Larger evaluator (46B) serves as

- Self-aligning fine-grained evaluator

% HoneyHive

TinyJudge vs GPT-4 on performance

Pearson Correlation with Human Feedback
Both TinyJudge models
outperform GPT-4

TinyJudge 8X7B
TinyJudge 8x7B outperforms GPT-4, while TinyJudge
7B performs similar to GPT-4, outperforming it only by
TinyJudge 7B a small margin.
Evaluation Methodology: Performance was evaluated over 225 hand-labelled
examples from the Vicuna dataset. We grouped the results from each model by
GPT-4 their labels in order to correct for label imbalance. We then calculated Pearson

correlation for each model with human feedback labels.

Base Model: Mixtral 8x7B, Mistral 7B Instruct

(@]
(@]
o
()
o
w
o
»
o
(6)]
o
(o))
o
~
o
(00]
o
(o]
Y

% HoneyHive

TinyJudge vs GPT-4 on cost

Inference cost per 1000 tokens ($)

TinyJudge is ~2 orders of
magnitude cheaper than GPT-4 .

TinyJudge 8x7B is 50x cheaper than GPT-4, while
TinyJudge 7B is 150x cheaper than GPT-4.

TinyJudge 7B

Cost Calculation: Costs are based on Together Al's inference endpoints using a

single NVIDIA A100 80GB instance. Both models can be run on cheaper

hardware (eg: NVIDIA A10G) depending on a customer's requirements, which

can further lower inference costs by an order of magnitude. GPT-4

0] 0.005 0.01 0.015 0.02 0.025 0.03

{ v HoneyHive

Let’'s zoom out now
For now, how do we build an eval system?
How do we build trust?

Evaluation
Setup

Keep collecting
examples &
heuristics!

Add heuristic assertions

\

A I-IoneyHlve

"follow guidelines/data format/etc"

Add salient examples

Dataset
Evaluators

A

Collect happy & unhappy runs

Add failure modes discovered by beta users
"too verbose/too confused/etc"

Prototyping Phase - start Here

[Playground Iteration]—Nappw—)[

Assemble Unit Test
light valldahon

Codé Heratior — Assemble Integration Test
end-to-end validation

=« « Tests pass?

Assemble Batch
Evaluation Test

common scenarios

Beta User Validation

Configure guardrails &
|mpI|C|t feedback

%H%

Validation Phase

Production Deployment onitor

Augment Batch
Evaluation

new scenarios

Evaluation
Orchestration

Low rate of change
= High reliability needed
= Deep & slow evaluation

Prototype

& [Vibe Check Pass?

PM/Dev

’

——

Move to code

Unit Test Pass?
Are simple heuristics working?

~ </>

Simple Assertions
Hf\g?\ Regression Check Pass?
‘ﬂ_\g}q? Is quality better?

T
PM/Dev Large Al Merge to main

N
= o
5§ &R
> 2,

&

P
S o 5

Application Integration Test Pass?] Tiny Al
§

</>

Simple Assertions
Batch Evaluation Pass?
Is quality & safety satisfactory?
T
Large Al Domain Expert Show to user

&

Guardrails Pass? Tiny Al

</>

Simple Assertions

'/ HoneyHive

Customer Example & Multion

'/ HoneyHive

Configuration

Dataset

Evaluator

Unit Test

Sub-agent / RAG

Simplest inputs +
expected outputs

Data format + Guideline
evaluators

Integration Test

Multi-agent system

Simplest inputs +
expected actions

Looping validator + action
validators + safety
validators

Regression Check

Multi-agent system

Common inputs

Human review + action
validators

Offline batch
evaluation

Multi-agent system

Recorded user inputs
(+vel/-ve)

Human review + action
validators

Live guardrail

Live application

Live inputs

Safety validators

% HoneyHive

Quick recap

Can | trust my Al application?

Develop a broad test bank + heuristics to gut check trustworthiness

Rely on human feedback, but scale human feedback with Al evaluators

How do | build that trust?

Setup fine-grained offline evaluations & coarse-grained live guardrails

Find a scalable evaluator you trust & run broad experiments

Ef HoneyHive

HoneyHive’'s Goal

As stewards of the broader community, our goal is to help users build performant,
reliable and trustworthy Al applications

Focus on real-world applications
Build evaluation systems that are fast, cheap, & effective
Enable rapid iteration and automation

Everything we discussed today is already supported in HoneyHive

The example system has been set up by a customer in HoneyHive @

l HoneyHive

Thank you

