
Evaluating AI 
Applications



About me

Worked on GenAI at Microsoft starting 2021

Co-founded HoneyHive in late 2022 to build tooling for AI 
applications

At HoneyHive

- Worked with multiple teams on architecting AI evaluation systems
- Conversed with all major builders & researchers in the space

- Application layer, model layer, infra layer
- Multi-agent systems, Text-2-SQL, Financial QA, AI Search 

Engines, etc. - from Fortune 50 to pre-seed startups



Two simple questions to cover today

Can I trust my AI application?

How do I build that trust?

+ 1 practical example of an evaluation system



How will we get to this?

Can I trust my application?

- How do I assess trust? What’s evaluation?
- How did people in the past (DevOps/MLOps) evaluate systems?
- How do those ideas translate to GenAI? Why is it tricky?
- How do I measure performance in that context?

How do I build trust?

- Based on these past insights, how do I build a repeatable eval system today?
- An example evaluation system for a multi-agent system



What could go wrong with AI?

Bard/Perplexity/You.com lies to you

Customer support bot makes false promises to customers

Financial QA bot provides the wrong insight at a critical moment

Data extractor misses key features in the unstructured data

Trust is very hard to rebuild once broken.



To assess trustworthiness, we evaluate

Will my application perform well in front of my users?

When it doesn’t, can I tell what went wrong?

Can I stop it from doing something bad in the first place?



How is this done?

To assess how well it will perform 

See how your application performs in a close simulation of production

To assess what went wrong

Find which part of your application didn’t behave as expected

To stop something bad from happening

Continuously test your application while building

Find a tell-tale sign of something going wrong live & stop it



How was this done in the past?

Will it do well? What went wrong? Can I stop it from failing?

Software User Acceptance Testing Regression Analysis
Unit tests

E2E tests
Integration tests

Exception handling

Classical ML Offline batch evaluation Embedding drift
Shapley values

Validation loss

Live guardrails



How to think about these ways of evaluation?

3 pieces of an eval

What are you evaluating - aka configuration / variant

What are you evaluating against - aka dataset

What are you measuring - aka evaluators

Putting it together

- We evaluate a configuration against a dataset using evaluators



Configuration Dataset Evaluator Depth / Speed

Unit Test Small 
component

Few expected 
inputs-responses

Crash / Output 
Regex

Low / Fast

Integration Test Multiple 
components

Many expected 
inputs-responses

Crash / Output 
Regex

High / Slow

Offline batch 
evaluation

Production 
model

Many 
inputs-responses 
from production

F1 / Recall High / Slow

Live guardrail Live 
application

Live inputs Output classifiers Low / Fast

Each stage requires different type of eval



How does this translate to GenAI?

The overall evaluation framework translates over

1. Run light evaluations when iterating
- As I change things in one place, are things elsewhere not breaking secretly?
- Unit tests, regression checks

2. Run heavy evaluations before deploying
- Is my application capturing the distribution in production accurately?
- Offline batch evaluations, integration tests, feedback from user acceptance testing

3. Setup fast guardrails to catch outliers live
- Is my application about to do something horrible?
- Live guardrails



But in the real world…



The problem is evaluators

3 acceptable summaries for OpenAI’s InstructGPT launch

- OpenAI's InstructGPT, trained with human feedback, outperforms GPT-3 by following instructions more accurately for a safer user 
experience.

- InstructGPT surpasses GPT-3 using RLHF, improving instruction adherence, truthfulness, and reducing toxicity.
- InstructGPT offers businesses and developers an ethically aligned, more precise AI tool by outdoing GPT-3 in understanding user 

instructions.

No fixed ground truth to count on anymore

- F1, Recall, Eval loss, Output Regex are out of the window.

1 unacceptable summary that doesn’t throw an exception

- InstructGPT, offered by Anthropic, uses AI feedback to outperform GPT-3.

No deterministic failure modes to count on 

- Exception handling is out the window.



This is why GenAI evaluation is hard

Hard to say if something went well

Subjectivity

Lack of ground truth

Non-determinism

Hard to say what went wrong

Complex apps have multiple points of failure (ex: RAG)

Hard to stop something dangerous

Humans can’t review everything in production (ex: Devin)



What’s the common piece?

An intelligent application requires a more intelligent evaluator to evaluate quality

Human evaluation is very important

1. Humans can take subjectivity into account
2. They can review complex traces to root cause issues
3. Can listen to user surveys to understand common failure modes



“vibe check”



How to harness “vibe check” effectively?

The mantra is: minimize cognitive burden

1. Leverage simple judgement criteria
- Binary ratings (good/bad)
- Likert scale (how good on scale of 1-5)
- Rankings (which one’s better/worse)
- Implicit feedback (rage clicks/insults/UI interactions)

2. Surface only relevant examples
- Highlight regressions
- Select only few from different topics

 3. Codify heuristics

- Codify “gut instincts” into simple if-then rules, also called “assertions”
- Assertions can be included in unit tests & live guardrails



Is this enough?

HoneyHive’s mission is 6-sigma reliability for AI applications.

- 6-sigma means 3 failures per million runs.

Using basic statistics, this means testing against ~800k examples.

Alpaca Eval found that MTurk evaluators

- costed $300 per 1000 ratings
- took 10 hrs per 1000 ratings
- had 60% consistency on ratings

So, to do such a deep evaluation, will take 8000 hrs & $240,000 for humans on MTurk and an 
even higher price on Scale and Surge.

https://chat.openai.com/share/737ff5f7-6654-405a-9b84-ecbe0b7ba9be


What’s the alternative?

LLMs?

GPT-4 as a judge

- costs $30-120 per 1000 ratings
- takes 50-60 minutes per 1000 ratings
- has >80% consistency

So, perhaps, LLMs-as-a-judge could serve our purpose.



LLMs can be nuanced graders



Some promising results

NLGEval paper found high correlation between manual review & GPT-4

SPADE paper found that models can generate relevant prompt tests

Anthropic found Constitutional AI capable of aligning models effectively 

OpenAI’s Superalignment team found small models could align larger ones

Aside: We found that Mechanical Turk labellers are already using ChatGPT…



Does model-graded eval translate to a scalable evaluation 
system?

1. Speed is only 10x better
8000 hrs for a person vs 800 hrs for GPT

2. Consistency is much better but not enough

The above problems could be mitigated by fine-tuning a small model.

However, the deeper problem is model bias.



LLM Evaluators exhibit biases in many forms



How bad is the bias?



Let’s try grading each output individually

If the biases emerge in comparative scores, can scoring each output individually 
mitigate biases?

- What numeric scale do we use?
- Binary (good/bad)
- Likert scale (1-5)



Likert vs 
Ground Truth 
on MMLU 
examples

Binary vs 
Ground Truth 
on MMLU 
examples

Gets ~80% 
true cases 
right

Gets all false 
cases right

Gets ~42% 
true cases 
right

Gets ~30% 
false cases 
right



Numeric scale biases

The most well known biases for numeric ratings are

- Bias towards extremes
- Salience bias
- Ego bias

Align with few-shot human annotations that use

- Different lengths
- Different model outputs
- Different score values



A temporary solution to the evaluator problem?

Find ways to replicate human feedback with AI

- Solution: Build self-aligning AI evaluators!

Based on our insights, we find that a binary scale along with 3-10 well balanced 
human annotated examples provides the least biased ratings

Automated at-scale testing requires aligned evaluators, so definitely prioritize 
configuring AI evaluators that match your implicit criteria

- Even if you don’t de-bias your model, LLM-as-a-judge is still useful as a “direction”



Introducing TinyJudge

We have been training a family of evaluator models

Our alpha models have been optimized to provide accurate ratings on open-ended 
evaluation criteria - protecting against known biases

Smaller evaluator (7B) serves as

- Fast, live, coarse-grained guardrail

Larger evaluator (46B) serves as

- Self-aligning fine-grained evaluator



TinyJudge vs GPT-4 on performance



TinyJudge vs GPT-4 on cost



Let’s zoom out now
For now, how do we build an eval system?

How do we build trust?



Evaluation 
Setup

Keep collecting 
examples & 
heuristics!



Evaluation 
Orchestration

Low rate of change 
⇒ High reliability needed
⇒ Deep & slow evaluation



Customer Example

Configuration Dataset Evaluator

Unit Test Sub-agent / RAG Simplest inputs + 
expected outputs

Data format + Guideline 
evaluators

Integration Test Multi-agent system Simplest inputs + 
expected actions

Looping validator + action 
validators + safety 
validators

Regression Check Multi-agent system Common inputs Human review + action 
validators

Offline batch 
evaluation

Multi-agent system Recorded user inputs 
(+ve/-ve)

Human review + action 
validators

Live guardrail Live application Live inputs Safety validators



Quick recap

Can I trust my AI application?

Develop a broad test bank + heuristics to gut check trustworthiness

Rely on human feedback, but scale human feedback with AI evaluators

How do I build that trust?

Setup fine-grained offline evaluations & coarse-grained live guardrails

Find a scalable evaluator you trust & run broad experiments



HoneyHive’s Goal

As stewards of the broader community, our goal is to help users build performant, 
reliable and trustworthy AI applications

Focus on real-world applications

Build evaluation systems that are fast, cheap, & effective

Enable rapid iteration and automation

Everything we discussed today is already supported in HoneyHive

The example system has been set up by a customer in HoneyHive 😄



Thank you


