

Timothy Chan Head of Data

Beyond Simple A/B Testing: Advanced Experimentation Tactics

March 27th, 2024

Statsig.com

Data Council 2024

The Statsig Team

Statsig is a modern experimentation and feature flagging platform. We help companies like Notion, OpenAl, Figma, and Atlassian manage feature rollouts and compute experimental results.

Statsig Cloud

- >600B events a day
- >20k total experiments across >1B unique user identifiers.

Statsig Warehouse Native

Full power of Statsig Cloud but raw data
never leaves your data warehouse.

Overview

Review of Experimentation 101

1. AB Testing Basics

Experimentation 201

- 1. CUPED
- 2. Holdouts
- 3. The Peeking Problem and Sequential Testing
- 4. Stratified Sampling
- 5. Switchback Experiments
- 6. Multi-Armed Bandits
- 7. Heterogeneous Treatment Effects
- 8. Experimental Meta Analysis

Experimentation 101: Why A/B Test?

Scientific gold standard for measuring causality

Ideas are evaluated by causal user data not opinions

Product development becomes a scientific, evidence-driven process

Building products is hard

Everyone's running experiments, but only some of them have control groups and randomization.

4:17 PM · Sep 2, 2022

2 Demosto 1 Ousto 25 Likes 1 Deelemente

3 Reposts	Quote	35 LIKES	BOOKMARK		
Q		17	\bigcirc	土	

...

How Does Testing Work?

Experimentation Best Practices

- □ Start with a hypothesis
- Dever Analysis (tradeoff between sample size, statistical power, and time)
- □ Standardized methodology
- □ Use 95% confidence intervals by default
- Don't fret about interaction effects

The HiPPO

Stats Engines Don't Build Culture

Experimentation should be easy and automatic

Experimentation is a team sport,

the entire product team is on the field

Experiment Review

Optimize for velocity

Welcome to Experimentation 201

Controlled Experiment Using Pre-Experimental Data (CUPED)

Can reduce confidence intervals by 30-60%, resulting in more statistical power in less time.

Definition

The phenomenon where estimates from AB tests do not hold up to their expectations.

Possible Causes

- 1. Long-term sustainability
- 2. Underpowered experiments

Possible Causes

Long-term sustainability 1. Underpowered experiments 2. False positives 3.

Possible Causes

- 1. Long-term sustainability
- 2. Underpowered experiments
- 3. False positives
- 4. Over-estimations

Possible Causes

Definition

A small % of users who are intentionally withheld from a feature or features after rollout, for a longer-than-normal period.

Several Types

- Team-wide
- Feature-specific
- Hypothesis-based
- Powerful
- Deceptively expensive

Problem: The Peeking Problem

Tradeoffs

- Statistical Power
- Sensitivity
- Speed

What about multiple metrics?

Early Stopping Probability when Fixed Horizon Z-test is Stat-sig

Maggie Stewart https://www.statsig.com/blog/sequential-testing-on-statsig

Problem: Randomization is Random

\$5.78

Solution: Stratified Sampling

\$4.05

\$4.05

Solution: Stratified Sampling

B2B Experimentation

- High heterogeneity
 - High variance users, by orders of magnitude
 - Subgroups are important to track and compare
- Impact on whales are very important to accurately track
- Limited sample size

Problem: Network Effects

Experimental groups can affect each other

- Eg. Social networks, two-sided marketplaces, messaging apps
 - Violation of independence assumption
- Cannot accurately measure individual impact of change, nor project total impact.

- Testing the entire network, by switching states over different time periods.
- Interval Selection is critical
- Assumes long-term impact and residual effects are minimal.

Learning can be expensive—Experiments take awhile to reach "certainty"

Inferior options are given equal traffic for a lengthy period

More variants markedly impact statistical power and experiment duration

Non-stationary effects

Examples

- Holiday Sale periods
- Non-durable goods (eg. news)
- Low statistical power

Solution: Multi-Armed Bandit

Pros

- Automated decision making
- Good in situations with multiple options
- Great at eliminating "bad" options

Cons

- Learning opportunities are limited
- Cannot handle nuanced decision-making

Heterogeneous Treatment Effects

Average Treatment Effect vs Heterogeneous Treatment Effects

Detection

- Hypothesis-driven
- Automation across multiple attributes

Experimental Meta Analysis

Conclusion

Limitations Solution

Experiments take too long > CUPED

Winner's Curse > Holdouts

Peeking Problem >> Sequential Testing

Randomization Sucks >> Stratified Sampling

Network Effects >> Switchback Testing

Fixed Allocation ➤ Multi Armed Bandits

No Average User > Heterogeneous Effects Detection

Only Specific Findings > Experimental Meta Analysis

Statsig.com

in linkedin.com/in/trchan

tim@statsig.com @trchan1

statsig.com.pets

Thank you

Randomization is the Secret Sauce

Soft White R250 G250 B250 #FAFAFA C2 M2 Y2 K0 Paper color	Navy Black R27 G37 B40 #182528 C80 M65 Y60 K70 PMS2965 C	Growth Gradient Lime * Light Blue	Lime R179 G251 B199 #CCFBC7 C28 M0 Y32 K0 PM\$365 C
Light Blue R217 G238 B249 #D9EEF9 C13 M1 Y1 K0 PMS657 C		Blue R157 G213 B242 #9DD5F2 C35 M3 Y1 K0 PMS277 C Green R144 G212 B158 #90D49E	Dark Blue R0 G104 B179 #006883 C90 M60 YI K0 PM53506 C Dark Green R22 G65 B57 #164139
		C44 M0 Y50 K0 PM\$360 C Lavender R189 G189 B255 #BDBDFF C24 M23 Y0 K0 PM\$2635 C	C86 M50 Y69 K51 PMS3435 C Dark Lavender R108 G108 B188 #6C6CBC C64 M60 Y0 K0 PMS2095 C
		Yellow R255 G248 B186 #FFF88A C1 M0 Y33 K0 PM\$0131 C	Orange R254 GI73 BI14 #FEAD72 C0 M42 Y66 K0 PMS1375 C