

Redefining Database Workloads

The Future with Modern Object Storage

Introduction & Credentials

- Challenges of Traditional Databases
- Why am I hearing about disaggregation of storage and compute?
- Two modern disaggregation strategies

Present Day: Database Challenges

Complex

Fragmented

Databases can become complex, sapping resources and constraining engagement.

Complexity has a material impact on scalability.

Lack of single point of access to data and insights in near real-time imparts risk and obscures value.

Monolithic

Tightly coupled storage and compute results in over-provisioning (generally of compute).

Vendor lock-in to inappropriate tools

Un-Scalable

Traditional systems don't scale well - from performance to economics.

Throughput is a bottleneck.

Traditional

Many traditional technologies simply cannot make the leap to the cloud.

Cloud-native is the way forward.

Why your Database is Failing You

	Longer delivery time	Multiple reconciliations	Performance issues	Higher cost	Inability to scale
Siloed data ecosystems	~	~	~	~	~
Multiples copies of data	~	~	~	~	~
Difficulty identifying single source of truth		~	~	~	~
Fragmented data ownership	~	~			~
Redundant application of security protocol	~	~	~	~	~
Lack of enterprise wide data visibility		~			~

Why am I hearing about disaggregation?

Object Storage as Primary Storage

Â

The Future of Database Workloads

Disaggregation

Separation of storage and compute is a hard requirement.

Durability + Efficiency

Modern data lakes need to be resilient to failure, distributed and able to quickly recover.

Multi-Cloud

The data lake architecture must be extensible to any public or private cloud.

Cloud repatriation can save up to 60%.

Performance

The modern data lake needs to be faster and it is **with the right stack**.

Two Modern Solutions

massimil

A Disaggregation of Storage and Compute

A Data Lake Semantics

Datalake	Raw	Curated	Optimized
 All data (structured, semi-structured, unstructured) in one place Supports fast ingestion and streamlined consumption Decoupled storage and compute 	 Data stored in raw format and encrypted. Ledger for transactional events No generic or business transformations No shared consumption, enables data stewards. 	 Data fully cataloged, authoritative source. Access are policies applied. Available for shared consumption optimal partitions based on access patterns Generic transformations. 	 Transformed and organized by consumer use cases Optimized for applications, specialized analysis & performance Domain-level data marts & warehouses supporting complex queries with higher speeds.

Advantages of Parquet vs Table Formats

Parquet:

- Speed: Parquet employs column-wise compression, different encoding, compression based on data type, predicate pushdown. Better compression ratios + skipping data blocks means fewer bytes red from S3, leading to significantly better query performance
- Cost: Services like Macie, Athena, Okera etc. charge per amount of data scanned and Parquet compression helps reduce cost of these scans

Iceberg / Hudi / Delta Lake:

- Provides a table view on S3, similar to a database with indexes.
- Provides upsert / delete capabilities with indexing on the trusted S3 bucket.
- Transactional (ACID) semantics on object storage
- Merge-on-read (optimized write) or copy-on-write (optimized read)
- De-duplication of data with simple and compound keys
- Data versioning (aka Time Travel)
- Schema Evolution and Partition Evolution

The Modern Data Stack

Next Generation of Disaggregation

External tables are the next logical step in the disaggregation of storage and compute

Patabases Optimized for Object Storage

- Present Challenges of Traditional Databases
- The Future of Database Workloads
- Object Storage as Primary Storage for databases
- Sample Architectures & Design
- External Tables as the natural extension of disaggregation

Thank you!

Brenna Buuck

SME Databases and Datalakes brenna@min.io

- 🍯 @minio
- https://github.com/minio/minio
- https://slack.min.io
- https://min.io