
(YCW23) Elijah ben Izzy CTO & Co-Founder
Data Council Austin – 2024

Move Fast and Don’t Break Things

How to build a data platform that scales with your
organization

Some Background Context

whoami
Elijah ben Izzy

Co-creator of Hamilton; CTO
DAGWorks Inc. (YCW23)

10+ years in ML & Data platforms

Standardizing Data, ML, and LLM pipelines
Open Core!

>>> I’m not selling you anything in this talk! <<<

I want to convince you that…

1. There is a trade-off between building quickly and reliably
2. Having a good platform can make it less of a trade-off
3. Hamilton (OS) is a good conduit to do so
4. Hamilton can help you quickly move from dev → prod → dev

TL;DR

A mental model for trade-offs
Platforms to the rescue
Hamilton: a lightweight platform abstraction
Some applications

↳ ML Pipelines
↳ LLM/RAG

Zooming out

The Agenda

A mental model for trade-offs
Platforms to the rescue
Hamilton: a lightweight platform abstraction
Some applications

↳ ML Pipelines
↳ LLM/RAG

Zooming out

The Agenda

What describes your ML/AI code?

A dilemma…

💬 !!! I must quickly deliver above all else !!!
⋯
💻 + 60,000 LOC
💻 + 8 prod outages
💻 + 30tb of unstructured data
💻 + $,$$$,$$$ snowflake bill
⋯
💬 !!! Too much tech debt to do my job! !!!

Move slow

Move fast

Break things Build Reliably

Just ship the notebook

Decently structured code

C
onfigurable, reusable,

w
ell-docum

ented com
ponents

A mental model for trade-offs
Platforms to the rescue
Hamilton: a lightweight platform abstraction
Some applications

↳ ML Pipelines
↳ LLM/RAG

Zooming out

The Agenda

Strategic goals of a platform
Three-fold:

1. Make it easy to operate on the curve
2. Change the shape of the curve
3. Make it easy to move along the curve (dev ⇔ prod)

Strategic goals of a platform
Three-fold:

1. Make it easy to operate on the curve
2. Change the shape of the curve
3. Make it easy to move along the curve (dev ⇔ prod)

Move slow

Move fast

Break things Build Reliably

Strategic goals of a platform
Three-fold:

1. Make it easy to operate on the curve
2. Change the shape of the curve
3. Make it easy to move along the curve (dev ⇔ prod)

Move slow

Move fast

Break things Build Reliably

Strategic goals of a platform
Three-fold:

1. Make it easy to operate on the curve
2. Change the shape of the curve
3. Make it easy to move along the curve (dev ⇔ prod)

Move slow

Move fast

Break things Build Reliably

A mental model for trade-offs
Platforms to the rescue
Hamilton: a lightweight platform abstraction
Some applications

↳ ML Pipelines
↳ LLM/RAG

Zooming out

The Agenda

> pip install sf-hamilton

Get started in <15 minutes!

Documentation

https://hamilton.dagworks.io/

Try it out

https://www.tryhamilton.dev/

All open source!

https://hamilton.dagworks.io/
https://www.tryhamilton.dev

https://www.tryhamilton.dev

https://www.tryhamilton.dev/

Idea What if every asset corresponded to exactly one python fn?

And… what if the way that function was written tells you everything you
needed to know?

In Hamilton, the artifact (asset) is determined by the name of the function.
The dependencies are determined by the parameters.

Hamilton: the “a-ha” Moment

Old way vs Hamilton way:

Instead of*

You declare

*Hamilton supports *all* python objects, not just dfs/series!

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

df["c"] = df["a"] + df["b"]
df["d"] = transform(df["c"])

Instead of

You declare
Inputs == Function Arguments

Old way vs Hamilton way:

df["c"] = df["a"] + df["b"]
df["d"] = transform(df["c"])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

Outputs == Function Name

*Hamilton supports *all* python objects, not just dfs/series!

Full hello world
feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Functions

Driver says what/when to execute

Hamilton TL;DR

1. For each transform (=), you write a function(s)
2. Functions declare a DAG
3. Hamilton handles DAG execution c

d

a b

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Replaces c = a + b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Replaces d = transform(c)"""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...},
 feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Q: Doesn’t Hamilton make your code more verbose?
A: Yes, but that’s not always a bad thing. When it is, we have decorators!
❏ @tag # attach metadata
❏ @parameterize # curry + repeat a function
❏ @extract_columns # one dataframe -> multiple series
❏ @check_output # data validation
❏ @config.when # conditional transforms
❏ @subdag # recursively utilize groups of nodes
❏ @... # new ones all the time

Hamilton: extensions

Move (quickly) along the curve

Testing – Everything ⊆ python functions ⇒ easy testing ⇒ faster dev

Scaling – driver handles where to run, port subcomponents as needed

- Parallelism – simple constructs to abstract away parallelism
- Delegation – run on any executor with hamilton constructs

Caching – single line extension enables fingerprinting

Data quality – everything is decoupled – code is stabler + more flexible

Integrations – customize on your own infrastructure

Testing – Everything ⊆ python functions ⇒ easy testing ⇒ faster dev.

Scaling – driver handles where to run, port subcomponents as needed

- Parallelism – simple constructs to abstract away parallelism
- Delegation – run on any executor with hamilton constructs

Caching – single line extension enables fingerprinting

Data quality – everything is decoupled – code is stabler + more flexible

Integrations – customize execution

Unit testing – functions ⇒ easy testing

Integration Testing

- Run one portion of DAG
- Inject sample data
- Or run on prod data (yolo)

c

d

a b

Testing – functions are easy to unit tests. Paths are easy to integrate.

Scaling – driver handles where to run, port subcomponents as needed

- Parallelism – simple constructs to abstract away parallelism
- Delegation – run on any executor with hamilton constructs

Caching – single line extension enables fingerprinting

Data quality – everything is decoupled – code is stabler + more flexible

Integrations – customize execution

Scaling: Parallelism/Map-Reduce

Map: Declare fn output as Parallelizable[...]

Reduce: Declare fn input as Collect[...]

Delegate to custom/built-in executor

Testing – functions are easy to unit tests. Paths are easy to integrate.

Scaling – driver handles where to run, port subcomponents as needed

- Parallelism – simple constructs to abstract away parallelism
- Delegation – run on any executor with hamilton constructs

Caching – single line extension enables fingerprinting

Data quality – everything is decoupled – code is stabler + more flexible

Integrations – customize on your own infrastructure

Caching

Fingerprinting (cache inputs, data, code) with one-line change

- dev speedup (local)
- remote/prod – come chat

Testing – functions are easy to unit tests. Paths are easy to integrate.

Scaling – driver handles where to run, port subcomponents as needed

- Parallelism – simple constructs to abstract away parallelism
- Delegation – run on any executor with hamilton constructs

Caching – single line extension enables fingerprinting

Data quality – everything is decoupled – code is stabler + more flexible

Integrations – customize execution

Data quality – functions ⇒ data assets ⇒ data quality

Testing – functions are easy to unit tests. Paths are easy to integrate.

Scaling – driver handles where to run, port subcomponents as needed

- Parallelism – simple constructs to abstract away parallelism
- Delegation – run on any executor with hamilton constructs

Caching – single line extension enables fingerprinting

Data quality – everything is decoupled – code is stabler + more flexible

Integrations – customize execution

Integrations – lifecycle methods

Integrations – materializers

A mental model for trade-offs
Platforms to the rescue
Hamilton: a lightweight platform abstraction
Some applications

↳ ML Pipelines
↳ LLM/RAG

Zooming out

The Agenda

A mental model for trade-offs
Platforms to the rescue
Hamilton: a lightweight platform abstraction
Some applications

↳ ML Pipelines
↳ LLM/RAG

Zooming out

The Agenda

Hamilton: ML pipelines

Hamilton: ML pipelines

Hamilton: ML pipelines

MLEs/DS:
- Write ML pipelines as Hamilton steps
- Easily add data quality
- Scale up by delegating to spark/ray/dask
- Separate code structure from task structure

- Test locally on sample data
- Run remotely on full data

- Integrate model registry, other providers

A mental model for trade-offs
Platforms to the rescue
Hamilton: a lightweight platform abstraction
Some applications

↳ ML Pipelines
↳ LLM/RAG

Zooming out

The Agenda

Hamilton: LLM/RAG pipelines

Hamilton: LLM/RAG pipelines

Hamilton: LLM/RAG pipelines

AI engineers:
- Write simple Hamilton pipeline

- Chunk
- Summarize
- Query

- Leverage Parallelizable for dynamic execution
- Test locally on small dataset/synchronous
- Abstract infrastructure away, scale up as needed

- Hook into eval frameworks

A mental model for trade-offs
Platforms to the rescue
Hamilton: a lightweight platform abstraction
Some applications

↳ ML Pipelines
↳ LLM/RAG

Zooming out

The Agenda

Wrapping up

High-level:
- There will always be a trade-off
- A platform (+abstraction) can make it less painful

- Platforms inject/guide best practices
- Hamilton has lots of hooks to enable you to scale!

- Good software practice for free (testing, docs,
etc…)

- Move along the curve
- Startup → enterprise w/minimal code change

A new approach to data

Asset-based
- Think what you want, not how to compute it.

Declarative
- Don’t split between how it works and where its called
- The same code can model both

Portable
- Dataflows should run anywhere. Batch, online, etc…
- You should never be afraid to migrate.

Thank you!
Questions?

https://twitter.com/elijahbenizzy

https://www.linkedin.com/in/elijahbenizzy/

https://github.com/dagworks-inc/hamilton

elijah@dagworks.io

linktr.ee/elijahbenizzy

mailto:elijah@dagworks.io

