
| © Copyright 2024, InfluxData1

Building InfluxDB 3.0
With Apache Arrow, DataFusion, Flight,
Parquet

Andrew Lamb | Staff Engineer, InfluxData

| © Copyright 2024, InfluxData2

i n f l u x d a t a . c o
m

Andrew Lamb
Staff Engineer

InfluxData

> 20 21 😱years in enterprise software
development

Oracle: Database (2 years)

DataPower: XSLT compiler (2 years)

Vertica: DB / Query Optimizer (6 years)

Nutonian/DataRobot: ML Startups (7 years)

InfluxData: InfluxDB 3.0, Arrow, DataFusion
(4 years)

| © Copyright 2024, InfluxData3

Goals
Convince you, via example, that:

1. Databases of the future will be assembled from reusable components

2. This is not a terrible idea

Talk outline:

● Database Implementation Trends

● Time Series Databases, need for (yet another) one

● FDAP: Flight, DataFusion, Arrow, Parquet: Rationale + Use InfluxDB 3.0

Blog: Flight, DataFusion, Arrow, and Parquet: Using the FDAP Architecture to build InfluxDB 3.0

https://www.influxdata.com/blog/flight-datafusion-arrow-parquet-fdap-architecture-influxdb/

| © Copyright 2024, InfluxData4

Thesis: Long Term Trends in Databases

Time

A
do

pt
io

n
Ea

se
 o

f B
ui

ld
in

g

3.0

| © Copyright 2024, InfluxData5

“One Size Fits All”

 An Idea Whose Time Has Come and Gone

Stonebraker & Çetintemel (2005)

| © Copyright 2024, InfluxData6

Case Study: In which InfluxData decides
to build a new time series database.

| © Copyright 2024, InfluxData7

What / Why of Time Series Databases

Specialized for storing data with times (obviously).

Key Properties:

1. High volume, denormalized ingest

• eg. host=myhost123.example.com repeated over and over

2. Low latency query after load: milliseconds between ingest and query

3. Schema on write: new columns can appear at any time, backfills

4. Rapid data value decay: newest data is super important, falls off drastically

Examples:
Open → InfluxDB, Timescale, Graphite Whisper, VictoriaMetrics
Closed → Facebook Gorilla, Google Monarch, AWS Timestream, DataDog Husky

| © Copyright 2024, InfluxData8

InfluxDB 3.0 Requirements

● Need: No series cardinality limits:

○ Tech: TSM (LSM Tree / KV Store) → Column Store

● Need: ‘Infinite’ Retention

○ Tech: TSM on locally attached disks → object store (cheap!)

● Need: Elastic Scalability

○ Tech: Shared Nothing (local disk)→ Disaggregated Storage (S3)

● Need: Ecosystem Compatibility

○ Tech: InfluxQL / custom APIs → SQL + JDBC/ODBC

| © Copyright 2024, InfluxData9

So, let’s build a new Database
(How hard could that be, really?)

| © Copyright 2024, InfluxData10

It is hard (expensive) to build a new databases

Source: https://www.crunchbase.com

I did this at
Vertica too

Database company money raised
● Snowflake: $2B
● Databricks (Spark) $3.5B
● MongoDB: $311M
● SingleStore: $464.1M
● CockroachLabs (CockroachDB): $633.1M
● Pingcap (TiDB): $341.6M
● Elastic: $162M
● TimescaleDB: $181M
● DuckDB $? / MotherDuck: $47.5M $100M

https://www.crunchbase.com

| © Copyright 2024, InfluxData11

“We can do it with the Apache Arrow Ecosystem”

https://www.influxdata.com/blog/apache-arrow-parquet-flight-and-their-ecosystem-are-a-game-changer-for-olap/

Evan
(CEO)

Paul
(CTO)

https://www.influxdata.com/blog/apache-arrow-parquet-flight-and-their-ecosystem-are-a-game-changer-for-olap/

| © Copyright 2024, InfluxData12

Benefits of building on FDAP foundation

⇒ Innovation on Time Series, FDAP provides standard (lengthy to build) pieces

match tool_needed_for_database {

 File format (persistence) => Parquet,

 Columnar memory representation => Arrow Arrays,

 Operations (e.g. multiply, avg) => Compute Kernels,

 SQL + extensible query engine => Arrow DataFusion,

 Network transfer => Arrow Flight,

 JDBC/ODBC driver => Arrow FlightSQL,

}

| © Copyright 2024, InfluxData13

Let’s do it

| © Copyright 2024, InfluxData14

InfluxDB 3.0 Architecture

| © Copyright 2024, InfluxData15

InfluxDB 3.0: Fast, Real Time & Cost Effective

| © Copyright 2024, InfluxData16

“Community over Code” - The Apache Way

Non profit governance of open source communities

https://www.apache.org/theapacheway/

| © Copyright 2024, InfluxData17

Apache: Benefits for InfluxDB 3.0
• ⇒ Predictable Foundation

• Stable License: (ASL 20 years old) low risk of changes, (ahem OpenTofu)

• Communication: Predictable and open (if slow)

• Multi-Vendor Participation: Shared investment reduces individual risk

• Long Term Maintenance: Hedged against life changes, corporate

strategy shifts, VC funding cycles

• ⭐⭐⭐⭐⭐: Works far better than could be reasonably expected

| © Copyright 2024, InfluxData18

Columnar file format from 2013 (originally part of Hadoop ecosystem)

https://parquet.apache.org/

https://en.wikipedia.org/wiki/Apache_Parquet#:~:text=Parquet%20was%20designed%20as%20an,was%20released%20in%20July%202013.
https://parquet.apache.org/

| © Copyright 2024, InfluxData19

Apache Parquet: Benefits for InfluxDB
⇒ Avoid Engineering overhead of building a custom file format +
ecosystem

Compression: Works well with wide data variety (including time series)

Performance: Techniques such as projection, filter pushdown, late
materialization

Interoperability: “Defacto” interchange format for analytics, immediate
compatibility with 1000s of tools (Apache Iceberg makes it even easier)

| © Copyright 2024, InfluxData20

TSM (time series) vs Parquet Compression

Entire dataset (Parquet/TSM: 20%)

Format File Count Size (GB)

TSM 483 591

TSM (gzip) 483 97

Parquet 246,140
(4K - 2.2GB)

118

Format File Count Size (GB)

TSM 1 .110

Parquet 54
(4K - 7M)

.020

File 1 (Parquet/TSM: 18%)

Format File Count Size (GB)

TSM 1 2

Parquet 974
(12K - 53M)

.226

File 2 (Parquet/TSM 11%)

| © Copyright 2024, InfluxData21

Parquet Organization

Source: https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

A B C

15 Foo 1/1/2023

…

11 Bar ..1/5/2023

50 Baz 1/1/2023

…

32 Blarg 1/6/2023

(“PAX” in DB literature)

https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

| © Copyright 2024, InfluxData22

Parquet Structure + Metadata

Source:
https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

…

…

…

Metadata footer

Highly encoded /
compressed pages

Footer contains location of pages, and statistics such as
min/max/count/nullcount.

(“Zone Maps”, “Small Materialized Aggregates” in DB literature)

https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

| © Copyright 2024, InfluxData23

Parquet Projection + Filter Pushdown

Source:
https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

…

…

…

Metadata footer

Highly encoded /
compressed pages

Metadata + query to prune (skip)
pages that aren’t needed

SELECT A
...
WHERE C > 25

1. Consult
metadata

2. Only
read/decode
necessary
pages

https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

| © Copyright 2024, InfluxData24

Object Store

How does InfluxDB 3.0 use Parquet?
Durable Store: All data durably persisted to object store as parquet;
Query: Read from parquet files + latest unpersisted ingester data

Ingester
2. Periodically writes
data buffer as sorted
parquet files to object
store

Ingester

…

write path

read path

Querier
4. Reads (and caches) parquet data
from object store to answers queries

SELECT … FROM
...

3. User query

1. Incoming line protocol
weather,location=us-east temperature=82,humidity=67 1465839830100400200
weather,location=us-midwest temperature=82,humidity=65 1465839830100400200
weather,location=us-west temperature=70,humidity=54 1465839830100400200
weather,location=us-east temperature=83,humidity=69 1465839830200400200
weather,location=us-midwest temperature=87,humidity=78 1465839830200400200
weather,location=us-west temperature=72,humidity=56 1465839830200400200
weather,location=us-east temperature=84,humidity=67 1465839830300400200
weather,location=us-midwest temperature=90,humidity=82 1465839830400400200
weather,location=us-west temperature=71,humidity=57 1465839830400400200

weather,location=us-east temperature=82,humidity=67 1465839830100400200
weather,location=us-midwest temperature=82,humidity=65 1465839830100400200
weather,location=us-west temperature=70,humidity=54 1465839830100400200
weather,location=us-east temperature=83,humidity=69 1465839830200400200
weather,location=us-midwest temperature=87,humidity=78 1465839830200400200
weather,location=us-west temperature=72,humidity=56 1465839830200400200
weather,location=us-east temperature=84,humidity=67 1465839830300400200
weather,location=us-midwest temperature=90,humidity=82 1465839830400400200
weather,location=us-west temperature=71,humidity=57 1465839830400400200

| © Copyright 2024, InfluxData25

In memory format for fast vectorized processing

https://arrow.apache.org/

https://arrow.apache.org/

| © Copyright 2024, InfluxData26

Arrow: Benefits for InfluxDB
⇒ Best practice for storing columnar data in memory

Type System: Full type support (integers, strings, timestamps, etc)

Null Support: Standard null bitmask representation + semantics

Efficient Encodings: Dictionary encoding for Strings

Natural Integration: DataFusion, parquet libraries, Arrow Flight

Optimized Compute Kernels: Fast vectorized kernels are well understood,
but time consuming to implement, test and maintain
Note: Arrow has (many) more features than this

| © Copyright 2024, InfluxData27

Pretty much
what you will find

in every
vectorized

column store
engine

Arrow Array: Int64Array

15

1743

NULL

432

..

9

322

8

Logically 1024
8 byte integers

Buffer (aligned)
8192 bytes

15
0

Byte Offset

1743

??

432

9

322

8

…

8

16

24

8168

8176

8184

…

Arrow Array

1

1

1

0

1

1

1

Validity (bitmask)
128 bytes

Bit Offset

…

0

1

2

3

127

126

125

| © Copyright 2024, InfluxData28

Compute Kernels

let output = gt(

 &left,

 &right

);

+10
20
17
5
23
5
9
12
4
5
76
2
3
5

2
33
2
1
6
7
8
2
7
2
5
6
7
8

left right output

1
0
1
1
1
0
1
1
0
1
1
0
0
0

>

>

>

>

The gt (greater than) kernel computes an output
BooleanArray where each element is left > right

Kernels handle nulls (validity masks), optimizations for
different data sizes, etc.

~50 different kernels, full list: docs.rs page

https://docs.rs/arrow/34.0.0/arrow/compute/kernels/index.html

| © Copyright 2024, InfluxData29

How does InfluxDB 3.0 use Arrow: Ingester Buffers

Indirectly: via DataFusion and Flight.

Directly: Ingest path, which parses input line protocol → Arrow Arrays

Ingester 4. If queried prior to writing parquet buffer
is snapshotted, turned into RecordBatch
sent to querier via ArrowFlight

Querier

2. LP is parsed and appended to an
in memory buffer (mutable batch)

open
buffer

3. Periodically writes sorted
data on object store using
datafusion plan

Snapshots
(Record
Batches)

1. Incoming Line
Protocol

weather,location=us-east temperature=82,humidity=67 1465839830100400200
weather,location=us-midwest temperature=82,humidity=65 1465839830100400200
weather,location=us-west temperature=70,humidity=54 1465839830100400200
weather,location=us-east temperature=83,humidity=69 1465839830200400200
weather,location=us-midwest temperature=87,humidity=78 1465839830200400200
weather,location=us-west temperature=72,humidity=56 1465839830200400200
weather,location=us-east temperature=84,humidity=67 1465839830300400200
weather,location=us-midwest temperature=90,humidity=82 1465839830400400200
weather,location=us-west temperature=71,humidity=57 1465839830400400200

Object Store

https://github.com/influxdata/influxdb_iox/tree/main/mutable_batch

| © Copyright 2024, InfluxData30

https://github.com/apache/arrow-datafusion

Highly customizable, fast query engine that uses Arrow

https://github.com/apache/arrow-datafusion

| © Copyright 2024, InfluxData31

Arrow DataFusion: Benefits for InfluxDB
⇒ Fast full featured, extensible query engine

All the OLAP buzzwords: vectorized, columnar, multi-core,
streaming, out of core, …

“Full” SQL: JOINs, date/time/timestamp functions, structured
data, …

Customizable: Easily extend time series specific functions (e.g.
date_bin gapfill, InfluxQL, …)

| © Copyright 2024, InfluxData32

DataFusion: Input / Output

Data Batches

SQL Query

SELECT status, COUNT(1)
FROM http_api_requests_total
WHERE path = '/api/v2/write'
GROUP BY status;

Data
Batches

DataFrame

ctx.read_table("http"
)?
 .filter(...)?
 .aggregate(..)?;

Catalog information:
tables, schemas, etc

| © Copyright 2024, InfluxData33

DataFusion: Totally Customizable Architecture

SQL

Query FrontEnds

DataFrame

LogicalPlans ExecutionPlan

Plan Representations
(DataFlow Graphs)

Expression Eval

Optimizations /
Transformations

Optimizations /
Transformations

HashAggregate

Sort

…

Join

Parquet

CSV

DataFusion

Extend ✅

Extend ✅

Extend ✅

Extend ✅ Extend ✅

Extend ✅ Extend ✅

Extend ✅

Optimized Execution Operators
(Arrow Based)

Catalog / Data Source

| © Copyright 2024, InfluxData34

Optimization
(storage pruning, pushdown, etc)

Physical Planning

Execution

DataFusion
LogicalPlan

DataFusion
ExecutionPlan

DataFusion
Streams

How InfluxDB 3.0 uses DataFusion

gRPC output Arrow Flight Client Specific
Output formats

Arrow
Record
Batches

ParquetWriter

SeriesFrame
... FlightData Write to

Parquet files

Storage gRPC
Frontend

SQL Frontend
(from DataFusion)

Client / Language Specific
Frontends

read_group(..) SELECT …
FROM …

Reorg Frontend

compact_plan(..)

InfluxQL Frontend

SELECT … FROM …
GROUP BY *

● All queries (3 different
query languages)

● Parquet creation +
compaction

| © Copyright 2024, InfluxData35

https://arrow.apache.org/docs/format/Flight.html

Flight
Efficiently send columnar data (as Arrow Arrays) over the network

https://arrow.apache.org/docs/format/Flight.html

| © Copyright 2024, InfluxData36

Arrow Flight: Benefits for InfluxDB

⇒ Efficient network transfer; wide client support

Network Efficient: columnar format, high bandwidth transfer

CPU Efficient: “zero copy” Serialization / Deserialization

Pre Existing Clients: Minimal effort to make InfluxDB 3.0 clients

(just use Arrow Flight clients)

| © Copyright 2024, InfluxData37

How does InfluxDB 3.0 use Flight? Native
Query Protocol
1. Client ←→ Querier

Querier

write path

read path

SELECT … FROM ...

1. User query via Flight

Ingester

2. Querier combines data
from ingesters and parquet
into response

3. Response via Flight

| © Copyright 2024, InfluxData38

How does InfluxDB 3.0 use Flight?
Ingester ←→ Querier

1. Ingester and Querier’s internal protocol is built on Flight*

Ingester

Querier
SELECT … FROM ...

write path

read path

1. User query

2. The querier fetches unpersisted
(not yet written to parquet) data
returned from the ingester, as
RecordBatches via Flight

* we are working on in an optimized flight-like protocol to reduce latency

| © Copyright 2024, InfluxData39

https://arrow.apache.org/docs/format/FlightSql.html

FlightSQL
Execute SQL queries and return results with a standard (non custom) client

https://arrow.apache.org/docs/format/FlightSql.html

| © Copyright 2024, InfluxData40

Arrow FlightSQL: Benefits for InfluxDB

⇒ Access to SQL ecosystem, without implementing our own

drivers/connectors

Prepackaged Client Libraries: JDBC/ODBC/Ecosystem drivers

Pre-packaged Integrations: Many systems already read from FlightSQL

Community Leverage: E.g. FlightSQL Grafana plugin, others contribute

| © Copyright 2024, InfluxData41

Apache Arrow FlightSQL
● Send SQL queries, receive

Responses as Arrow Arrays

● Has clients in many
languages / APIs (JDBC,
python DB API, etc)

https://arrow.apache.org/blog/2022/02/16/introducing-arrow-flight-sql/

Read More:Expanding Arrow's Reach with a JDBC Driver for Arrow
Flight SQL

https://arrow.apache.org/blog/2022/02/16/introducing-arrow-flight-sql/
https://arrow.apache.org/blog/2022/11/01/arrow-flight-sql-jdbc/
https://arrow.apache.org/blog/2022/11/01/arrow-flight-sql-jdbc/

| © Copyright 2024, InfluxData42

How InfluxDB 3.0 uses FlightSQL

client arrow-flight JDBC
Driver

InfluxDB 3.0

Data is sent via
Arrow FlightSQL
(columnar)

arrow-flight JDBC
driver implements
JDBC API

JD
B

C

In
te

rf
ac

e

✅ Access to the ecosystem without having to implement JDBC,
ODBC, … 😅

| © Copyright 2024, InfluxData43

Before Flight SQL

Server

Database specific protocol
(e.g. Postgres FEBE)

Caveat: Only show JDBC and ODBC drivers. Also common is a native
implementation in each language ecosystem - e.g like the Python DB API 20 and
psycopg2 etc. See Apache Arrow Database Connectivity (ADBC) for more details

client JDBC
Driver

JD
B

C

In
te

rf
ac

e

client
JDBC
Driver

JD
B

C

In
te

rf
ac

e

client ODBC
Driver

O
D

B
C

In

te
rf

ac
e

https://pypi.org/project/psycopg2/
https://arrow.apache.org/adbc/0.2.0/index.html

| © Copyright 2024, InfluxData44

Alternate Strategy: Use Posgres FEBE
(Slow + painful 🤮)

client Server

Client: Prepare query:"SELECT * FROM foo WHERE a = $1;" name:""
Client: Bind name:"" parameters:[{format:"text", value:"42"}]
… (steps elided) …
Server: RowDescription fields:[{name:"a", type:"int", format:"text"}, …]
Server: DataRow fields:[{data:"42"}, {data: "Hunter Valley"} …]
Server: DataRow fields:[{data:"12"}, {data: "Merrimack Valley"} …]
… (lots ros for each data)
Server: DataRow fields:[{data:"321"}, {data: "Charles River Watershed"} …]
… (steps elided) …

JD
B

C

In
te

rf
ac

e

3. Data is sent row by row

Postgres
JDBC
Driver

DataRow {..}
DataRow {..}
DataRow {..}
DataRow {..}
…

1. Data is produced
column by column in
RecordBatches

PG febe
adapter

2. Adapter
converts to the
postgres FEBE
protocol

It also turns out clients using the
postgres driver tend to try and
query the postgres metadata tables
😱

| © Copyright 2024, InfluxData45

Conclusion

| © Copyright 2024, InfluxData46

Conclusion

● Building Databases from scratch is hard (and expensive 💸)

● You don’t have to anymore 🎉
● We built InfluxDB 3.0 using Apache Flight, DataFusion,

Arrow, and Parquet, and it was awesome

● ⭐⭐⭐⭐⭐: Highly recommended for your next projects

| © Copyright 2024, InfluxData47

Related Work

The Composable
Data Management
System Manifesto
(VLDB 2023)

Velox: Meta’s
Unified Execution
Engine
 (VLDB 2022)

The Modern Data
Architecture: The
Deconstructed
Database
(USENIX ;login:
Winter 2018)

A Deep Dive into
Common Open
Formats for
Analytical DBMSs
(VLDB 2023)

Apache Arrow
DataFusion: A Fast,
Embeddable,
Modular Analytic
Query Engine
(To Appear SIGMOD
2024)

| © Copyright 2024, InfluxData48

Try It Yourself

https://www.influxdata.com https://github.com/InfluxCommunity

| © Copyright 2024, InfluxData49

T H A N K Y O U

| © Copyright 2024, InfluxData50

Backup Slides

| © Copyright 2024, InfluxData51

Thank you!

Questions / Discussion
Find out more:
● Flight, DataFusion, Arrow, and Parquet: Using the FDAP

Architecture to build InfluxDB 3.0
● Apache Arrow: https://arrow.apache.org/
● Apache DataFusion: https://arrow.apache.org/datafusion/
● Apache Parquet: https://parquet.apache.org/

https://www.influxdata.com/blog/flight-datafusion-arrow-parquet-fdap-architecture-influxdb/
https://www.influxdata.com/blog/flight-datafusion-arrow-parquet-fdap-architecture-influxdb/
https://arrow.apache.org/
https://arrow.apache.org/datafusion/
https://parquet.apache.org/

| © Copyright 2024, InfluxData52

Defragmenting Data Access Across Systems

| © Copyright 2024, InfluxData53

Integration: Arrow Language Implementations

53

Java

C++

JavaScript

Go

Rust

C Ruby

Python

Julia

R

C#

Matlab

| © Copyright 2024, InfluxData54

Why Arrow Internally (and not just at interface)?

Option 1: Use Arrow Internally
(DataFusion, pola.rs, Acero)

Pros: Fast interchange, reuse Arrow
libraries

Cons: Constrained(*) to Arrow

Option 2: Use specialized structures
internally, convert to Arrow at edges
(Velox, DuckDB)

Pros: Can use specialized structures

Cons: Maintain specialized code

Scan

Filter

Agg

Scan

Filter ?

Agg ?

?

Convert to
arrow

| © Copyright 2024, InfluxData55

Why Arrow Internally (and not just at interface)?

So far results are
encouraging

Theory: Using Arrow is “good enough” compared to specialized
structures
Pooled open source development → invest heavily in optimized Arrow
kernels

https://voltrondata.com/resources/speeds-and-feeds-hardware-and-software-matter

https://github.com/tustvold/access-log-bench

Good: Sorting, Filtering,
Projection, Parquet

Could Improve: Grouping,
Joining

https://voltrondata.com/resources/speeds-and-feeds-hardware-and-software-matter
https://github.com/tustvold/access-log-bench

