@ influxdato’

Building InfluxDB 3.0

With Apache Arrow, DataFusion, Flight,
Parquet

Andrew Lamb | Staff Engineer, InfluxData

@ influxdato®

> 26 21 ()years in enterprise software
development

Oracle: Database (2 years)

DataPower: XSLT compiler (2 years)
Vertica: DB/ Query Optimizer (6 years)
Nutonian/DataRobot: ML Startups (7 years)

InfluxData: InfluxDB 3.0, Arrow, DataFusion
(4 years)

Andrew Lamb

Staff Engineer
InfluxData

Goals

Convince you, via example, that:
1. Databases of the future will be assembled from reusable components
2. Thisis not a terrible idea
Talk outline:
e Database Implementation Trends
e Time Series Databases, need for (yet another) one

e FDAP: Flight, DataFusion, Arrow, Parquet: Rationale + Use InfluxDB 3.0

Blog: Elight, DataFusion, Arrow, and Parquet: Using the FDAP Architecture to build InfluxDB 3.0

@ influxdata®

https://www.influxdata.com/blog/flight-datafusion-arrow-parquet-fdap-architecture-influxdb/

Thesis: Long Term Trends in Databases

4

Adoption
Ease of Building

Copyright 2024, InfluxData

[ﬁm &) CedarDB

LanceDB
~ QuestDB

b

3a<snowflake */ yugabyteDB

[tile]DB Q SingleStore
@ influxdb CockroachDB Q puckos
Googl ockroac
Big%?grf 3 : 0
@ Coralogix ClickHouse

presto 3 Pinecone * .

PaRAicceL @ influxdb 3. B
Greenplum ; oo SPQF”(\Z ‘? pInOtdatabricks

- amazon
@ REDSHIFT
IVE

=

SQL Server

Time

@ influxdata®

“One Size Fits All”

An Idea Whose Time Has Come and Gone

Stonebraker & Cetintemel (2005)

Case Study: In which InfluxData decides
to build a new time series database.

What / Why of Time Series Databases

Specialized for storing data with times (obviously).

Key Properties:
1. High volume, denormalized ingest
®* eg. host=myhost123.example.com repeated over and over
2. Low latency query after load: milliseconds between ingest and query
3. Schema on write: new columns can appear at any time, backfills
4. Rapid data value decay: newest data is super important, falls off drastically

Examples:
Open = InfluxDB, Timescale, Graphite Whisper, VictoriaMetrics
Closed =» Facebook Gorilla, Google Monarch, AWS Timestream, DataDog Husky

@ influxdata®

InfluxDB 3.0 Requirements

e Need: No series cardinality limits:
o Tech: TSM (LSM Tree / KV Store) = Column Store
e Need: ‘Infinite’ Retention
o Tech: TSM on locally attached disks = object store (cheap!)
e Need: Elastic Scalability
o Tech: Shared Nothing (local disk)» Disaggregated Storage (S3)
e Need: Ecosystem Compatibility
o Tech: InfluxQL / custom APIs = SQL + JDBC/ODBC

@ influxdata®

So, let’s build a new Database
(How hard could that be, really?)

It is hard (expensive) to build a new databases

Database company money raised

Snowflake: $2B

Databricks (Spark) $3.5B

MongoDB: $311M

SingleStore: $464.1M

CockroachLabs (CockroachDB): $633.1M
Pingcap (TiDB): $341.6M

Elastic: $162M

TimescaleDB: $181M

DuckDB $? / MotherDuck: $4745M $100M

| did this at
Vertica too

Source: https://www.crunchbase.com

@ influxdata®

https://www.crunchbase.com

“We can do it with the Apache Arrow Ecosystem”

. o
e influxdata Products v D v Customers v v Pricing ContactUs Login v Q

o . 7
Categories
Apache Arrow, Parquet, Flight and Their 9
Ecosystem are a Game Changer for OLAP B #voucomeery
H Community
By Paul Dix / Apr 16, 2020 / Community, Developer Developer v
Community
Apache Arrow, a specification for an in-memory columnar data format, and associated projects: Parquet for compressed on-disk data, it
Flight for highly efficient RPC, and other projects for in-memory query processing willlikely shape the future of OLAP and data
warehousing systems. This will mostly be driven by the promise of interoperability between projects, paired with massive performance InfluxData
gains for pushing and pulling data in and out of big data systems. With object storage like S3 as the common data lake, OLAP projects InfluxDB Templates
need a common data AP, which Parquet represents. For data science and query workloads, they need a common RPC that is InfluxDB
timized for pulli illions of records to d lex analytical and machine learning tasks.
optimized for pulling many millions of records to do more complex analytical and machine learning tasks. Barinets. v
In this post, I'l cover each of these areas and why | think the Apache Arrow umbrella of projects represents the common API around Kapacitor

which current and future big data, OLAP, and data warehousing projects will collaborate and innovate. I'll conclude with some thoughts Release Notes

on where these projects are and where things might be going.

Tech Tips
Telegraf

Apache Arrow Chronograf
General

Apache Arrow is an in-memory columnar data format. It is designed to take advantage of modern CPU architectures (like SIMD) to InfluxDB Cloud

achieve fast performance on columnar data. Itis ideal for vectorized analytical queries. The Arrow specification gives a standard

InfluxDB Enterprise
memory layout for columnar and nested data that can be shared between processes and query processing libraries. It's the base level P

building block for working with in-memory (or MMAP'd) data that ties everything together. It's designed for zero-copy semantics to InfluxDays
make moving data around as fast and efficient as possible. Newsroom v
Trust

Tutorial

Persistence, bulk data and Parquet

(C E O) (CTO) Data is the APL. I'm sure others said it before me, but | said it myself back in 2010 when talking about service-oriented design and

building loosely coupled systems that interacted through message buses like RabbitMQ and later Kafka. What | meant then was that

Use Case v

Try InfluxDB Cloud

The most powerful time cariac

database as a service | #-oin Fou
for our uoc:

the data you passed through message queues served as the API for services that integrated with each other through those queues.
And like APIs, that data needs to have a common serialization format and its schema should be versioned. More broadly, | was trying to
highlight the importance of data interchange, which is as important for data processing and analytic systems as it is for services.

https://www.influxdata.com/blog/apache-arrow-parguet-flight-and-their-ecosystem-are-a-game-changer-for-olap/
1) Copyright 2024, InfluxData @ influxdata®

https://www.influxdata.com/blog/apache-arrow-parquet-flight-and-their-ecosystem-are-a-game-changer-for-olap/

Benefits of building on FDAP foundation

= Innovation on Time Series, FDAP provides standard (lengthy to build) pieces

match tool_needed_for_database {
File format (persistence) => Parquet,
Columnar memory representation => Arrow Arrays,
Operations (e.g. multiply, avg) => Compute Kernels,
SQL + extensible query engine => Arrow DataFusion,
Network transfer => Arrow Flight,
JDBC/0ODBC driver => Arrow FlightSQL,

@ influxdata®

Let’'s do it

InfluxDB 3.0 Architecture

@ influxdb’

|
|
|
|
h |
N |
|
|
Catalog to track
schema?changes Columnar datz‘i stqred | Machine
Query as Parquet files in | —® learning tasks
(SQL, InfluxQL) Query .engine optimizations cloud object store |
(Pruning, Pushdown, etc) ;
2% |
c I
N ATA] Arrow columns in memory !
DATAFUSION —e to cache “hot” data et !
©h |
APACHE | L o Data science
ARROW»> e s | activities
I |
|
|
|
|
|
J

@ influxdata®

InfluxDB 3.0: Fast, Real Time & Cost Effective

r InfluxDB 3.0 provides .
45x 90% 100x 45x

Better write Reduction in Faster queries for Faster queries
throughput storage costs high cardinality data for recent data
\ Compared to InfluxDB OSS /

@ influxdata®

APACHE

SOFTWARE FOUNDATION
ESTABLISHED 1999

Non profit governance of open source communities

“Community over Code” - The Apache Way

— . ®
16) Copyright 2024, InfluxData %’ |nf|uxd0ta

https://www.apache.org/theapacheway/

Apache: Benefits for InfluxDB 3.0

= Predictable Foundation

Stable License: (ASL 20 years old) low risk of changes, (ahem OpenTofu)
Communication: Predictable and open (if slow)

Multi-Vendor Participation: Shared investment reduces individual risk
Long Term Maintenance: Hedged against life changes, corporate
strategy shifts, VC funding cycles

: Works far better than could be reasonably expected

@ influxdata®

/ %y Parquet

Columnar file format from 2013 (originally part of Hadoop ecosystem)

https://parquet.apache.orq/

. @
18 | © Copyright 2024, InfluxData @ "‘fIUXdOtO

https://en.wikipedia.org/wiki/Apache_Parquet#:~:text=Parquet%20was%20designed%20as%20an,was%20released%20in%20July%202013.
https://parquet.apache.org/

Apache Parquet: Benefits for InfluxDB

= Avoid Engineering overhead of building a custom file format +
ecosystem

Compression: Works well with wide data variety (including time series)

Performance: Techniques such as projection, filter pushdown, late
materialization

Interoperability: “Defacto” interchange format for analytics, immediate
compatibility with 1000s of tools (Apache Iceberg makes it even easier)

@ influxdata®

TSM (time series) vs Parquet Compression

Format File Count Size (GB)
TSM 483 591
TSM (gzip) | 483 97
Parquet 246,140 18

(4K - 2.2GB)

Entire dataset (Parquet/TSM: 20%)

Format File Count Size (GB)
TSM 1 110
Parquet 54 .020

(4K - 7M)
File 1 (Parquet/TSM: 18%)
Format File Count Size (GB)
TSM 1 2
Parquet 974 226

(12K - 53M)

File 2 (Parquet/TSM 11%)

@ influxdata®

21

Parquet Organization

RowGroup 1
ColumnChunk 1 ColumnChunk 2 ColumnChunk 3
(column “A”) (column “B”) (column “C”)
RowGroup 2

ColumnChunk 4
(column “A”)

ColumnChunk 5
(column “B”)

ColumnChunk 6
(column “C”)

C

Source: https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

Copyright 2024, InfluxData

15 Foo 1/1/2023
(XX J

" Bar .1/5/2023

50 Baz 1/1/2023
[X X J

32 Blarg 1/6/2023

(“PAX” in DB literature)

<

influxdata®

https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

Parquet Structure + Metadata

Footer
T
File metadata, schema, etc.

RowGroup 1 metadata

H ig h Iy e n COded / column A metada Location of first Data Page,
olumn “B” metadata row counts, sizes, min/max
compressed pages Colmn metoc

values, etc.

Il

Column “C” metadata

|
1
l
1
|
l
1
1
|
l
l
l
1
1
|
|
1
"a RowGroup 2 metadata !
1
|
|
1
1
|
1
|
!
l
1

Column “A” metadata

m Location of first Data Page,
Column “B” metadata row counts, sizes, min/max
values, etc.
Column “C” metadata
Metadata footer || = _— ’
//

Footer contains location of pages, and statistics such as
min/max/count/nullcount.

Source:
N Al . i - -milli - « ”» o«
https://www.influxdata.com/blog/querying-parquet-millisecond-latency/ (Zone MCI,OS ’ Small Materialized Aggregates in DB l/terature)

. o
22 | © Copyright 2024, InfluxData %! influxdata

https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

Parquet Projection + Filter Pushdown

2. Only - ’- . ’i\
read/decode \ \ 1 + i
necessary — — Metadata + query to prune (skip)

pages nghly encoded / o pages that al’en’t needed
Compressed pages

-I.. SELECT A
.. -/V.VI;II.ERE C > 25
Metadata footer 1. Consult

metadata

Source:
https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

— . @
23) Copyright 2024, InfluxData %’ |nf|uxd0t°

https://www.influxdata.com/blog/querying-parquet-millisecond-latency/

How does InfluxDB 3.0 use Parquet?

Durable Store: All data durably persisted to object store as parquet;
Query: Read from parquet files + latest unpersisted ingester data

\/ Ingester

1. Incoming line protocol

2. Periodically writes
data buffer as sorted
parquet files to object

Store
Ingester Object Store

write path

read path ‘

SELECT .. FROM
4. Reads (and caches) parquet data

3. UserM Querier
@ influxdata®

from object store to answers queries

ARRO w>>>

In memory format for fast vectorized processing

https://arrow.apache.orqg/

@ influxdata®

https://arrow.apache.org/

Arrow: Benefits for InfluxDB

= Best practice for storing columnar data in memory

Type System: Full type support (integers, strings, timestamps, etc)
Null Support: Standard null bitmask representation + semantics
Efficient Encodings: Dictionary encoding for Strings

Natural Integration: DataFusion, parquet libraries, Arrow Flight

Optimized Compute Kernels: Fast vectorized kernels are well understood,
but time consuming to implement, test and maintain

Note: Arrow has (many) more features than this

@ influxdata®

Arrow Array: Int64Array

15

1743

NULL

432

322

8

Logically 1024
8 byte integers

Byte Offset

0
8

16
24

8168
8176

8184

Bit Offset
0
15 1
1
1743 1
2
7 0
3
432
125
9 1
126
322 1
127
8 1
Buffer (aligned) Validity (bitmask)
8192 bytes 128 bytes

Arrow Array

Pretty much

what you will find

in every
vectorized
column store
engine

@ influxdata®

Com
19 | 2 |
20 33 |
> |
17 2 |
5 1 _i
23 6 |
5 7 |
o |7 |8 |:
12 1 2 ||
4 7 |
5 2 |
> |
76 5 |
2 | 6 |
3 7
>
| I I 8 |
left right

oute Kernels

W R oo J [T W N PN i » Y [P

@ + >> ARROW

let output = gt(
&left,
&right

),

The gt (greater than) kernel computes an output
BooleanArray where each element is left > right

Kernels handle nulls (validity masks), optimizations for
different data sizes, etc.

50 different kernels, full list: docs.rs page

@ influxdata®

https://docs.rs/arrow/34.0.0/arrow/compute/kernels/index.html

How does InfluxDB 3.0 use Arrow: Ingester Buffers

Indirectly: via DataFusion and Flight.

Directly: Ingest path, which parses input line protocol » Arrow Arrays

3. Periodically writes sorted
data on object store using
datafusion plan

1. Incoming Line

Protocol
open .
buffer Snapshots ‘ Object Store
(Record
Batches)

2. LP s parsed and appended to an
in memory buffer (mutable batch)

! 4. If queried prior to writing parquet buffer
Querier is snapshotted, turned into RecordBatch
sent to querier via ArrowFlight

Ingester

@ influxdata®

https://github.com/influxdata/influxdb_iox/tree/main/mutable_batch

>~ APACHE

’ DATAFUSION'

Highly customizable, fast query engine that uses Arrow

https://github.com/apache/arrow-datafusion

- . .
30 Copyright 2024, InfluxData %! influxdata

https://github.com/apache/arrow-datafusion

Arrow DataFusion: Benefits for InfluxDB

= Fast full featured, extensible query engine

All the OLAP buzzwords: vectorized, columnar, multi-core,
streaming, out of core, ...

“Full” SQL: JOINs, date/time/timestamp functions, structured
data, ...

Customizable: Easily extend time series specific functions (e.g.
date_bin gapfill, InfluxQL, ...)

@ influxdata®

DataFusion: Input / Output

SELECT status, COUNT(1)

FROM http_api_requests_total
WHERE path = '/api/v2/write’

GROUP BY status;
SQL Query

ctx.read_table("http"
)?
.filter(...)?
.aggregate(..)?;

DataFrame —

Catalog information:
tables, schemas, etc

Data

Batches >>>

\\/

APACHE

DATAFUSION

N

N

»

Data Batches

@ influxdata®

DataFusion: Totally Customizable Architecture

DataFusion

Catalog / Data Source

Pa rqu et \ Extend Extend (/4 Extend

CSV

LogicalPlans | == | ExecutionPlan mmmm) | Expression Eval

Extend {4
t \ HashAggregate
Extend J / Extend "4

SQL Optimizations / Optimizations / Join
Transformations Transformations
DataFrame Extend ['4 Extend [Sort
Query FrontEnds Plan Representations Optimized Execution Operators
(DataFlow Graphs) (Arrow Based)

@ influxdata®

How InfluxDB 3.0 uses DataFusion

SELECT .. SELECT .. FROM ..
read_group(..) l FROM l CROUP BV * l compact_plan(..) l
SHETEgE grFe SQL Frontend InfluxQL Frontend Reorg Frontend Client/Language Specific
Frontend (from DataFusion) Frontends
Optimization m=m= DataFusion e All queries (3 different
(storage pruning, pushdown, etc) o = LogicaIPIan
l query Ianguages)
Physical Planning =~ DataFusion e Parquet creation +
’ ExecutionPlan .
l - Compactlon
Execution === DataFusion
Arrow eeeese® Streams
Record
Batches
. . Client Specific
gRPC output Arrow Flight ParquetWriter

Output formats

Write to l
Parquet files

SeriesFrame l FlightData l

@ influxdata®

ﬁTiRow>>>
Flight

Efficiently send columnar data (as Arrow Arrays) over the network

https://arrow.apache.org/docs/format/Flight.html

@ influxdata®

https://arrow.apache.org/docs/format/Flight.html

Arrow Flight: Benefits for InfluxDB

= Efficient network transfer; wide client support
Network Efficient: columnar format, high bandwidth transfer
CPU Efficient: “zero copy” Serialization / Deserialization

Pre Existing Clients: Minimal effort to make InfluxDB 3.0 clients

(just use Arrow Flight clients)

@ influxdata®

How does InfluxDB 3.0 use Flight? Native
Query Protocol

1. Client «=» Querier

/ Ingester \
write path

read path

3. Response via Flight

: 2. Querier combines data
from ingesters and parquet
Querier }

SELECT .. FROM ...

into response
1. User query via Flight

@ influxdata®

How does InfluxDB 3.0 use Flight?
Ingester «= Querier

1. Ingester and Querier’s internal protocol is built on Flight*

/ Ingester \
K
write path

read path

2. The querier fetches unpersisted
= (not yet written to parquet) data
returned from the ingester, as

SELECT .. FROM ... | / RecordBatches via Flight
1. User query Querier .

* we are working on in an optimized flight-like protocol to reduce latency

@ influxdata®

AﬁcﬁRow>>>
FlightSQL

Execute SQL queries and return results with a standard (non custom) client

https://arrow.apache.org/docs/format/FlightSgl.html

@ influxdata®

https://arrow.apache.org/docs/format/FlightSql.html

Arrow FlightSQL: Benefits for InfluxDB

= Access to SQL ecosystem, without implementing our own

drivers/connectors

Prepackaged Client Libraries: JDBC/ODBC/Ecosystem drivers
Pre-packaged Integrations: Many systems already read from FlightSQL

Community Leverage: E.g. FlightSQL Grafana plugin, others contribute

@ influxdata®

ApaChe ArrOW Fllg htSQL Introducing Apache Arrow Flight SQL:

Accelerating Database Access

. .
BN 16 Feb 2022
. S e n d S Q L q u e r I e S 9 re C e Ive "' Almeija, James Duong, Vinicius Fraga, Juscelino Junior, David Li, Kyle Porter, Rafael

Telles

Responses as Arrow Arra yS VO

Arrow community for interacting with SQL databases that makes use of the Arrow in-memory
columnar format and the Flight RPC framework.

Flight SQL aims to provide broadly similar functionality to existing APIs like JDBC and ODBC,
including executing queries; creating prepared statements; and fetching metadata about the
supported SQL dialect, available types, defined tables, and so on. By building on Apache Arrow,

. I I a S C | i e n tS i n I I l a n however, Flight SQL makes it easy for clients to talk to Arrow-native databases without
y converting data. And by using Flight, it provides an efficient implementation of a wire format that

supports features like encryption and authentication out of the box, while allowing for further

/ optimizations like parallel data access.
| a n g u a g e S ‘ \ P I S (J D B C 9 While it can be directly used for database access, it is not a direct replacement for JDBC/ODBC.

Instead, Flight SQL serves as a concrete wire protocol/driver implementation that can support a

JDBC/ODBC driver and reduces implementation burden on databases.
python DB API, etc) -

‘ JDBC 4\

Flight SQL) J Database with|
ODBC ————> [ibraries —ight RPC ‘Flight SQL endpoint

Arrow-native app /

https://arrow.apache.org/blog/2022/02/16/introducing-arrow-flight-sql/

Read More:Expanding Arrow's Reach with a JDBC Driver for Arrow
Flight SQL

- . .
41 Copyright 2024, InfluxData %! influxdata

https://arrow.apache.org/blog/2022/02/16/introducing-arrow-flight-sql/
https://arrow.apache.org/blog/2022/11/01/arrow-flight-sql-jdbc/
https://arrow.apache.org/blog/2022/11/01/arrow-flight-sql-jdbc/

How InfluxDB 3.0 uses FlightSQL

client

JDBC
Interface

A

| arrow-flight JDBC _

Data is sent via
Arrow FlightSQL
(columnar)

Driver

arrow-flight JDBC
driver implements
JDBC API

InfluxDB 3.0

(4 Access to the ecosystem without having to implement JDBC,

ODBC, ... &

@ influxdata®

Before Flight SQL

o Database specific protocol
o JDBC (e.g. Postgres FEBE)
lient O«
clien e .
s Driver
= £
Q Server
_ oL | JDBC
client D g Driver
D +
= =
Q
O
client (ORN) . OoDBC Caveat: Only show JDBC and ODBC drivers. Also common is a native
g EB Driver implementation in each language ecosystem - e.g like the Python DB APl 20 and
"E sycopg2 etc. See Apache Arrow Database Connectivity (ADBC) for more details
O £ psycopds

@ influxdata®

https://pypi.org/project/psycopg2/
https://arrow.apache.org/adbc/0.2.0/index.html

Alternate Strategy: Use Posgres FEBE

(Slow + painful &)

DataRow {..}
DataRow {..}
DataRow {..}
8 Postgres DataRow {..}
) © PG febe
client O« <1 JDBC - « Server
0 o adapter
Qe Driver .
- £ 3. Data is sent row by row
2. Adapter
converts to the 1. Data is produced
postgres FEBE column by column in
Client: Prepare query:"SELECT * FROM foo WHERE a = $1;" name:"" protocol RecordBatches
Client: Bind name:"" parameters:[{format:"text", value:"42"}]
.. (steps elided) ..
Server: RowDescription fields:[{name:"a", type:"int", format:"text"}, ..] It also turns out clients using the
Server: DataRow fields:[{data:"42"}, {data: "Hunter Valley"} ..] postgres driver tend to try and
Server: DataRow fields:[{data:"12"}, {data: "Merrimack Valley"} ..] query the postgres metadata tables

.. (lots ros for each data)
Server: DataRow fields:[{data:"321"}, {data: "Charles River Watershed"} ..]
.. (steps elided) ..

\ ‘.,)

— . ®
44 Copyright 2024, InfluxData %’ |nfluxd0t0

Conclusion

Conclusion

e Building Databases from scratch is hard (and expensive ¢”)
e You don’t have to anymore &7

e We built InfluxDB 3.0 using Apache Flight, DataFusion,

Arrow, and Parquet, and it was awesome

o : Highly recommended for your next projects

@ influxdata®

Related Work

The Modern Data Architecture

The Modern Data
Architecture: The
Deconstructed
Database
(USENIX ;login:
Winter 2018)

47 Copyright 2024, InfluxData

The Composable

Data Management

System Manifesto
(VLDB 2023)

Velox: Meta’s
Unified Execution
Engine

(VLDB 2022)

A Deep Dive into
Common Open
Formats for
Analytical DBMSs
(VLDB 2023)

Apache Arrow
DataFusion: A Fast,
Embeddable,
Modular Analytic
Query Engine
(To Appear SIGMOD
2024)

@ influxdata®

Try It Yourself

@ influxdata® peses -

g

Influx Community

r Influx Community projects to be hosted

(A Overview Repositories ' 23 Packages People 7 Projects Settings

It's About Time. .
Build on InfluxDB. S - Pinned e

The Time Serica bt EiRiipumesh-rs dovelopars » % - [plant_buddy Public] & tiguitto (Public [postman_influx_v2_api
build 16T, analytics, and cloud applications. 8

Finthe raft prockct 2

graf + InfluxDB Public

https://www.influxdata.com https://github.com/InfluxCommunity

@ influxdata®

@ influxdata’

THANK YOU

Backup Slides

@ influxdata®

Thank you!

Questions / Discussion

Find out more:

e Flight, DataFusion, Arrow, and Parquet: Using the FDAP
Architecture to build InfluxDB 3.0

e Apache Arrow: https://arrow.apache.org/

Apache DataFusion: https://arrow.apache.org/datafusion/

e Apache Parquet: https://parquet.apache.ora/

@ influxdata®

51 Copyright 2024, InfluxData

https://www.influxdata.com/blog/flight-datafusion-arrow-parquet-fdap-architecture-influxdb/
https://www.influxdata.com/blog/flight-datafusion-arrow-parquet-fdap-architecture-influxdb/
https://arrow.apache.org/
https://arrow.apache.org/datafusion/
https://parquet.apache.org/

Defragmenting Data Access Across Systems

. _—
AR ROW>>>

(dremio Qllll' ClickHouse | 47 Parquet | @= DuckDB | @ influxdb’

@ influxdata®

Integration: Arrow Language Implementations

J
ava C
C++
JavaScript Python
G
° R
Rust
Matlab
Julia

C#

53

Ruby

@ influxdata®

Why Arrow Internally (and not just at interface)?

> K‘ﬁRow>>>
/,’

Filter
Scan

Option 1: Use Arrow Internally
(DataFusion, pola.rs, Acero)

Pros: Fast interchange, reuse Arrow
libraries

Cons: Constrained(*) to Arrow

Convert to

Option 2: Use specialized structures
internally, convert to Arrow at edges
(Velox, DuckDB)

Pros: Can use specialized structures

Cons: Maintain specialized code .
@ influxdata®

Why Arrow Internally (and not just at interface)?

Theory: Using Arrow is “good enough” compared to specialized
structures

Eoolelcl open source development » invest heavily in optimized Arrow
ernels

Access Log Benchmark (parquet)

SO far reSL”tS are y B DataFusion [l Polars DuckDB
encouraging
Good: Sorting, Filtering, .

20820 10 sec
. (1xV100) 0.2
H

P rOJ e Ctl O n ’ Pa rq u et v Spoﬁ’(\z m A polars “;lsa\rel‘i%ﬂ .
0.0

CO U Id I m p rove: G rO U pi n g 9 ' Average Query Execution Time (s)
J O| n | N g https://github.com/tustvold/access-log-bench

https://voltrondata.com/resources/speeds-and-feeds-hardware-and-software-matter @ influxdata®

Copyright 2024, InfluxData

https://voltrondata.com/resources/speeds-and-feeds-hardware-and-software-matter
https://github.com/tustvold/access-log-bench

