
Events Sourcing
with Kafka
at Scale

Data Council Austin '24

Alejandro Martin
@alejandromav_

Austin Data Council '24 ⎯ Event Sourcing with Kafka at Scale

Great to meet you!

Head of Product @ Tinybird
@alejandromav_

Alejandro Martin

Disclaimer

Austin Data Council '24 ⎯ Event Sourcing with Kafka at Scale

Intro.
Event Sourcing in
a nutshell

Storing changes as a
sequence of

immutable events

Example
Event Sourcing in a nutshell

2024-03-11T12:30:45

NOW

Example
Event Sourcing in a nutshell

2024-03-11T12:30:45

2024-03-11T15:57:09

NOW

Example
Event Sourcing in a nutshell

2024-03-11T12:30:45

2024-03-11T15:57:09

2024-03-13T09:17:28

NOW

Example
Event Sourcing in a nutshell

2024-03-11T12:30:45

2024-03-11T15:57:09

2024-03-13T09:17:28

$5,000 - $1,299 = $3,701
Balance

NOW

Example
Event Sourcing in a nutshell

2024-03-11T12:30:45

2024-03-11T15:57:09

2024-03-13T09:17:28

$5,000 - $1,299 - $879 = $2,822
Balance

NOW

Austin Data Council '24 ⎯ Event Sourcing with Kafka at Scale

When.
Good use cases and
scenarios

Event Sourcing ⎯ When

Strong use cases

Immutable audit trail of
transactions, ensuring regulatory
compliance and enabling
detailed analysis of financial
activities, including fraud
prevention.

Allowing real-time analysis,
anomaly detection, and
historical trend analysis while
ensuring data integrity.

Track order history, inventory
changes, and customer
interactions, allowing for
accurate reporting, personalized
recommendations, and order
processing optimization.

Financial and
Accounting systems

Billing, Security
and Observability

eCommerce and
Inventory management

Austin Data Council '24 ⎯ Event Sourcing with Kafka at Scale

Lessons learned.
The good, the bad
& the ugly

Event Sourcing ⎯ The good, the bad and the ugly

Some actual metrics

Ingested data

500 MB/s
Requests per second

15,000
Average read latency

<100ms

Event Sourcing ⎯ The good

Now you have a complete history of changes to your
application's state. This is great for traceability,
debugging, and also building customer facing
features such as an audit log.

You can investigate what happened in detail when
something goes wrong. This is great for business
operations, or even customer support.

Full traceability

Complete, inmutable trail of events

Event Sourcing ⎯ The good

Full traceability

Event Sourcing ⎯ The good

Since you have the full logs of events, you can
always rebuild the current state applying different
business logic.

Even back-to-back testing and validating new
business ideas with real data.

Change business logic retroactively

Business rules evolve over time

Event Sourcing ⎯ The good

Attribution model example

Event Sourcing ⎯ The good

Data models and business rules will evolve and
change over time. Events capture
domain-specific actions and intentions, and they
can be versioned when needed.

Producers and Consumers be deployed in a
more flexible way, and process the new event
version asynchronously.

More flexible schema evolution

Decoupled producers and consumers

The not-so-good

Austin Data Council '24 ⎯ Event Sourcing with Kafka at Scale

Event Sourcing ⎯ The not-so-good

Storing a complete history of events usually leads to
increased storage requirements compared to
traditional state-based persistence methods like
CRUDs.

This typically results in higher storage costs,
especially for systems with a high volume of events.

Storage and
Compute costs

Up to 1,000x more disk

Event Sourcing ⎯ The not-so-good

Systems converge on a value over time but can lead
to periods of inconsistent data, known as the
inconsistency window.

Availability vs Consistency: sometimes is better
not to make a decision, rather than doing it with
partial or stale data.

Eventual Consistency

Data may not be ready for reads right away

Event Sourcing ⎯ The not-so-good

Businesses need to deal with lots of day to day
nuances. No process is perfect, and there's always
an exception.

Say goodbye to direct database UPDATEs and
DELETEs, embrace compensation events and
custom scripts.

Complex day to day operations

No more database UPDATEs

Event Sourcing ⎯ The not-so-good

You'll need to account for sorting the events in time,
handle duplicates, final states, and specific
business logic.

Analytical
complexity

Way more complicated SQL queries

Event Sourcing ⎯ The not-so-good

Exactly-once semantics is really, really difficult to
implement. Chances are you'll need to handle
duplicate events at some time using some kind of
transaction id.

Handling duplicates

Because yes, it will happen

Event Sourcing ⎯ The not-so-good

As the system evolves, new versions of each events
are created. However, old events with obsolete
schemas may remain for a long time, and you will
have to keep supporting them.

You’ll make poor design decisions at the beginning,
and you’ll have to live with those for a while.

Old events will remain there

Deprecating things is hard

Austin Data Council '24 ⎯ Event Sourcing with Kafka at Scale

Suggestions.
Some heavily
opinionated
recommendations

Austin Data Council '24 ⎯ Event Sourcing with Kafka at Scale

Suggestions.
Hot takes 🔥

Just don't do it

Events are Data, and
What you really need

is Information

You need CQRS for
reads, ideally an
OLAP database

Snapshots are needed
for performance

Materialized Views
are awesome

https://docs.google.com/file/d/1Jz7TEYmvvEEGrzbsSU9Az4fS5wWm5Er8/preview

Austin Data Council '24 ⎯ Event Sourcing with Kafka at Scale

Q&A

Thank you.

Alejandro Martin ⎯ @alejandromav_

