Data Council Austin '24

Events Sourcing
with Kafka
at Scale

ﬂ Alejandro Martin
4 @alejandromav L

Austin Data Council '24 — Event Sourcing with Kafka at Scale

Great to meet you!

Alejandro Martin

Head of Product @ Tinybird
@alejandromav_

INDITEX

Tinybird
Full-time - 1yr 7 mos
Remote

Head of Product
Nov 2023 - Present - 5 mos
A Corufia, Galicia, Spain

Product Manager
Sep 2022 - Oct 2023 - 1yr 2 mos

Inditex
Full-time - 4 yrs 6 mos
On-site

Engineering Manager, Data & Analytics
Feb 2021 - Jul 2022 - 1yr 6 mos

Technical Lead
Feb 2018 - Feb 2021 - 3 yrs 1 mo

Full-stack Developer @ Zara.com
Imatia Innovation - Full-time

Apr 2016 - Jan 2018 - 1 yr 10 mos
A Corufa Area, Spain - On-site

Full-stack Developer
Aportamedia S.L.

Oct 2014 - Mar 2016 - 1 yr 6 mos
A Corufa Area, Spain

Disclaimer

Intro.
Event Sourcing in
a hutshell

Storing changes as a
sequence of
immutable events

select balance from accounts
where account_id = '6ad87cfl'

——balance—

| 5000 |
I I

"transaction_id": "123456789",

"timestamp": "2024-03-11T12:30:45",
"account_id": "6ad87cfl",

"type": "transfer",

"amount": 5000.00,

"currency": "USD",

"description”: "Transfer funds to new account”

Event Sourcing in a nutshell

Example

2024-03-11T12:30:45

@)

NOW

"transaction_id": "123456789",
"timestamp": "2024-03-11T12:30:45",
"account_1i "6ad87cfl"

"type": "transfer",

"amou 5000.00,

"cur y": "US

"description": "Transfer funds to new

account"

2024-083-11T712:30:45 O
Event Sourcing in a nutshell

"transaction_id": "123456789",
"timestamp": "2024-03-11T12:30:45",

"account_ti "6ad87cfl"
"type": "transfer",
"amou 5000.00,

"cur y": "US
"description": "Transfer funds to new account"

2024-03-11T15:57:09 O

"transaction_id": "987654321"
"timestamp": "2024-03-11T15:57:09",
"account_id": "6ad87cfl",
"type": "payment",
"amour -1299.00,

urrency": "USD",
"merchant": "Data Council",
"description": "Data Council tickets"

NOW

2024-083-11T712:30:45 O
Event Sourcing in a nutshell

"transaction_id": "123456789",

"timestamp": "2024-03-11T12:30:45",
"account_1i "6ad87cf1l",

": "transfer",
"amou 5000.00,
"cur y": "US
"description":

"type

"Transfer funds to new account"

2024-03-11T15:57:09 O

"transaction_1id": "987654321",
"timestamp": "2024-03-11T15:57:09",
"account_id": "6ad87cfl",
"type": "payment",
"amour -1299.00,

urrency": "USD",
"merchant": "Data Council",
"description": "Data Council tickets"

2024-03-13T09:17:28 O

"transaction_id":
"timestamp

"accoun d":
"type":

"987654321",
"2024-03-13T09:17:28",
"6ad87cf1l",

payment",

"amount": -879.00,

"currency": "USD",

NOW "merchant":

"American Airlines",
"description": "Flight tickets to Austin"
}

Event Sourcing in a nutshell

Example

Balance
$5,000 - $1,299 = $3,701

2024-03-11T12:30:45

2024-063-11T15:57:09

@)

"transaction_id": "123456789",

"timestamp": "2024-03-11T12:30:45",

"account_1i "6ad87cf1l",

"type": "transfer",

"amou 5000.00,

"cur y": "US

"description": "Transfer funds to new account"

@)

> "transaction_1id": "987654321",

2024-03-13T09:17:28

"timestamp": "2024-03-11T15:57:09",
"account_id": "6ad87cfl",
"type": "payment",
"amour -1299.00,

urrency": "USD",
"merchant": "Data Council",
"description": "Data Council tickets"

@)

"transaction_id": "987654321",

"timestamp "2024-03-13T09:17:28",

"accoun d": "6ad87cfl",

"type": "payment",

"amount": -879.00,

"currency": "USD",

NOW "merchant": "American Airlines",
"description": "Flight tickets to Austin"

}

2024-083-11T712:30:45 O
Event Sourcing in a nutshell

"transaction_id": "123456789",

"timestamp": "2024-03-11T12:30:45",
"account_1i "6ad87cf1l",

": "transfer",
"amou 5000.00,
"cur y": "US
"description":

"type

"Transfer funds to new account"

2024-03-11T15:57:09 O

"transaction_1id": "987654321",
"timestamp": "2024-03-11T15:57:09",
"account_id": "6ad87cfl",
"type": "payment",
"amour -1299.00,

urrency": "USD",
"merchant": "Data Council",
"description": "Data Council tickets"

2024-03-13T09:17:28 O

"transaction_id":
"timestamp
Balance

"accoun @™3

"987654321",
"2024-03-13T09:17:28",
"6ad87cf1l",
"type": "payment",
"amount": -879.00,
"currency": "USD",
$5,000 - $1,299 - $879 = $2,822

NOW "merchant":

"American Airlines",
"description": "Flight tickets to Austin"
}

When.
Good use cases and
scenarios

Event Sourcing — When

Strong use cases

Financial and
Accounting systems

Immutable audit trail of
transactions, ensuring regulatory
compliance and enabling
detailed analysis of financial
activities, including fraud
prevention.

Billing, Security

and Observability
Allowing real-time analysis,
anomaly detection, and

historical trend analysis while
ensuring data integrity.

eCommerce and
Inventory management

Track order history, inventory
changes, and customer
interactions, allowing for
accurate reporting, personalized
recommendations, and order
processing optimization.

Lessons learned.
The good, the bad
& the ugly

Event Sourcing — The good, the bad and the ugly

Some actual metrics

500 MB/s 15,000 <100ms

Ingested data Requests per second Average read latency

Event Sourcing — The good

Full traceability

Complete, inmutable trail of events

Now you have a complete history of changes to your
application's state. This is great for traceability,
debugging, and also building customer facing
features such as an audit log.

You can investigate what happened in detail when
something goes wrong. This is great for business
operations, or even customer support.

Event Sourcing — The good

Full traceability

select * from subscriptions
where i1d = 923890

id——type
923890 | premium
1

status —updated _at—————
| suspended | 2024-02-01 14:38:09 |

select * from subscription_events
where i1d = 923890

T —cilliEstenv——=ehe_hEhns

2024-02-01 14:38:09
2024-02-21 04:31:55
2024-03-01 00:00:11
2024-03-01 00:00:12

subcription_created
subcription_updated
subcription_payment_rejected
subcription_suspended

923890
923890
923890
923890

subscription_id—-—user_id—

| 4329878 |
| 4329878 |
| 4329878 |
| 4329878 |
| |

Event Sourcing — The good

Change business logic retroactively

Business rules evolve over time

Since you have the full logs of events, you can
always rebuild the current state applying different
business logic.

Even back-to-back testing and validating new
business ideas with real data.

Event Sourcing — The good

Attribution model example

"timestamp": "2024-03-25T17:05:28",

action": "ViewPage",
“url": "https://shop.tinybird.co/new"

"timestamp": "2024-03-25T17:06:12",

"action": "ViewPage",
"url": "https://shop.tinybird.co/popular"

"timestamp": "2024-03-25T17:08:42",
"action": "AddToCart",
"item_1d": "16a7f9c98d"

Event Sourcing — The good

More flexible schema evolution

Decoupled producers and consumers

Data models and business rules will evolve and
change over time. Events capture
domain-specific actions and intentions, and they
can be versioned when needed.

Producers and Consumers be deployed in a
more flexible way, and process the new event
version asynchronously.

Austin Data Council '24 — Event Sourcing with Kafka at Scale f tinybird

The not-so-good

Event Sourcing — The not-so-good

Storage and
Compute costs

select count(), sum(bytes) from events

——count()——sum(bytes)—
| 755292400 | 2.45TiB |
| | |

Up to 1,000x more disk

Storing a complete history of events usually leads to select count(), sum(bytes) from snapshot

increased storage requirements compared to count()——sum(bytes)—
traditional state-based persistence methods like | 90417 | 398MiB !

| |
CRUDs.

This typically results in higher storage costs,
especially for systems with a high volume of events.

Event Sourcing — The not-so-good

Eventual Consistency

Data may not be ready for reads right away

Systems converge on a value over time but can lead
to periods of inconsistent data, known as the
inconsistency window.

Availability vs Consistency: sometimes is better
not to make a decision, rather than doing it with
partial or stale data.

Event Sourcing — The not-so-good

Complex day to day operations

No more database UPDATEs

Businesses need to deal with lots of day to day
nuances. No process is perfect, and there's always
an exception.

Say goodbye to direct database UPDATEs and
DELETEs, embrace compensation events and
custom scripts.

Event Sourcing — The not-so-good

Analytical .
compIeXity select * from subscriptions limit 5

———id—Ttype r—status r—updated_at—————
123890	premium	suspended	2024-02-01 14:38:09
483024	free	active	2024-01-19 19:11:38
325789	enterprise	active	2024-03-02 11:45:22
423900	premium	active	2024-03-25 15:31:49
]]		

You'll need to account for sorting the events in time,

. . e select unig(id) from subscriptions

handle duplicates, final states, and specific al _). o .
where status = 'active

business logic.

—uniq(id)—
| 549749 |
|

o000
set timestamp = current_timestamp();

with subscriptions_final_state as (
select distinct
action,
subscription_id
from
subscription_events
where

action in ('subscription_suspended', 'subscription_deleted')
and timestamp::timestamp_tz between dateadd(day,-60,$timestamp) and $timestamp::timestamp_tz

), subcriptions as (
select

*
i

row_number() over (partition by subscription_id order by timestamp desc) as n

from
subscription_events

where timestamp::timestamp_tz between dateadd(day,-60,$timestamp) and $timestamp::timestamp_tz

), subscriptions_current as (
select *
from subscriptions
where n =1
)
select
subscription_1id,
(case
when max(b.subscription_id) is not null and action
when max(b.subscription_id) is not null and action
else 'active' end) as status,
max(timestamp) as updated_at

from
subscriptions_current a
left join
subscriptions_final_state b
on
a.subscription_id = b.subscription_id
group by

subscription_id;

'subscription_suspended' then 'suspended’
'subscription_deleted' then 'deleted'

Event Sourcing — The not-so-good

Handling duplicates

Because yes, it will happen

Exactly-once semantics is really, really difficult to
implement. Chances are you'll need to handle
duplicate events at some time using some kind of
transaction id.

Event Sourcing — The not-so-good

Old events will remain there

Deprecating things is hard

As the system evolves, new versions of each events
are created. However, old events with obsolete
schemas may remain for a long time, and you will
have to keep supporting them.

You'll make poor design decisions at the beginning,
and you’ll have to live with those for a while.

Suggestions.
Some heavily
opinionated
recommendations

Austin Data Council '24 — Event Sourcing with Kafka at Scale f tinybird

Hot takes G.

Just don't do it

<« tinybird

Events are Data, and

What you really need
Is Information

<« tinybird

You need CQRS for
reads, ideally an

OLAP database

<« tinybird

Snhapshots are needed
for performance

Materialized Views
are awesome

|~ Time Series

o Tokens

DATA PROJECT

Q Pipes (423)
8 Data Sources (139)

ol g e

|h-;-

| et gy ot

e

PYTYSey—

Prr—

l!wr

| 2 o e

https://docs.google.com/file/d/1Jz7TEYmvvEEGrzbsSU9Az4fS5wWm5Er8/preview

Austin Data Council '24 — Event Sourcing with Kafka at Scale f tinybird

Alejandro Martin — @alejandromav_ f tinybird

Thank you.

