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Vector databases
won’t exist in 3 years



ANN indices are a commodity
30+ Pure vdbs + libraries + databases adding ANN indices



Is AI data infra solved?
Hopefully not or this will be a very short talk

● Scale / performance / cost => O(100m ~ B+) is still complicated and expensive

● Advanced retrieval is not yet solved

● Self-improving retrieval still doesn’t exist yet

● Working with the data itself, especially multimodal data, is hard



We need more than retrieval
Especially for multi-modal, we need way more than just search



We need more than retrieval
Especially for multi-modal, we need way more than just search

Vector search should be natively accessible anywhere within this workflow

Vector
Database



What’s the problem?



What’s the result?
High cost, complex stack, bad performance

● Having multiple copies in different formats is expensive and slow

● Operating multiple systems is complicated

● Keeping GPU well-fed at scale means wasted GPU resources



What’s the solution
Change the foundational data layer

● Single source of truth for offline and online

● No wasted copies; faster ML experimentation

● SQL / DataFrames >>> custom scripts

● EDA, training, etc can all share the same data



Lance format for AI
File format, table format, and indexing subsystem

● Columnar storage with
○ Different layout ⇒ fast scans & random access
○ IO exec optimized for large-blobs
○ (roadmap) advanced encodings

● Fast scans + random access ⇒ training, EDA

● Random access + indexing => ANN, filter / sample

● Table format ⇒ schema evolution, versioning, 
reproducibility



Composable Lakehouse for AI



Composable Lakehouse for AI
AKA, drawing the rest of the owl

Search, filter, visualize

Pytorch / TF / Jax

Spark, DuckDB, Pandas, Polars, etc

LanceDB

Lance format

Lance indexing



Online: self-optimizing RAG

Not just vector search but 
production quality retrieval that 

automatically gets better as you use it



LanceDB
Real-time serving

● Lightweight => SQLite for vector search

● Hyper scalable => B+ vectors w/ simple 
infra at a fraction of the cost

● Rich features => Hybrid search, reranking, 
SQL filtering





Fine-tuning
1st party data >>> big generic model

● Tuning embedding model with user 
feedback seems to be very effective

● Combining it with hybrid search and 
reranking makes it even more effective

● LanceDB used for both offline fine-tuning 
and online inference

Source: Chris Moody



RAG is just RecSys in Disguise
Multiple recallers + reranking + re-training ⇒ recsys



Offline: Declarative AI

One-stop shop for 
managing multimodal AI data, 

exploration, training, and 
rapid experimentation



Declarative AI

Requires custom script



Declarative AI

class ImageTable(pydantic.BaseModel):

    id: int

    raw_image: Image

    clean_image: Image = sample(crop(“raw_image”))

    image_vec1: Vector(512) = clip.VectorField(“clean_image”)

    image_vec2: Vector(512) = vbert.VectorField(“clean_image”)

    people: list = extract_objects(“yolov8_20240321_final_final”,“clean_image”)

Declaring schema is sufficient



Interactive EDA
Explore multimodal data at scale

● Ultralytics (yolov8) released the Explorer 
product for exploring CV datasets

● Filtering, semantic search, and “Ask AI” 
features

● Uses Lance/LanceDB under the hood for 
data storage, management, and OLAP on 
image datasets



Large scale data processing
SQL, DataFrames, Distributed Engines

● Local experimentation: DuckDB, pandas, polars

● Production: Spark, Slurm, Presto/Trino (in-progress)

● Bulk-ingestion made easy: no more daily dataload that takes 48-hours to finish 
loading data into service API



Training
Example: pre-train LLM with wikitext_500K

● pytorch / TF data loaders and 
samplers

● 95% average GPU utilisation 

● Minimal CPU overhead

● Don’t need to spend time/effort 
converting between metadata for 
filtering / sampling and tensors / blobs 
for training



Rapid experimentation
Speed of experimentation is king for AI

● Existing formats require making tons of unnecessary copies

● Lance table format supports 
○ zero-copy schema evolution
○ Automatic versioning
○ Time-travel

● Perfect for running lots of experiments, tracking changes, and debugging in 
production



Roadmap
What’s coming to Lance format in the next quarter

● Vector indexing optimizations
○ bf16 / f16
○ Additional indexing types
○ Clustering

● Format “V2”
○ Full nullability support
○ Advanced encodings

● Integrations
○ Spark DataSource
○ Ray integration



Thank you!
Check us out if you’re build multimodal AI

● Data format: https://github.com/lancedb/lance

● Vector database: https://github.com/lancedb/lancedb

● Join our community Discord for questions

● Contact: chang@lancedb.com



Appendix



What is the right db for retrieval
With so many options, it’s often a confusing choice

Vector databases

● High cost
● Lack of data management
● Not full fledged databases

Traditional db’s w/ vector index

● Limited scalability
● No advanced retrieval options
● Bolt-on rather than AI-native

Use cases change quickly, data infra shouldn’t



Vector Databases
Pinecone, Weaviate, Qdrant, ChromaDB, etc

👍 Advantages

● Scale
● Feature rich
● Purpose-built APIs

Really just the index + service wrapper

👎 Disadvantages

● No data management
● High cost
● Not full fledged databases



Traditional databases
pgvector, elasticsearch / OpenSearch, etc

👍 Advantages

● No duplication of infra
● Data management already figured out
● Store other data along with vectors

Great for small scale and AI as a “side-feature”

👎 Disadvantages

● Scalability
● Advanced retrieval features
● Ease of use



Mo AI mo problems

• Vector databases:

⚬ Only deal with vector data

⚬ Only deal with vector search

• Pgvector does not scale

• FAISS requires you to manually build the rest of the database and stitch together 

multiple systems

• No effective storage solution at all for unstructured data



Mo data mo problems

• Parquet (Delta/Iceberg/Hudi) is only good for analytics

• TFRecords is only good for training

• JSON is often needed for debugging

• Now you have 3 copies of the data

⚬ Problem 1: Ballooning storage costs

⚬ Problem 2: Need different compute for each format

⚬ Problem 3: How do you know they're actually in sync?

⚬ Problem 4: It's still slow



Lance columnar format
Alternative to parquet for AI

🔥 Rust implementation

Performance, safety, 

SIMD

💾 New layout

Analytics need fast 

scans. Training I/O need 

fast random access.

🚀 Versioning

Zero-copy versioning, 

schema evolution, time 

travel

✨ Ecosystem

The main reader/writer 

interfaces of Lance is 

all through Arrow.



Lance columnar format

🚀 Compute storage 

separation

Store on cheap blob 

storage, stream data into 

accelerated compute for 

training

💾 Unified storage

Store and query 

embeddings, text, 

images, pdfs, videos, 

audio, point clouds, 

alongside tabular data

🔥 Performance

Reduce training time by 

up to 3x with faster 

filtering, shuffling, and 

data loading. Up to 

2000x faster than 

parquet for AI

✨ Plug-and-play

Convert data with 2 

lines of code. 

Compatible with 

pandas, polars, duckdb, 

spark, jupyter, and 

more

It's so awesome I need two slides



Encodings

Lance is designed to be good for both large scan and 

random access.

Support storing large blobs. Contrary to conventional 

wisdoms in OLAP and columnar store designs.



PCIE NVME S3

Block Size 4-16KB 32-256KB

Bandwidth 5000MB/s+ 100 Gb/s (*EC2)

IOPS 1,000,000+ @ 32QD 5000 GET/HEAD

Encodings: Design Principles
• Two very simple design principles:

⚬ Scan:  do not scan more data than 
Parquet / ORC

⚬ Point query: 
￭ Sub-linear time complexity to 

read one row 
￭ Amortize metadata overheads

• Revised storage optimizations in 2023



Encodings: Binary Encoding
• In Parquet, length and data are interleaving.
• Can not access one data point without deserializing all data in the 

group
• Used to store var-length bytes (Image / Lidar) 



Encodings: Binary Encoding
• Var-length Binary Encoding

⚬ String, Bytes, Image, Lidar 
PointCloud

• data array + offset array
• O(1) offset read + O(1) data 

read



Encodings: RLE(*)

Eto.ai

• Run-Length Encoding
• Cumulative run-length array + 

value array
• O(logn) offset lookup + O(1) 

value read
• Effective for sparse vectors



Lance Parquet / ORC JSON / XML TFRecord / HDF5
Database (Sqlite / 

Postgres)

Scan
(Training / 

Mining)
Fast Fast Slow Fast Slow

Point Query
(Debug / Shuffle)

Fast Slow
Fast (small file 

contention)
Slow Fast

Eco-system
(Language / 

Library)
Good Good Good Bad

Non-ML: Good
ML: Bad

Lance vs Other Formats



What tradeoff did I have to 
make here?



I/O Execution 
(1/2)

Eto.ai

• Different to typical OLAP 
plan.

• Optimized for slicing and 
dicing with large blobs.



I/O Execution  
(2/2) 

Eto.ai

• Take advantages of

⚬ NVME's deep I/O queue

⚬ S3/GCS high parallelisms

• Eliminate data dependency between 

I/O requests when possible

• Issue large amount of parallel I/Os

• A short but wide I/O dependency 

tree



Secondary 
Indices

Nice side-effect of Fast Point Query 

performance

Support Approximate Nearest Neighbors 

(ANN) search on vectors

Extensible to other index types



Why add indexing?
• Random access perf makes it worth it

• Mix SQL with FTS with vector search

• Store and query the data together - replace 
multiple tools with just one



Vector Distance

Anything can be turned into a vector



Vector (ANN) Index
• Approximate answers
• Hash-based approaches (LSH)
• Tree-based approaches (Annoy)
• Partitioning approaches (IVF)
• Graph based approaches (HNSW / DiskANN)
• Compression (PQ, OPQ, LOPQ, etc)

Latency vs recall



Vector Index 

Say you type "cust"

keyword search returns "customer"

vector search returns "customer" and "user"



How is Lance vector index different?

• Disk-based (easy and cheap to scale)
• Allow you to retrieve features together with vectors
• Low-level SIMD optimizations
• Supports B+ scale search on a single node



Versioning 
and Schema 
Evolution

Zero-copy Append, Add & Remove Column, 

Snapshots

Write-ahead log for Fast Data and Index

Simple Data Management API



Versioning & 
Schema Evolution
• Manifest file tracks all metadata of one 

version.
• Fast version checkout
• Data fragment for partitioning and schema 

evolution
• Rich commit message with version.

⚬ Useful for lineage / commit tracking
• Lazy column materialization*



File 
Layout

Eto.ai



Roadmap

Partitioning Pruning, Row Group Pruning01

DiskANN02

Fast updates*03

Data Compression, RLE05

Spark integration (Scala)06

Semantic types07

NA-handling04



References

⚬ Benchmarks vs parquet
⚬ SIMD optimization
⚬ Data format

https://blog.lancedb.com/benchmarking-random-access-in-lance-ed690757a826
https://blog.lancedb.com/my-simd-is-faster-than-yours-fb2989bf25e7
https://lancedb.github.io/lance/format.html


Encodings: Plain Encoding 
(Cont'd)

Eto.ai

• Nullability and compression (*)
• Within I/O block size, does not 

negatively impact random I/O 
performance



Optimal I/O 
Size on S3

Eto.ai



Nested 
Schema

Eto.ai


