
Lance: Open Source Foundations for
A Lakehouse for Multi-modal AI

DataCouncil 2024

• LanceDB co-founder
• Pandas co-author
• VP Eng @ TubiTV (MLOps / Experimentation)
• Twitter/Github: @changhiskhan

Chang She

Vector databases
won’t exist in 3 years

ANN indices are a commodity
30+ Pure vdbs + libraries + databases adding ANN indices

Is AI data infra solved?
Hopefully not or this will be a very short talk

● Scale / performance / cost => O(100m ~ B+) is still complicated and expensive

● Advanced retrieval is not yet solved

● Self-improving retrieval still doesn’t exist yet

● Working with the data itself, especially multimodal data, is hard

We need more than retrieval
Especially for multi-modal, we need way more than just search

We need more than retrieval
Especially for multi-modal, we need way more than just search

Vector search should be natively accessible anywhere within this workflow

Vector
Database

What’s the problem?

What’s the result?
High cost, complex stack, bad performance

● Having multiple copies in different formats is expensive and slow

● Operating multiple systems is complicated

● Keeping GPU well-fed at scale means wasted GPU resources

What’s the solution
Change the foundational data layer

● Single source of truth for offline and online

● No wasted copies; faster ML experimentation

● SQL / DataFrames >>> custom scripts

● EDA, training, etc can all share the same data

Lance format for AI
File format, table format, and indexing subsystem

● Columnar storage with
○ Different layout ⇒ fast scans & random access
○ IO exec optimized for large-blobs
○ (roadmap) advanced encodings

● Fast scans + random access ⇒ training, EDA

● Random access + indexing => ANN, filter / sample

● Table format ⇒ schema evolution, versioning,
reproducibility

Composable Lakehouse for AI

Composable Lakehouse for AI
AKA, drawing the rest of the owl

Search, filter, visualize

Pytorch / TF / Jax

Spark, DuckDB, Pandas, Polars, etc

LanceDB

Lance format

Lance indexing

Online: self-optimizing RAG

Not just vector search but
production quality retrieval that

automatically gets better as you use it

LanceDB
Real-time serving

● Lightweight => SQLite for vector search

● Hyper scalable => B+ vectors w/ simple
infra at a fraction of the cost

● Rich features => Hybrid search, reranking,
SQL filtering

Fine-tuning
1st party data >>> big generic model

● Tuning embedding model with user
feedback seems to be very effective

● Combining it with hybrid search and
reranking makes it even more effective

● LanceDB used for both offline fine-tuning
and online inference

Source: Chris Moody

RAG is just RecSys in Disguise
Multiple recallers + reranking + re-training ⇒ recsys

Offline: Declarative AI

One-stop shop for
managing multimodal AI data,

exploration, training, and
rapid experimentation

Declarative AI

Requires custom script

Declarative AI

class ImageTable(pydantic.BaseModel):

 id: int

 raw_image: Image

 clean_image: Image = sample(crop(“raw_image”))

 image_vec1: Vector(512) = clip.VectorField(“clean_image”)

 image_vec2: Vector(512) = vbert.VectorField(“clean_image”)

 people: list = extract_objects(“yolov8_20240321_final_final”,“clean_image”)

Declaring schema is sufficient

Interactive EDA
Explore multimodal data at scale

● Ultralytics (yolov8) released the Explorer
product for exploring CV datasets

● Filtering, semantic search, and “Ask AI”
features

● Uses Lance/LanceDB under the hood for
data storage, management, and OLAP on
image datasets

Large scale data processing
SQL, DataFrames, Distributed Engines

● Local experimentation: DuckDB, pandas, polars

● Production: Spark, Slurm, Presto/Trino (in-progress)

● Bulk-ingestion made easy: no more daily dataload that takes 48-hours to finish
loading data into service API

Training
Example: pre-train LLM with wikitext_500K

● pytorch / TF data loaders and
samplers

● 95% average GPU utilisation

● Minimal CPU overhead

● Don’t need to spend time/effort
converting between metadata for
filtering / sampling and tensors / blobs
for training

Rapid experimentation
Speed of experimentation is king for AI

● Existing formats require making tons of unnecessary copies

● Lance table format supports
○ zero-copy schema evolution
○ Automatic versioning
○ Time-travel

● Perfect for running lots of experiments, tracking changes, and debugging in
production

Roadmap
What’s coming to Lance format in the next quarter

● Vector indexing optimizations
○ bf16 / f16
○ Additional indexing types
○ Clustering

● Format “V2”
○ Full nullability support
○ Advanced encodings

● Integrations
○ Spark DataSource
○ Ray integration

Thank you!
Check us out if you’re build multimodal AI

● Data format: https://github.com/lancedb/lance

● Vector database: https://github.com/lancedb/lancedb

● Join our community Discord for questions

● Contact: chang@lancedb.com

Appendix

What is the right db for retrieval
With so many options, it’s often a confusing choice

Vector databases

● High cost
● Lack of data management
● Not full fledged databases

Traditional db’s w/ vector index

● Limited scalability
● No advanced retrieval options
● Bolt-on rather than AI-native

Use cases change quickly, data infra shouldn’t

Vector Databases
Pinecone, Weaviate, Qdrant, ChromaDB, etc

👍 Advantages

● Scale
● Feature rich
● Purpose-built APIs

Really just the index + service wrapper

👎 Disadvantages

● No data management
● High cost
● Not full fledged databases

Traditional databases
pgvector, elasticsearch / OpenSearch, etc

👍 Advantages

● No duplication of infra
● Data management already figured out
● Store other data along with vectors

Great for small scale and AI as a “side-feature”

👎 Disadvantages

● Scalability
● Advanced retrieval features
● Ease of use

Mo AI mo problems

• Vector databases:

⚬ Only deal with vector data

⚬ Only deal with vector search

• Pgvector does not scale

• FAISS requires you to manually build the rest of the database and stitch together

multiple systems

• No effective storage solution at all for unstructured data

Mo data mo problems

• Parquet (Delta/Iceberg/Hudi) is only good for analytics

• TFRecords is only good for training

• JSON is often needed for debugging

• Now you have 3 copies of the data

⚬ Problem 1: Ballooning storage costs

⚬ Problem 2: Need different compute for each format

⚬ Problem 3: How do you know they're actually in sync?

⚬ Problem 4: It's still slow

Lance columnar format
Alternative to parquet for AI

🔥 Rust implementation

Performance, safety,

SIMD

💾 New layout

Analytics need fast

scans. Training I/O need

fast random access.

🚀 Versioning

Zero-copy versioning,

schema evolution, time

travel

✨ Ecosystem

The main reader/writer

interfaces of Lance is

all through Arrow.

Lance columnar format

🚀 Compute storage

separation

Store on cheap blob

storage, stream data into

accelerated compute for

training

💾 Unified storage

Store and query

embeddings, text,

images, pdfs, videos,

audio, point clouds,

alongside tabular data

🔥 Performance

Reduce training time by

up to 3x with faster

filtering, shuffling, and

data loading. Up to

2000x faster than

parquet for AI

✨ Plug-and-play

Convert data with 2

lines of code.

Compatible with

pandas, polars, duckdb,

spark, jupyter, and

more

It's so awesome I need two slides

Encodings

Lance is designed to be good for both large scan and

random access.

Support storing large blobs. Contrary to conventional

wisdoms in OLAP and columnar store designs.

PCIE NVME S3

Block Size 4-16KB 32-256KB

Bandwidth 5000MB/s+ 100 Gb/s (*EC2)

IOPS 1,000,000+ @ 32QD 5000 GET/HEAD

Encodings: Design Principles
• Two very simple design principles:

⚬ Scan: do not scan more data than
Parquet / ORC

⚬ Point query:
￭ Sub-linear time complexity to

read one row
￭ Amortize metadata overheads

• Revised storage optimizations in 2023

Encodings: Binary Encoding
• In Parquet, length and data are interleaving.
• Can not access one data point without deserializing all data in the

group
• Used to store var-length bytes (Image / Lidar)

Encodings: Binary Encoding
• Var-length Binary Encoding

⚬ String, Bytes, Image, Lidar
PointCloud

• data array + offset array
• O(1) offset read + O(1) data

read

Encodings: RLE(*)

Eto.ai

• Run-Length Encoding
• Cumulative run-length array +

value array
• O(logn) offset lookup + O(1)

value read
• Effective for sparse vectors

Lance Parquet / ORC JSON / XML TFRecord / HDF5
Database (Sqlite /

Postgres)

Scan
(Training /

Mining)
Fast Fast Slow Fast Slow

Point Query
(Debug / Shuffle)

Fast Slow
Fast (small file

contention)
Slow Fast

Eco-system
(Language /

Library)
Good Good Good Bad

Non-ML: Good
ML: Bad

Lance vs Other Formats

What tradeoff did I have to
make here?

I/O Execution
(1/2)

Eto.ai

• Different to typical OLAP
plan.

• Optimized for slicing and
dicing with large blobs.

I/O Execution
(2/2)

Eto.ai

• Take advantages of

⚬ NVME's deep I/O queue

⚬ S3/GCS high parallelisms

• Eliminate data dependency between

I/O requests when possible

• Issue large amount of parallel I/Os

• A short but wide I/O dependency

tree

Secondary
Indices

Nice side-effect of Fast Point Query

performance

Support Approximate Nearest Neighbors

(ANN) search on vectors

Extensible to other index types

Why add indexing?
• Random access perf makes it worth it

• Mix SQL with FTS with vector search

• Store and query the data together - replace
multiple tools with just one

Vector Distance

Anything can be turned into a vector

Vector (ANN) Index
• Approximate answers
• Hash-based approaches (LSH)
• Tree-based approaches (Annoy)
• Partitioning approaches (IVF)
• Graph based approaches (HNSW / DiskANN)
• Compression (PQ, OPQ, LOPQ, etc)

Latency vs recall

Vector Index

Say you type "cust"

keyword search returns "customer"

vector search returns "customer" and "user"

How is Lance vector index different?

• Disk-based (easy and cheap to scale)
• Allow you to retrieve features together with vectors
• Low-level SIMD optimizations
• Supports B+ scale search on a single node

Versioning
and Schema
Evolution

Zero-copy Append, Add & Remove Column,

Snapshots

Write-ahead log for Fast Data and Index

Simple Data Management API

Versioning &
Schema Evolution
• Manifest file tracks all metadata of one

version.
• Fast version checkout
• Data fragment for partitioning and schema

evolution
• Rich commit message with version.

⚬ Useful for lineage / commit tracking
• Lazy column materialization*

File
Layout

Eto.ai

Roadmap

Partitioning Pruning, Row Group Pruning01

DiskANN02

Fast updates*03

Data Compression, RLE05

Spark integration (Scala)06

Semantic types07

NA-handling04

References

⚬ Benchmarks vs parquet
⚬ SIMD optimization
⚬ Data format

https://blog.lancedb.com/benchmarking-random-access-in-lance-ed690757a826
https://blog.lancedb.com/my-simd-is-faster-than-yours-fb2989bf25e7
https://lancedb.github.io/lance/format.html

Encodings: Plain Encoding
(Cont'd)

Eto.ai

• Nullability and compression (*)
• Within I/O block size, does not

negatively impact random I/O
performance

Optimal I/O
Size on S3

Eto.ai

Nested
Schema

Eto.ai

