
Ten years of building open
source standards

Julien Le Dem: OpenLineage project lead
@J_

From Parquet to Arrow to OpenLineage

2

Agenda

I. The birth of Parquet

II. From Parquet to Arrow

III. Onwards: OpenLineage

Chapters

The birth of
ParquetI

4

● First committership on Apache Pig

● Kept contributing

● User → Contributor → Committer
→ PMC member → PMC chair

● 2010: Read the Dremel paper

15 years ago!

5

● Hadoop
○ Can store lots of data
○ Can process a lot of data
○ High latency
○ Cheap

● Vertica
○ Interactive queries
○ Not as scalable
○ Expensive

Context for the inception of Parquet

Can we make
Hadoop more
like Vertica? Distributed File

System
Columnar
Storage

Distributed
Query engineMap Reduce

Paper reading

Vertica / C-Store

Dremel

MonetDB

Columnar layout

Red Elm
Dremel

File
formats:
TFile, RCFile
CIF, Trevni

Schema:
Thrift / Pig

First commit

R
E
D

E
L
M

That was quite ambitious

D
R
E
M
E
L

Seeking partners

Better compression
Faster data retrieval
Optimized for query

Compatible with
Hadoop ecosystem
Language agnostic

Columnar
Java ecosystem

M/R, Pig, …
Nested structures

Columnar Native
code

Distributed Query
engine

Parquet

Red Elm

Impala

Adoption

Announcement
Twitter +

Cloudera

Criteo
adds Hive

support

1.0
Netflix
adopts
Parquet

Apache Drill
adopts
Parquet

2013 2014

Parquet enters the
Apache incubator

Presto
supports
Parquet

Spark SQL
adopts
Parquet

2015

Parquet
graduates as a

top-level project

All major
warehouses

support Parquet
First commit C++

implementation

Lessons learned

Every
contributor is a

stakeholder

The snowball effect

Open source licenses

Governance

Foundations

Open source
comes in all
shapes and

sizes

From Parquet to
ArrowII

20

Need for
in-memory
columnar

format

Vectorization
in query
engines.

Moving from
row oriented
to columnar

MonetDB/X100

https://www.cidrdb.org/cidr2005/papers/P19.pdf

Kick off:
Consensus on

initial
requirements

Fast disk retrieval:

Projection/Predicate push down
At-rest Compression

Cross language

Parquet
Fast in-memory processing:

Vectorized execution
Zero copy transfer

Cross language

Arrow

Arrow

Spin off java
code from
Apache Drill

Arrow in
Pandas

Parquet-cpp
combined with

Arrow cpp

Establish Arrow
as a Top Level

Project

Parquet community
discusses need for
in-memory format

2015 2016

DuckDB

2017

Arrow in
Spark

major
warehouses

support Arrow

Kick off on
requirements

Start C++
implementation

GPU Open Analytics
initiative: GO AI

DuckDB
“SQLite for OLAP”

“Local mode for your DWH”

“Your big data fits in memory”

Interfaces to Parquet/Arrow

Massively parallel on single
machine

DuckDB

Lessons learned

Bootstrap
community with
an initial spec

time

Mainstream

Find
like-minded
people who
will drive the

vision

Early adopters

Visionaries

It’s about the
connections

we built along
the way.

Onwards:
OpenLineageIII

Building a healthy data ecosystem

30

Team A

Team C

Team B

Maslow’s Data hierarchy of needs

31

New Opportunities

Business Optimization

Data Quality

Data Freshness

Data Availability

Marquez: open source metadata

● Missing piece in data
ecosystem

● Build a map of all datasets and
transformations

● Paved the way to solve data
reliability

Before OpenLineage

33

Analysis Tools
Schedulers Warehouses

SQL Engines

With OpenLineage

34

Analysis Tools
Schedulers Warehouses

SQL Engines

Graph DB

Backend

Producers

OpenLineage

Kafka topic

HTTP
client

Consumers

Kafka
client

GraphDB
client

Kafka
client

Where OpenLineage potentially fits

35

Kafka topic

OpenLineage

Initial spec &
project

announcement

Spark,
Airflow, dbt

support

OpenLineage
joins the

LFAI&Data

Marquez joins the
LFAI&Data

2020 2021

OpenLineage
spec kick-off

2022 2023

Marquez
reference

implementation

Great
Expectations

support

Adoption
by

Microsoft

Adoption
by Egeria

Snowflake
labs

support

Adoption
by Manta

LFAI&Data
graduate
project

Adoption
by Atlan

Flink
support

Built-in
support in

Airflow

Adoption by
Google,

Metaphor,
Datahub,...

Dagster
support

Data model

37

Built around core entities:
Datasets, Jobs, and Runs

Defined as a JSON
Schema spec

Consistent naming for:
Jobs (scheduler.job.task)
Datasets (instance.schema.table)

transition
transition time

Run State Update

run uuid

Run

job id
(name based)

Job

dataset id
(name based)

Dataset

Run Facet

Job Facet

Dataset
Facet

run

job

inputs /
outputs

Facet examples

Dataset:
● Stats
● Schema
● Version

Job:
● Source code
● Dependencies
● Source control
● Query plan

Run:
● Scheduled time
● Batch ID
● Query profile
● Params

38

39

Building custom facets

● Custom facets must use a distinct prefix named after the
project defining them to avoid collision with standard facets
defined in the OpenLineage.json spec

● Custom facets must follow the pattern:

{prefix}{name}{entity}Facet

Example: BigQueryStatisticsJobFacet

https://github.com/OpenLineage/OpenLineage/blob/main/spec/OpenLineage.json

Using the
Python client

Resources

● OpenLineage
○ OpenLineage.md - the OpenLineage specification
○ Python and Java clients
○ Existing integrations
○ NAMING.md - naming conventions for Jobs and Datasets

● Blogs / tutorials
○ Getting Started: https://openlineage.io/getting-started/
○ The lineage API: https://openlineage.io/blog/explore-lineage-api/
○ Facets: https://openlineage.io/blog/dataquality_expectations_facet/
○ Spark example: https://openlineage.io/blog/openlineage-spark/

https://github.com/OpenLineage/OpenLineage/blob/main/spec/OpenLineage.md
https://github.com/OpenLineage/OpenLineage/tree/main/client
https://github.com/OpenLineage/OpenLineage/tree/main/integration
https://github.com/OpenLineage/OpenLineage/blob/main/spec/Naming.md
https://openlineage.io/getting-started/
https://openlineage.io/blog/explore-lineage-api/
https://openlineage.io/blog/dataquality_expectations_facet/
https://openlineage.io/blog/openlineage-spark/

OMG the possibilities are endless

42

Dependency tracing
Root cause identification
Issue prioritization
Impact mapping
Precision backfills
Anomaly detection
Change management
Historical analysis
Automated audits

Lessons learned

You don’t
start a project
and then find

a way to
make it

successful. What
everybody

needs?
Project Success

Project Success

Empower
community

Stone Soup, a fable about community

Align
incentives to

build a
network effect

In summary: Lessons learned

● Every contributor is a stakeholder.
● The Snowball effect.
● Open Source comes in all shapes and sizes.
● Bootstrap community with an initial spec.
● Collaborate with trail blazers.
● It’s about the connections we built along the way.
● Find what everybody needs and fill that need.
● The stone soup.
● Align incentives to build a network effect.

Thanks :)

