
NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

MOSAIC Enterprise Open-Source Software Platform.
Infrastructure 3.0:
Hyperscale Hybrid Cloud.
Intelligent & Programmable Edge Software, Services, Systems and Networks.

Technologies.

1

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

DEVELOPER.2024 TREATISE

1. Fiercely Devoted to Enterprise Open-Source
2. Data-First Mentality
3. Infrastructure as Code 2.0+ (and defining together what comes next)
4. AI Optimization
5. Fully Automated & Multi-Modal Capabilities
6. Prototype to Innovation:

(R&D Operations, Rapid-Prototyping, Hackathons & Exercises)

2

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

PROBLEM.CLOUD.PUBLIC

Distributed Cloud and the Adoption of Hyperscale Hybrid Cloud
Capabilities are due to the following Public Cloud issues;

High Costs,
Security Vulnerabilities,
Performance,
Lack of Resilience,
Data Workload Shifts to the Distributed Cloud-Edge.

3

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

MOSAIC.PLATFORM

Dev Sec Ops

AI ML Ops

Cyber Ops

Data Sec Ops

Network Ops

Heterogeneous Systems of Systems Network Ops

Cloud Edge

4

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

SOLUTIONS
Network Ops

Heterogeneous Systems of Systems Network Ops

Cloud EdgeBRAVO
R&D Operations
Swarm & Spike

(Hackathon Training
Events & Exercise)

EOS
Software
Platform

Applications,
Tools

& Services

Hyperscale
Hybrid

Systems

Edge Point of
Presence

Secure Network
(Terrestrial)

5

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

MODALITIES
Network Ops

Heterogeneous Systems of Systems Network Ops

Cloud Edge

SaaS

PaaS

System(s)

IaaS

6

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

Developers.

NALEJ Presenter:
Aaron Taylor, Senior Lead Architect

7

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

DEVELOPER
Network Ops

Heterogeneous Systems of Systems Network Ops

Cloud Edge

Dev Sec Ops

AI ML Ops

Cyber Ops

Data Sec Ops Modern Schema
Management

(Tutorial & Demo)

Enabling Data
Centric
Solutions
through
Modern
Schema
Management

8

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

DEVELOPER
Hierarchical Data Solution Needs

9

AVRO Schema.
Why Do We Need a Schema w/Kafka?

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

• Without a schema, what happens if:
• A producer sends bad data?
• A field gets renamed?
• The data format changes?

• The Consumers Break!

• So, data needs to be:
• Self describable
• Able to evolve without breaking downstream consumers

• Solution:

• Schemas and Schema Registry are required!!!

1
0

Avro VS Traditional Data Schemas:
What is Avro?

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

Data Format Advantages Disadvantages

Avro

• Data is fully typed
• Data is compressed automatically (less CPU)
• JSON defined schema comes along with data
• Documentation embedded in schema
• Data can be read across any language (binary)
• Schema can safely evolve over time

• Avro support for some languages may be lacking
• Can’t print data without Avro tools (it’s compressed &

serialized)

JSON

• Data can take any form, e.g., arrays, nested
elements

• Widely accepted format on web
• Can be read by most languages
• Easily shared over a network

• Data has no schema enforcing
• Repeated keys can cause massive JSON Objects

Relational
Tables

• Data is fully typed
• Data fits in a table

• Data has to be flat
• Data is stored in database; data definition will be different

for each database

CSV
• Easy to parse
• Easy to read
• Easy to make sense of

• Data types of elements must be inferred
• Parsing becomes tricky when data contains comma
• Column names may or may not be there

Te
ch

n
o

lo
gi

ca
l A

d
va

n
ce

s
in

 D
at

a
Sc

h
em

as

11

Avro Data Schema Evolution

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

• Based on how applications leverage data, various configurations of
Schema Evolution can be managed with a Schema Registry

• Types of Schema Evolution:
• none - new schema can be any valid Avro schema

• backward - new schema can read data produced by latest registered schema

• backward_transitive - new schema can read data produced by all previously registered schemas

• forward - latest registered schema can read data produced by new schema

• forward_transitive - all previously registered schemas can read data produced by new schema

• full - new schema is backward/forward compatible with latest registered schema

• full_transitive - new schema is backward/forward compatible with all previously registered schemas

12

Avro in Java
Constructing Avro Records: GenericRecord

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

• A GenericRecord is used to create an Avro object from a Schema
• References schema as a file or as a string

• Simplest way to create Avro objects in Java

• Not recommended for production due to potential to cause runtime errors

13

Avro in Java
Constructing Avro Records: SpecificRecord

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

• A SpecificRecord is an Avro object created by using code generation
from a Schema
• Code generation plugins exist for multiple build tools

• e.g., Gradle, Maven, SBT

• Official “Avro Code Generation Tool” is in Maven

• Example: { "namespace" : "io.astral.avro",
"name" : "DataFeature",
"type" : "record",
"fields" : [{"name": "id", "type" : ["null","int"], "default": null, "docs" : "The numeric ID of the data feature"},

{"name": "name", "type" : ["null","string"], "default": null, "docs" : "The name of the data feature"},
{"name": "description", "type" : ["null","string"], "default": null, "docs" : "The description of the data feature"},
{"name": "value", "type": ["null","long"], "default": null, "docs" : "The value of the data feature"},
{"name": "unit", "type": ["null","string"], "default": null, "docs" : "The unit of the data feature"},
{"name": "host_url","type": ["null","string"],"default": null,"docs": "Originating Host URL"},
{"name": "time", "type" : ["null","string"], "default": null, "docs" : "String formatted timestamp of data feature"}],

"docs": "Value and unit of a data feature"}

14

Overview:

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

• Apache Avro Data Schemas

• Confluent Schema Registry and REST Proxy

• Data Schema Analogies and Learning Resources

15

Confluent Schema Registry

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

• Store/retrieve schemas for Producers / Consumers

• Enforce Backward / Forward / Full compatibility on topics

• Decrease size of payload of data sent to Kafka

• Operations through REST API:
• Add schemas
• Retrieve a schema
• Update a schema
• Delete a schema

• Schemas can be applied to key and/or values

16

Confluent Rest Proxy

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

• Integrated with schema registry:
• Enables Services to easily read/write to Avro serialized topics

• Note:
• Performance hit to using HTTP instead of Kafka’s native protocol

• Throughput decrease 3-4x

17

Kafka Ecosystem Architecture:
Schema Registry & REST Proxy

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential
18

Overview:

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

• Apache Avro Data Schemas

• Confluent Schema Registry and REST Proxy

• Data Schema Analogies and Learning Resources

19

Analogies to Electrical Engineering:

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

• Data Schemas provide a Generalized Signal Context that:
• Define discrete data sources of any context, not just power sources

• Translates physical/meta needs at the edge into a software contex

• Enforces signal integrity across Software Defined Infrastructure

• Fundamental to developing closed-loop AI systems and solutions

• Example: Ohms law modeled as Avro schema

{
“namespace” : “example.avro”,
“type” : “record”,
“name” : “OhmsLaw”,
“fields” : [

{“name” : “SourceId”, “type” : “string”},
{“name” : “voltage”, “type” : “double”},
{“name” : “current”, “type” : “double”},
{“name” : “impedance”, “type” : “double”}]

}

V=I*Z

20

Analogies to Electrical Engineering:

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

• Schema Registry provides domain of all defined signals:
• A discrete data signal spectrum, rather than electromagnetic spectrum

• Repository to all versions of a specific schema

• Provides means to serialize/deserialize data in distributed systems

• Ensures data propagation continues, even when schema “breaks

• Example:

Electromagnetic Spectrum:
Domain of visible Light

Schema
Registry

KafkaProducer Consumer

Domain of all registered
Data Signal Schemas

Send schema Get schema

Serialized Data IN Serialized Data OUT

21

Demo Video 1: Extreme Edge Real-Time Data

2
2

2
3

Demo Video 2: Centralized Data Edge-to-Cloud

Learning Resources / References:

NALEJ Corporation © Copyright 2024 - Proprietary & Confidential

• Maarek, S. (2017). Introduction to Schemas in Apache Kafka with the Confluent Schema Registry. [online] Medium. Available
at: https://medium.com/@stephane.maarek/introduction-to-schemas-in-apache-kafka-with-the-confluent-schema-registry-
3bf55e401321 [Accessed 15 Feb. 2019].

• Docs.confluent.io. (2019). Schema Registry — Confluent Platform. [online] Available at:
https://docs.confluent.io/current/schema-registry/docs/index.html [Accessed 16 Feb. 2019].

• GitHub. (2019). confluentinc/schema-registry. [online] Available at: https://github.com/confluentinc/schema-registry
[Accessed 16 Feb. 2019].

• Maarek, S. (2017). How to use Apache Kafka to transform a batch pipeline into a real-time one. [online] Medium. Available
at: https://medium.com/@stephane.maarek/how-to-use-apache-kafka-to-transform-a-batch-pipeline-into-a-real-time-
one-831b48a6ad85 [Accessed 16 Feb. 2019].

• Maarek, S. (2019). Apache Kafka Series - Confluent Schema Registry and REST Proxy. [online] Available at:
https://www.udemy.com/confluent-schema-registry/ [Accessed 15 Feb. 2019]

• Medium. (2019). Using Kafka Streams API for predictive budgeting – Pinterest Engineering – Medium. [online] Available at:
https://medium.com/@Pinterest_Engineering/using-kafka-streams-api-for-predictive-budgeting-9f58d206c996 [Accessed
16 Feb. 2019].

24

https://medium.com/@stephane.maarek/introduction-to-schemas-in-apache-kafka-with-the-confluent-schema-registry-3bf55e401321
https://docs.confluent.io/current/schema-registry/docs/index.html
https://github.com/confluentinc/schema-registry
https://medium.com/@stephane.maarek/how-to-use-apache-kafka-to-transform-a-batch-pipeline-into-a-real-time-one-831b48a6ad85
https://www.udemy.com/confluent-schema-registry/
https://medium.com/@Pinterest_Engineering/using-kafka-streams-api-for-predictive-budgeting-9f58d206c996

