&

S NALEJ

Technologies

MOSAIC Enterprise Open-Source Software Platform.
Infrastructure 3.0:

Hyperscale Hybrid Cloud.
Intelligent & Programmable Edge Software, Services, Systems and Networks.

&

ok

DEVELOPER.

-iercely Devoted to Enterprise Open-Source

Data-First Mentality

nfrastructure as Code 2.0+ (and defining together what comes next)
. Al Optimization

~ully Automated & Multi-Modal Capabilities

Prototype to Innovation:

(R&D Operations, Rapid-Prototyping, Hackathons & Exercises)

PROBLEM.

Distributed Cloud and the Adoption of Hyperscale Hybrid Cloud
Capabilities are due to the following Public Cloud issues;

High Costs,
Security Vulnerabilities,
Performance,

ack of Resilience,
Data Workload Shifts to the Distributed Cloud-Edge.

&

&

Cloud

MOSAIC.PLATFORM

Network Ops \

Cyber Ops
\ Edge
Data Sec Ops
Heterogeneous Systems of Systems Network Ops /

NALEJ Corporation © Copyright 2024 - Proprietary & Confidentia

&

SOLUTIONS

Network Ops \

Hyperscale
Hybrid
Systems

BRAVO
R&D Operations

Cloud

Swarm & Spike
(Hackathon Training
Events & Exercise)

Edge Point of
Presence

Secure Network
(Terrestrial)

Applications,
Tools
& Services

Heterogeneous Systems of Systems Network Ops

/

NALEJ Corporation © Copyright 2024 - Proprietary & Confidentia

Edge

&

Cloud

MODALITIES

Network Ops \

Edge

Heterogeneous Systems of Systems Network Ops /

NALEJ Corporation © Copyright 2024 - Proprietary & Confidentia

&

© NALEJ

Developers

NALE)J Presenter:
Aaron Taylor, Senior Lead Architect

Cloud

DEVELOPER

Network Ops \

Cyber Ops

Edge

&

Data Sec Ops Al ML Ops

Heterogeneous Systems of Systems Network &

Modern Schema
\WEREEENE
(Tutorial & Demo)

NALEJ Corporation © Copyright 2024 - Proprietary & Confidentia

Enabling Data
Centric
Solutions
through
Modern
Schema
Management

&

DEVELOPER

Hierarchical Data Solution Needs

Value

A

Wisdom — Generate predictions / automate dynamic
control through Machine Learning, Inference, and Al

Knowledge — Enrlchmg data to build structure, identify
patterns, create relationships b

uonoy aye|

Machine Learning Engineer / Al Engineer

~ Data Scientist

_'_l

Data Operations Engineer

Traditional Software Engineer

&

AVRO Schema.
Why Do We Need a Schema w/Kafka?

* Without a schema, what happens if:
* A producer sends bad data?
A field gets renamed?
* The data format changes?

* The Consumers Break!

* So, data needs to be:
* Self describable
* Able to evolve without breaking downstream consumers

 Solution:
* Schemas and Schema Registry are required!!!

Technological Advances in Data Schemas

&

Avro VS Traditional Data Schemas:

What s Avro?

 Datais fully typed
* Datais compressed automatically (less CPU)
 JSON defined schema comes along with data

Avro support for some languages may be lacking
Can’t print data without Avro tools (it’'s compressed &
serialized)

Avro * Documentation embedded in schema
« Data can be read across any language (binary)
 Schema can safely evolve over time
* Data can take any form, e.g., arrays, nested Data has no schema enforcing
elements Repeated keys can cause massive JSON Objects
JSON * Widely accepted format on web
 Can be read by most languages
e Easily shared over a network
Relational Datais fully typed Data has to be flat
* Data fits in a table Data is stored in database; data definition will be different
Tables
for each database
* Easyto parse Data types of elements must be inferred
CSV Easytoread Parsing becomes tricky when data contains comma

* Easy to make sense of

Column names may or may not be there

11

&

Avro Data Schema Evolution

* Based on how applications leverage data, various configurations of
Schema Evolution can be managed with a Schema Registry

e Types of Schema Evolution:

none - new schema can be any valid Avro schema

backward - new schema can read data produced by latest registered schema
backward_transitive - new schema can read data produced by all previously registered schemas
forward - latest registered schema can read data produced by new schema

forward_transitive - all previously registered schemas can read data produced by new schema
full - new schema is backward/forward compatible with latest registered schema

full transitive - new schema is backward/forward compatible with all previously registered schemas

&

Avro in Java
Constructing Avro Records: GenericRecord

* A GenericRecord is used to create an Avro object from a Schema
e References schema as a file or as a string
* Simplest way to create Avro objects in Java
* Not recommended for production due to potential to cause runtime errors

Avro in Java
Constructing Avro Records: SpecificRecord

* A SpecificRecord is an Avro object created by using code generation
from a Schema

* Code generation plugins exist for multiple build tools
e e.g., Gradle, Maven, SBT

* Official “Avro Code Generation Tool” is in Maven
° Examp|e; { "namespace": "io.astral.avro",

"name" : "DataFeature",

"type" : "record",
"fields" : [{"name": "id", "type" : ["null","int"], "default": null, "docs" : "The numeric ID of the data feature"},

{"name": "name", "type" : ["null","string"], "default": null, "docs" : "The name of the data feature"},

{"name": "description", "type" : ["null","string"], "default": null, "docs" : "The description of the data feature"},

{"name": "value", "type": ["null","long"], "default": null, "docs" : "The value of the data feature"},

n n ||| n
7

{"name": "unit", "type": ["null","string"], "default": null, "docs" : "The unit of the data feature"},
{"name": "host_url","type": ["null","string"],"default": null,"docs": "Originating Host URL"},

{"name": "time", "type" : ["null","string"], "default": null, "docs" : "String formatted timestamp of data feature"}],
"docs": "Value and unit of a data feature"}

&

&

Overview:

* Apache Avro Data Schemas
e Confluent Schema Registry and REST Proxy
* Data Schema Analogies and Learning Resources

&

Confluent Schema Registry

Store/retrieve schemas for Producers / Consumers
Enforce Backward / Forward / Full compatibility on topics
Decrease size of payload of data sent to Kaftka
Operations through REST API:

* Add schemas

* Retrieve a schema
* Update a schema
* Delete a schema

Schemas can be applied to key and/or values

&

Confluent Rest Proxy

* |ntegrated with schema registry:
e Enables Services to easily read/write to Avro serialized topics

* Note:
* Performance hit to using HTTP instead of Kafka’s native protocol
* Throughput decrease 3-4x

&

Kafka Ecosystem Architecture:
Schema Registry & REST Proxy

Kafka REST Proxy

: 3 Data Consumer
DEIENE 0 [(I[e=1 structured Data In: ! Producer Ops Consumer Ops Structured Data Out: | .
=Sy sTE]g (o= - JSON, AVRO, BIN64 . n — - JSON, AVRO, BIN64 |8 2{ =0 RoT=1 oV ele1S
>.2 . =
gl IS :"ED or 1: S
g |3 &-\ >, =|0
2|2 |[@w.S IfREST . oo
= E 3‘58_ Avro Data ﬁi 318
3 8 2!
o :rb :
Kafka Schema |
o“eg}‘é—" Registry) . ey
q(o"s-o;‘ ‘.,..?{’AVI-
6@!‘??: g 298y,
\')P‘o‘ ¥ "'-...’-ema

we?

Data .- .
Avro Serialized Data In: Kafka Cluster: Avro Serialized Data Out:

Producer Real-Time Binary Stream Real-Time Analytics Engine Real-Time Binary Stream

Consumer

Applications ..11001101.. ..11001101.. Applications
Highly Available, Scalable, Resilient, Distributed

18

&

Overview:

* Apache Avro Data Schemas
e Confluent Schema Registry and REST Proxy
e Data Schema Analogies and Learning Resources

&

* Data Schemas provide a Generalized Signal Context that:

* Define discrete data sources of any context, not just power sources
Translates physical/meta needs at the edge into a software contex
Enforces signal integrity across Software Defined Infrastructure
Fundamental to developing closed-loop Al systems and solutions

Analogies to Electrical Engineering:

Example: Ohms law modeled as Avro schema

V=I*Z

— >

“namespace” : “example.avro”,

“type” : “record”,

“name” : “OhmsLaw”,

“fields” : [
{“name” :
{“name” :
{“name” :
{“name” :

“Sourceld”, “type” : “string”},
“voltage”, “type” : “double”},
“current”, “type” : “double”},
“impedance”, “type” : “double”}]

Analogies to Electrical Engineering:

e Schema Registry provides domain of all defined signals:
* Adiscrete data signal spectrum, rather than electromagnetic spectrum

Example:

Electromagnetic Spectrum:
Domain of visible Light

&

l_400nm

— 500 nm

— 600 nm

i_ 700 nm

— >

Repository to all versions of a specific schema
Provides means to serialize/deserialize data in distributed systems
Ensures data propagation continues, even when schema “breaks

Send schema

Producer ‘ ‘

Serialized Data IN

Schema
Registry

Domain of all registered
Data Signal Schemas

Get schema

Serialized Data OUT

21

Demo Video 1 Extreme Edge ReaI-Tlme Data

| vaH”'H

&

Demo Video 2: Centralized Data Edge-to-Cloud

— r-;;s-s;-aévw \"descriptién\“: \"pulse_dial\", \"value\":
m \"3282\", \"unit\"; \"PulseCountSequence\",

\"host_url\": \"pi-04.//169.254.168.167\",
\"time\": \"1710775760.0634127\"}"

publish /topic hello prepend publish /topic
' publish ftopic -0.1

167 max»mq{@ default connection-URL and clientiD

[dict.unpack

»

.,_‘ \V name: PulseDialSequence

S description: pulse_dial

vaue: 3282 D

unit: PulseCountSequence
host_url: pi-04:/169.254.168.167
time: 1710775760.0634127

“("name\": \"PulseDialSequence\", \"description\": \"pulse_dial\", \"value\": m
1Sequence\”, \"host_url\": \"pi-04://169.254.168.167\", \"time\": 1

incomming
messages ! 5274.0409

s W

Wl Fa@8800 @Y E Be-8 0207V@ 0RO R E=—

&

Learning Resources / References:

Maarek, S. (2017). Introduction to Schemas in Apache Kafka with the Confluent Schema Registry. [online] Medium. Available
at: https://medium.com/@stephane.maarek/introduction-to-schemas-in-apache-kafka-with-the-confluent-schema-registry-
3bf55e401321 [Accessed 15 Feb. 2019].

Docs.confluent.io. (2019). Schema Registry — Confluent Platform. [online] Available at:
https://docs.confluent.io/current/schema-registry/docs/index.html [Accessed 16 Feb. 2019].

GitHub. (2019). confluentinc/schema-registry. [online] Available at: https://github.com/confluentinc/schema-registry
[Accessed 16 Feb. 2019].

Maarek, S. (2017). How to use Apache Kafka to transform a batch pipeline into a real-time one. [online] Medium. Available
at: https://medium.com/@stephane.maarek/how-to-use-apache-kafka-to-transform-a-batch-pipeline-into-a-real-time-
one-831b48a6ad85 [Accessed 16 Feb. 2019].

Maarek, S. (2019). Apache Kafka Series - Confluent Schema Registry and REST Proxy. [online] Available at:
https://www.udemy.com/confluent-schema-registry/ [Accessed 15 Feb. 2019]

Medium. (2019). Using Kafka Streams API for predictive budgeting — Pinterest Engineering — Medium. [online] Available at:
https://medium.com/@Pinterest Engineering/using-kafka-streams-api-for-predictive-budgeting-9f58d206c996 [Accessed

16 Feb. 2019].

24

https://medium.com/@stephane.maarek/introduction-to-schemas-in-apache-kafka-with-the-confluent-schema-registry-3bf55e401321
https://docs.confluent.io/current/schema-registry/docs/index.html
https://github.com/confluentinc/schema-registry
https://medium.com/@stephane.maarek/how-to-use-apache-kafka-to-transform-a-batch-pipeline-into-a-real-time-one-831b48a6ad85
https://www.udemy.com/confluent-schema-registry/
https://medium.com/@Pinterest_Engineering/using-kafka-streams-api-for-predictive-budgeting-9f58d206c996

