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Storm

Streaming systems to fight fraud at Sift
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Co-founded Arroyo to bring streaming 
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A Brief History
of 

Query Languages



1960s

IMS
ISAM
COBOL

Databases



1970

1960s

Databases

Relational model (Codd, 1970)
SQL (mid-70s)



1986

1970

1960s

Databases

ANSI SQL

SELECT
FROM
WHERE
GROUP BY
HAVING
INSERT
UPDATE
DELETE
CREATE TABLE
CREATE VIEW



1986

1970

1960s

Databases

● Graphs: SPARQL, Cypher, Gremlin
● XML???

2000s

let $cat := doc("catalog.xml")/catalog
for $dept in distinct-values($cat/product/@dept)
return  <li>Department: {if ($dept = "ACC")
                        then "Accessories"
                        else if ($dept = "MEN")
                             then "Menswear"
                             else if ($dept = "WMN")
                                  then "Womens"
                                  else ()
               }  ({$dept})</li>



1986

2000s1970

1960s

Databases

● KV stores
● DB-specific query languages (CQL, 

MongoDB, AQL, …)

2010s

db.users.aggregate(
  [
    { $project :
       {
         month_joined : { $month : "$joined" },
         name : "$_id",
         _id : 0
       }
    },
    { $sort : { month_joined : 1 } }
  ]
)



Databases

SQL

1986

2000s1970

1960s 2010s

2020s



Big Data

MapReduce

2002?



Big Data

● Sawzall
● Pig Latin

2002?

2003

best: table top(3)[url: string] of referer: string weight 
count: int;
line: string = input;
fields: array of string = 
   saw(line, ".*GET ", "[^\t ]+", 
   " HTTP/1.[0-9]\"", "[0-9]+", 
   "[0-9]+", "\"[^\t ]+\"");
emit best[fields[1]] <- fields[5] weight 1;



Big Data

Dataframe APIs
(Flume, Spark)

2002?

2003

2010s

rdd
    .flatMap(_.split("\\s"))
    .map(_.replaceAll(
      "[,.!?:;]", "")
    .trim
    .toLowerCase)
    .filter(!_.isEmpty)
    .map((_, 1))
    .reduceByKey(_ + _)
    .sortByKey()



Big Data

2002?

2003

2010s

2020s

SQL



Streaming

1990s

Complex Event Processing
RAPIDE
Snoop



Streaming

Graph-construction APIs (Storm)

1990s

2011

public static class SplitSentence extends BaseBasicBolt {
    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
      declarer.declare(new Fields("word"));
    }

    @Override
    public Map<String, Object> getComponentConfiguration() {
      return null;
    }

    public void execute(Tuple tuple, BasicOutputCollector basicOutputCollector) 
{
      String sentence = tuple.getStringByField("sentence");
      String words[] = sentence.split(" ");
      for (String w : words) {
        basicOutputCollector.emit(new Values(w));
      }
    }
}

public static class WordCount extends BaseBasicBolt {
    Map<String, Integer> counts = new HashMap<String, Integer>();

    @Override
    public void execute(Tuple tuple, BasicOutputCollector collector) {
      String word = tuple.getString(0);
      Integer count = counts.get(word);
      if (count == null)
        count = 0;
      count++;
      counts.put(word, count);
      collector.emit(new Values(word, count));
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
      declarer.declare(new Fields("word", "count"));
    }
}



Streaming

Datastream APIs (Flink, Beam)

1990s

2011

2014

val counts = text.flatMap { 
  _.toLowerCase.split("\\W+") filter { _.nonEmpty } }
  .map { (_, 1) }
  .groupBy(0)
  .sum(1)

counts.writeAsCsv(outputPath, "\n", " ")



Streaming

1990s

2011

2014

2020s

SQL





But first,
some 𝓜ath



Semantics

Describes the precise behavior of a particular 
program or language construct



Relational Algebra
Formalized operations 
that follow certain rules, 
over a class of sets, 
called “relations” 
(aka “tables”)

set operations

set union

set intersection

set difference

cartesian product

∪
∩
∖
×

relational operations

selection

projection

joins

σ
π
⨝

aggregate functions

sum

count

avg

max

min



CREATE TABLE orders (
  id       INT,
  time     TIMESTAMP,
  user_id  TEXT,
  product  TEXT,
  store    INT,
  price    FLOAT
);

CREATE TABLE pageviews (
  id       INT,
  time     TIMESTAMP,
  user_id  TEXT,
  page     TEXT
);



SELECT price * 1.08 AS total_price
FROM orders
WHERE store_id = 5;





SELECT count(*) 

FROM orders 

WHERE price > 100;





How can we apply this to streaming?



CREATE STREAM orders (
  id       INT,
  time     TIMESTAMP,
  user_id  TEXT,
  product  TEXT,
  store    INT,
  price    FLOAT
);

CREATE STREAM pageviews (
  id       INT,
  time     TIMESTAMP,
  user_id  TEXT,
  page     TEXT
);



SELECT price * 1.08 AS total_price
FROM orders
WHERE store_id = 5;





SELECT count(*) 

FROM orders 

WHERE price > 100;





We need some new 
semantics



Dataflow Semantics



The Dataflow Model: A Practical Approach to Balancing 
Correctness, Latency, and Cost in Massive-Scale, Unbounded, 
Out-of-Order Data Processing

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, 
Daniel Mills, Frances Perry, Eric Schmidt, Sam Whittle

Proceedings of the VLDB Endowment, vol. 8 (2015), pp. 1792-1803
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-- this query will never return
SELECT 
  date_trunc(‘minute', time) as minute, 
  count(*)
FROM orders
WHERE price > 100
GROUP BY minute;



-- this will actually emit records 
-- because we've placed a bound on time!
SELECT 
  tumble(interval '1 minute') as minute, 
  count(*)
FROM orders
WHERE price > 100
GROUP BY minute;
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Watermark: a lower bound on 
event times that the system will 
process in the future

Reality
= ideal 
watermark
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late data



CREATE VIEW pageviews_agg as (
  SELECT 
    count(*) as views, 
    user_id,
    tumble(interval '1 hour') as window
  FROM pageviews
  GROUP BY window, customer_id
);

CREATE VIEW orders_agg as (
  SELECT 
    count(*) as orders,
    customer_id,
    tumble(interval '1 hour') as window
  FROM orders
  GROUP BY window, customer_id
);

SELECT 
  O.window, O.customer_id, C.views, O.orders
FROM orders_agg as O
LEFT JOIN clicks_agg as C ON
  C.customer_id = O.customer_id AND
  C.window = O.window;



Update Semantics



SELECT 
  date_trunc('hour', time) as hour, 
  sum(price) as sales
FROM orders
GROUP BY hour, store_id;





SELECT

  date_trunc('hour', time) as hour,

  sum(price) as sales

FROM orders

GROUP BY hour, store_id

WHERE mz_now() <= timestamp + INTERVAL '1 day';



{"before": null,

 "after":  {"hour":"2023-07-24T23:00:00","store_id":5,"sales":1000},"op":"c"}

{"before": null,

 "after":  {"hour":"2023-07-24T23:00:00","store_id":7,"sales":1372},"op":"c"}

{"before": {"hour":"2023-07-24T23:00:00","store_id":5,"sales":1000},

 "after":  {"hour":"2023-07-24T23:00:00","store_id":5,"sales":1300},"op":"u"}

...



RDBMS

changefeed streaming engine

RDBMS
updates



Dataflow Semantics Update Semantics

Completeness Relies on a watermark to determine when a 
window is complete; data received past the 
watermark is dropped

Tables are incrementally updated and eventually converge to 
the complete result; in practice TTLs are used to constrain 
state sizes

SQL support Generally requires that aggregations and joins 
are performed over a window

Nearly all SQL can be supported

Efficiency Allows very efficient windowing implementations Maintaining old data in state takes more resources, rows 
may need to be updated many times

Usage pattern Generally push-driven; the streaming system 
pushes out results to consumers when they are 
ready

Generally pull-driven; consumers need to decide when they 
will query the results and determine for themselves whether 
data is complete enough

Use cases Real-time application features, monitoring, fraud, 
ETL

Analytics, billing, integration with RDBMs



So why streaming SQL?





SQL is Declarative

SELECT 
  tumble(interval '1 minute'), 
  store_id
  count(*)
FROM orders
WHERE price > 100
GROUP BY 1, 2;

orders
    .filter(_.price > 100)
    .key_by(_.store_id)
    .window(TumblingWindow.of(Time.minutes(1)))
    .count()

source filter window count



SQL is Declarative
SELECT 
  tumble(interval '1 minute'), 
  store_id
  count(*)
FROM orders
WHERE price > 100
GROUP BY 1, 2;

filtered 
source local agg window / 

global agg

predicate pushdown multi-level 
aggregation

That means engines
can optimize

incremental agg 
within window



SQL is Flexible



SQL is Flexible

Transactional databases

Analytical databases

Batch processing

Stream processing

Metric systems

Graph databases

Data lakes

…



SQL is Extensible

watermarks
user-defined functions

custom data types

new operators

windows

optimizationsaggregate functions

event time
materialized views

distributed processing





questions?

micah@arroyo.dev

@mwylde

linkedin.com/u/wylde

mailto:micah@arroyo.dev

