
Why streaming SQL?

Data Council Austin / March 28, 2024

Micah Wylde
co-founder, Arroyo
@mwylde

(and the semantics of applying SQL to unbounded data)

Agenda

● A Brief History of Query Languages

● But first, some math

● Dataflow semantics

● Update semantics

● So why SQL?

● Questions

Built my first real-time data product in
Storm

Streaming systems to fight fraud at Sift

Flink team lead at Lyft and Splunk

Co-founded Arroyo to bring streaming
to everyone

2012

2014-
2018

2018-
2022

2023

A Brief History
of

Query Languages

1960s

IMS
ISAM
COBOL

Databases

1970

1960s

Databases

Relational model (Codd, 1970)
SQL (mid-70s)

1986

1970

1960s

Databases

ANSI SQL

SELECT
FROM
WHERE
GROUP BY
HAVING
INSERT
UPDATE
DELETE
CREATE TABLE
CREATE VIEW

1986

1970

1960s

Databases

● Graphs: SPARQL, Cypher, Gremlin
● XML???

2000s

let $cat := doc("catalog.xml")/catalog
for $dept in distinct-values($cat/product/@dept)
return Department: {if ($dept = "ACC")
 then "Accessories"
 else if ($dept = "MEN")
 then "Menswear"
 else if ($dept = "WMN")
 then "Womens"
 else ()
 } ({$dept})

1986

2000s1970

1960s

Databases

● KV stores
● DB-specific query languages (CQL,

MongoDB, AQL, …)

2010s

db.users.aggregate(
 [
 { $project :
 {
 month_joined : { $month : "$joined" },
 name : "$_id",
 _id : 0
 }
 },
 { $sort : { month_joined : 1 } }
]
)

Databases

SQL

1986

2000s1970

1960s 2010s

2020s

Big Data

MapReduce

2002?

Big Data

● Sawzall
● Pig Latin

2002?

2003

best: table top(3)[url: string] of referer: string weight
count: int;
line: string = input;
fields: array of string =
 saw(line, ".*GET ", "[^\t]+",
 " HTTP/1.[0-9]\"", "[0-9]+",
 "[0-9]+", "\"[^\t]+\"");
emit best[fields[1]] <- fields[5] weight 1;

Big Data

Dataframe APIs
(Flume, Spark)

2002?

2003

2010s

rdd
 .flatMap(_.split("\\s"))
 .map(_.replaceAll(
 "[,.!?:;]", "")
 .trim
 .toLowerCase)
 .filter(!_.isEmpty)
 .map((_, 1))
 .reduceByKey(_ + _)
 .sortByKey()

Big Data

2002?

2003

2010s

2020s

SQL

Streaming

1990s

Complex Event Processing
RAPIDE
Snoop

Streaming

Graph-construction APIs (Storm)

1990s

2011

public static class SplitSentence extends BaseBasicBolt {
 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word"));
 }

 @Override
 public Map<String, Object> getComponentConfiguration() {
 return null;
 }

 public void execute(Tuple tuple, BasicOutputCollector basicOutputCollector)
{
 String sentence = tuple.getStringByField("sentence");
 String words[] = sentence.split(" ");
 for (String w : words) {
 basicOutputCollector.emit(new Values(w));
 }
 }
}

public static class WordCount extends BaseBasicBolt {
 Map<String, Integer> counts = new HashMap<String, Integer>();

 @Override
 public void execute(Tuple tuple, BasicOutputCollector collector) {
 String word = tuple.getString(0);
 Integer count = counts.get(word);
 if (count == null)
 count = 0;
 count++;
 counts.put(word, count);
 collector.emit(new Values(word, count));
 }

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word", "count"));
 }
}

Streaming

Datastream APIs (Flink, Beam)

1990s

2011

2014

val counts = text.flatMap {
 _.toLowerCase.split("\\W+") filter { _.nonEmpty } }
 .map { (_, 1) }
 .groupBy(0)
 .sum(1)

counts.writeAsCsv(outputPath, "\n", " ")

Streaming

1990s

2011

2014

2020s

SQL

But first,
some 𝓜ath

Semantics

Describes the precise behavior of a particular
program or language construct

Relational Algebra
Formalized operations
that follow certain rules,
over a class of sets,
called “relations”
(aka “tables”)

set operations

set union

set intersection

set difference

cartesian product

∪
∩
∖
×

relational operations

selection

projection

joins

σ
π
⨝

aggregate functions

sum

count

avg

max

min

CREATE TABLE orders (
 id INT,
 time TIMESTAMP,
 user_id TEXT,
 product TEXT,
 store INT,
 price FLOAT
);

CREATE TABLE pageviews (
 id INT,
 time TIMESTAMP,
 user_id TEXT,
 page TEXT
);

SELECT price * 1.08 AS total_price
FROM orders
WHERE store_id = 5;

SELECT count(*)

FROM orders

WHERE price > 100;

How can we apply this to streaming?

CREATE STREAM orders (
 id INT,
 time TIMESTAMP,
 user_id TEXT,
 product TEXT,
 store INT,
 price FLOAT
);

CREATE STREAM pageviews (
 id INT,
 time TIMESTAMP,
 user_id TEXT,
 page TEXT
);

SELECT price * 1.08 AS total_price
FROM orders
WHERE store_id = 5;

SELECT count(*)

FROM orders

WHERE price > 100;

We need some new
semantics

Dataflow Semantics

The Dataflow Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-Scale, Unbounded,
Out-of-Order Data Processing

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J. Fernández-Moctezuma, Reuven Lax, Sam McVeety,
Daniel Mills, Frances Perry, Eric Schmidt, Sam Whittle

Proceedings of the VLDB Endowment, vol. 8 (2015), pp. 1792-1803

Tumble Slide
1 2 3

54

Session

2

431

Key 2

Key 1

Key 3

Time

1 2 3 4

-- this query will never return
SELECT
 date_trunc(‘minute', time) as minute,
 count(*)
FROM orders
WHERE price > 100
GROUP BY minute;

-- this will actually emit records
-- because we've placed a bound on time!
SELECT
 tumble(interval '1 minute') as minute,
 count(*)
FROM orders
WHERE price > 100
GROUP BY minute;

Reality

P
ro

ce
ss

in
g

Ti
m

e

Event Time

Ideal

Skew

Watermark: a lower bound on
event times that the system will
process in the future

Reality
= ideal
watermark

P
ro

ce
ss

in
g

Ti
m

e

Event Time

Estimated
watermark

late data

CREATE VIEW pageviews_agg as (
 SELECT
 count(*) as views,
 user_id,
 tumble(interval '1 hour') as window
 FROM pageviews
 GROUP BY window, customer_id
);

CREATE VIEW orders_agg as (
 SELECT
 count(*) as orders,
 customer_id,
 tumble(interval '1 hour') as window
 FROM orders
 GROUP BY window, customer_id
);

SELECT
 O.window, O.customer_id, C.views, O.orders
FROM orders_agg as O
LEFT JOIN clicks_agg as C ON
 C.customer_id = O.customer_id AND
 C.window = O.window;

Update Semantics

SELECT
 date_trunc('hour', time) as hour,
 sum(price) as sales
FROM orders
GROUP BY hour, store_id;

SELECT

 date_trunc('hour', time) as hour,

 sum(price) as sales

FROM orders

GROUP BY hour, store_id

WHERE mz_now() <= timestamp + INTERVAL '1 day';

{"before": null,

 "after": {"hour":"2023-07-24T23:00:00","store_id":5,"sales":1000},"op":"c"}

{"before": null,

 "after": {"hour":"2023-07-24T23:00:00","store_id":7,"sales":1372},"op":"c"}

{"before": {"hour":"2023-07-24T23:00:00","store_id":5,"sales":1000},

 "after": {"hour":"2023-07-24T23:00:00","store_id":5,"sales":1300},"op":"u"}

...

RDBMS

changefeed streaming engine

RDBMS
updates

Dataflow Semantics Update Semantics

Completeness Relies on a watermark to determine when a
window is complete; data received past the
watermark is dropped

Tables are incrementally updated and eventually converge to
the complete result; in practice TTLs are used to constrain
state sizes

SQL support Generally requires that aggregations and joins
are performed over a window

Nearly all SQL can be supported

Efficiency Allows very efficient windowing implementations Maintaining old data in state takes more resources, rows
may need to be updated many times

Usage pattern Generally push-driven; the streaming system
pushes out results to consumers when they are
ready

Generally pull-driven; consumers need to decide when they
will query the results and determine for themselves whether
data is complete enough

Use cases Real-time application features, monitoring, fraud,
ETL

Analytics, billing, integration with RDBMs

So why streaming SQL?

SQL is Declarative

SELECT
 tumble(interval '1 minute'),
 store_id
 count(*)
FROM orders
WHERE price > 100
GROUP BY 1, 2;

orders
 .filter(_.price > 100)
 .key_by(_.store_id)
 .window(TumblingWindow.of(Time.minutes(1)))
 .count()

source filter window count

SQL is Declarative
SELECT
 tumble(interval '1 minute'),
 store_id
 count(*)
FROM orders
WHERE price > 100
GROUP BY 1, 2;

filtered
source local agg window /

global agg

predicate pushdown multi-level
aggregation

That means engines
can optimize

incremental agg
within window

SQL is Flexible

SQL is Flexible

Transactional databases

Analytical databases

Batch processing

Stream processing

Metric systems

Graph databases

Data lakes

…

SQL is Extensible

watermarks
user-defined functions

custom data types

new operators

windows

optimizationsaggregate functions

event time
materialized views

distributed processing

questions?

micah@arroyo.dev

@mwylde

linkedin.com/u/wylde

mailto:micah@arroyo.dev

