How to Use Your Development Data
to Make LLMs Code
Like You and Your Team

Tyler Dunn, Co-founder & CEO of Continue

\

Continue is on a mission to make
building software feel like making music

Continue is a modular, open-source
Copilot alternative

It’s built as a reusable set of
components that enable developers to
create their own copilot

First, why do I want to make LLMs
code like me and my team?

\

As developers, we want to experience flow state

FLOW STATE
€

©)

/ > PRODUCTIVITY

/L

CREATIVITY

OVERALL &)
PERFORMANCE

Getting stuck disrupts our flow state
This is why so many of us are excited about software development copilots

stackoverflow About

All Questions

® Questions 22,739,212 questions

chitect: What you

I am currently
dy

0 votes
Trending: A

rd Test Results and Next

But bad / wrong suggestions disrupt flow state too

A real-world example:

| worry our Copilot my simple component
i S I e G \V/ i n g S O m e Recently, I set out to build a component to help me generate footnotes

on this site. You know; the kind that shows up as a tiny link in some

p G S S e n g e rS b e h i n d text, and that when clicked, jumps you to the bottom of the page for an
L]

accompanying annotation. 1

() Just links doing link things. Good old-fashioned HTML.
‘% But for this dead-simple task, GitHub Copilot wanted me to add a
JavaScript click handler. Something like this, instead:

Svelte

<script>
const handleClick = (e) = {
e.preventDefault()
const target = document.getElementById('#footnote-1')
target.focus ()
}

</script>

Blog pOST by C()l]illS“'()l’th 1

Josh

1 hope any good developer would immediately spot this as
categorically bad code.

Okay, but what is
development data?

\

Dev data = how you build software

Data on the stuff that happens in between Git commits

Created as a by-product of using LLMs while coding

$ cd .continue
$ cd dev_data

$ 1s

accept_reject_diff.jsonl new_session.jsonl
autocomplete.jsonl select_context_item.jsonl
chat.jsonl step_run.jsonl
context_used.jsonl suggestions.json
feedback.jsonl tokens_generated.jsonl

model_use.jsonl

s

How to use your development data

Step 1 Step 2 Step 3
Collect your Improve the Improve the
dev data and compound Large Language

look at it AI system Models (LLMSs)

How to use your development data

Step 1 Step 2 Step 3
Collect your Improve the Improve the
dev data and compound Large Language

look at it Al system Models (LLMs)

Collect your dev data and look at it

\

Collect your development data and look at it

$ cd dev_data]
$ 1s
accept_reject_diff.jsonl chat.jsonl feedback.jsonl new_session.jsonl step_run
.jsonl tokens_generated.jsonl
autocomplete.jsonl context_used.jsonl model_use.jsonl select_context_item.jsonl suggesti
ons.json
$ cat autocomplete.jsonl
{"time":24, "completion":"(\"\\n\")", "prompt":"< | fim_begin| > \"OpenLLama\": \"OpenLlama 13B\",\n \"codellama:instruct\":
\"Code Llama\",\n \"deepseek-coder:1.3b-instruct-q8_6\": \"DeepSeek Coder 1.3B\",\n \"deepseek-7B\": \"DeepSeek Coder 6.7B
\&\n \"magicoder:7b-s-c1-q8_0\": \"Magicoder 6.7B\",\n \"HuggingFaceH4/zephyr-7b-beta\": \"Zephyr 7B\",\n \"bloke—
deepseek-coder—-gptg-4bit-32g-actorder_True\": \"DeepSeek Coder\",\n \"lunademo\": \"Unknown\",\n \"dolphin-2.5-mixtral-8x7
b\": \"Dolphin Mixtral 8x7B\",\n \"ggml\": \"Unknown\",\n \"deepseek-coder:33b-instruct-q8_e\": \"DeepSeek Coder 33B\",\n
\"starcoder:1b\": \"StarCoder 1B\",\n \"togethercomputer/1lama-2-7b-chat\": \"Llama 2 7B\",\n \"gemini-pro\": \"Gem
ini Pro\",\n \"codebooga\": \"Codebooga 34B\"\n 3\n\n if original_name not in models:\n return \"N/A\"\n else:\n
return models[original_namel\n\ndef get_data_from_bigquery():\n \n client = bigquery.Client.from_service_account_json(\"autod
ebug-719¢31b832c6.json\")\n\n query_job = client.query(\"\"\"\n SELECT * FROM ‘autodebug.dbt_nsesti.tokens_generated’ \n
LIMIT 1000000\"\"\")\n\n results = query_job.result() # Waits for job to complete\n\n model_tokens_count = {}\n\n for row in
results:\n model = convert_model_name(row.model)\n if model == \"N/A\":\n model_tokens_count.setdefault(\"Othe
r\", 0)\n model_tokens_count[\"Other\"] += row.tokens\n #print(\"{} needs to be added to the models list\".format(
row.model))\n else:\n model_tokens_count.setdefault(model, 8)\n model_tokens_count[model] += row.tokens\n
\n for key, value in sorted(model_tokens_count.items(), key=lambda item: item[1], reverse=True):\n print(\"{}, {}\".format
(value, key))\n # print(\"{} generated {} tokens\".format(key, value))\n print< | fim_hole | >\n\nif __name__ == \"__main__\":
\n get_data_from_bigquery()< | fim_end | >", "modelProvider":"ollama", "modelName": "deepseek—coder:1.3b-base", "completionOptions":{"stop"
:["<| fim_begin| >","<| fim_hole | >","<| fim_end | >","//"1}, "cacheHit":false, "accepted":true}
{"time":27,"completion”:"(\"\\n\")", "prompt":"< | fim_begin| > \"OpenLLama\": \"OpenLlama 13B\",\n \"codellama:instruct\":
\"Code Llama\",\n \"deepseek-coder:1.3b-instruct-q8_0\": \"DeepSeek Coder 1.3B\",\n \"deepseek-7B\": \"DeepSeek Coder 6.7B
AT \"magicoder:7b-s-c1-g8_0\": \"Magicoder 6.7B\",\n \"HuggingFaceH4/zephyr-7b-beta\": \"Zephyr 7B\",\n \"bloke—
deepseek-coder—-gptg-4bit-32g-actorder_True\": \"DeepSeek Coder\", \n \"lunademo\": \"Unknown\",\n \"dolphin-2.5-mixtral-8x7
b\": \"Dolphin Mixtral 8x7B\",\n \"ggml\": \"Unknown\",\n \"deepseek-coder:33b-instruct-q8_0\": \"DeepSeek Coder 33B\",\n
\"starcoder:1b\": \"StarCoder 1B\",\n \"togethercomputer/llama-2-7b-chat\": \"Llama 2 7B\",\n \"gemini-pro\": \"Gem
ini Pro\",\n \"codebooga\": \"Codebooga 34B\"\n F\n\n if original_name not in models:\n return \"N/A\"\n else:\n
return models[original_namel\n\ndef get_data_from_bigquery():\n \n client = bigquery.Client.from_service_account_json(\"autod
ebug-719¢31b832c6.json\")\n\n query_job = client.query(\"\"\"\n SELECT * FROM ‘autodebug.dbt_nsesti.tokens_generated’ \n
LIMIT 1000000\"\"\")\n\n results = query_job.result() # Waits for job to complete\n\n model_tokens_count = {}\n\n for row in
results:\n model = convert_model_name(row.model)\n if model == \"N/A\":\n model_tokens_count.setdefault(\"Othe
r\", @)\n model_tokens_count[\"Other\"] += row.tokens\n #print(\"{} needs to be added to the models list\".format(
row.model))\n else:\n model_tokens_count.setdefault(model, @8)\n model_tokens_count[model] += row.tokens\n
\n for key, value in sorted(model_tokens_count.items(), key=lambda item: item[1], reverse=True):\n print(\"{}, {}\".format
(value, key))\n # print(\"{} generated {} tokens\".format(key, value))\n print< | fim_hole | >\n\nif __name__ == \"__main__\":
\n get_data_from_bigquery()< | fim_end | >", "modelProvider":"ollama", "modelName": "deepseek—coder:1.3b—base", "completionOptions":{"stop"

How to use your development data

Step 1 Step 2 Step 3
Collect your Improve the Improve the
dev data and compound Large Language

look at it Al system Models (LLMs)

How to use your development data

Step 1 Step 2 Step 3
Collect your Improve the Improve the
dev data and compound Large Language

look at it AI system Models (LLMSs)

Improve the compound Al system

\

Software dev copilots are compound AI systems

Software development Al systems today include many components

“Chat” model

“Tab” model
“Embeddings” model
Local context engine
Server context engine

Filteri Nng engine The Shift from Models to Compound Al Systems

eTC, Matei Zaharia, Omar Khattab, Lingjiao Chen, Jared Quincy Davis, Heather Miller,
Chris Potts, James Zou, Michael Carbin, Jonathan Frankle, Naveen Rao, Ali Ghodsi

T

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH ~ sSubscribe About Archive BAIR

AI caught everyone’s attention in 2023 with Large Language Models (LLMs) that can be
instructed to perform general tasks, such as translation or coding, just by prompting. This
naturally led to an intense focus on models as the primary ingredient in AI application
development, with everyone wondering what capabilities new LLMs will bring. As more
developers begin to build using LLMs, however, we believe that this focus is rapidly changing:
state-of-the-art Al results are increasingly obtained by compound systems with multiple
components, not just monolithic models.

Provide clear and comprehensive instructions

Give me code for a component that helps me generate footnotes on my personal blog

Here is a simple JavaScript code snippet that can be used to generate footnotes on a blog. This code assumes that
you have footnotes marked in your blog posts with a specific HTML tag, like <sup>.

window.onload = function() {
var count = 0;
var footnotes = document.getElementsByTagName('sup');
var container = document.createElement('div');
container.id = 'footnotes'
var heading = document.createElement('h2');
heading. innerHTML = 'Footnotes';
container.appendChild(heading);
for (var i = 0; i < footnotes.length; i++) {
count++;
var footnote = footnotes[il;
footnote.id = 'footnote' + count;
var backlink = document.createElement('a');
backlink.innerHTML = coun’
backlink.href = '#footnote' + count;
var item = document.createElement('p'); VS.
item.appendChild(backlink);
item.innerHTML += ' + footnote.innerHTML;
container.appendChild(item);
footnote.innerHTML = '' + count + '';
}

document.body.appendChild(container);

This script will generate a list of footnotes at the bottom of the page, each with a backlink to the original reference in
the text.

Note: You will need to include this script in the HTML file of your blog. Also, this is a very basic implementation and
might not work perfectly for all cases. You might need to adjust it according to your specific needs.

@ Enter

Give me code for a component that helps me generate footnotes on my personal blog using two anchor tags and
nothing else

Here's a simple example of a component that generates footnotes using two anchor tags:

<IDOCTYPE html>

<html>

<head>

<style>

-footnote {
font-size: smaller;
text-align: left;
margin-top: lem;
border-top: 1px solid #ccc;
padding-top: lem;

</style>
</head>
<body>

<>
Here is some text with a footnote^{1}.
</p>

<div class="footnote" id="footnotel">

^{1} Here is the text of the footnote.
</div>

</body>
</html>

In this example, we have a paragraph of text with a superscript number that links to the footnote at the bottom of
the page. The footnote itself isin a div with a class of footnote, and it includes a superscript number that links
back to the original reference in the text.

‘You can add as many footnotes as you need by following this pattern, just make sure to give each footnote and
reference a unique ID.

& Enter

Add a system message with instructions that should
always be followed

"title": "Deepseek Coder Instruct (33B)",

"model": "deepseek-ai/deepseek-coder-33b-instruct",
"apiKey": "70df16b0e8391058bclbaf2e7805d7858e3696b57
"completionOptions": {},

"provider": "together",

rsystemMessage'. "My operating system is Mac0S"

How can | kill a running process?

There are several ways to kill a running process in Linux. Here are a few methods:

1. Using the kill command:

The kill command is used to send a signal to a process. By defal, it sends the TERM signal, which asks the
process to terminate. If the process doesn't respond to this signal, you can use the -9 option to send the KILL
signal, which forces the process to terminate immediately. b

kill PID

Replace PID with the process ID of the process you want to kil

2. Using the killall command: How can | kill a running process?
The killall command sends a signal to all processes with the specified name. By default, it sends the TERM
signal

YYou can kill a running process in MacOS using the kill command. Here's how you can do it:
killall process_nane

V S 1. Open Terminal.
Replace process_name with the name of the process you want to kill L 2. Find the process ID (PID) of the process you want to kill. You can do this by using the ps command. For

YU thatne L Reommaney example, if you want to find the PID of a process named “firefox", you would type:

The pkill command is similar to killall, but it allows you to specify a pattern to match against the process

name. ps -ax | grep firefox

Kill o " . . —_ : "

(b s This will return a list of processes that include "firefox" in their name. The PID is the second column in the output.

Replace process_name with the name or pattern of the process(es) you want to kill 3. Once you have the PID, you can kill the process with the kill command. For example, if the PID is 12345, you
4. Using the xkill graphical tool: would type:

If you're using a graphical interface, you can use the xkill tool to select a window and kill the process that owns it.

kill 12345
5. Using the htop or top command:

These commands display a list of running processes and allow you to kill processes by pressing F9 and selecting

; This will send a termination signal to the process with the PID 12345, which should cause the process to stop.
the process to kill.

Remember, killing a process can disrupt its operation and may lead to data loss or other undesirable effects. Always Note: Be careful when using the kill command. If you accidentally kill a process that's important for your system,
make sure you're certain that you want to kill a process before doing so. you could cause problems. Always make sure you're killing the correct process.

o I

© Enter

Automatically filter for obviously bad suggestions
and ask for a new suggestion

Examples

Block suggestions matching public code
Ensure only certain libraries are used
Make sure suggestions pass your linter
etc.

@Codebase where are the transformer configurations
defined?

The transformer configurations are defined in the ModelArgs
class within the model.py file (lines 20-48). Specifically, the
from_name class method suggests that there is a dictionary
called transformer_configs that contains different
configuration options for transformers, which are accessed by a
given name key. However, the actual transformer_configs
dictionary is not shown in the provided code snippets, so it is
likely defined elsewhere in the codebase. To learn more about
the specific configurations, one would need to look for the
definition of the transformer_configs dictionary, which could
be in a separate configuration file or within the same model. py
file but outside of the provided code snippets.

€ Enter

JiraIssues

Type '@jira' to reference the conversation in a Jira issue. Make sure to include your own Atlassian API Token.

{
“name "issue",
“params”: {
"domain": "company.atlassian.net",
“"email": "someone@somewhere.con",
“token ": "ATATT..."
I
I
Issue Query

By default, the following query will be used to find issues:

assignee = currentUser() AND resolution = Unresolved order by updated DESC

You can override this query by setting the issueQuery parameter.

Improve how context from your codebase + software
development lifecycle is retrieved and used

Built-in Context Providers
Git Diff
Terminal
Documentation
Open Files
Codebase Retrieval
Folders
Exact Search
File Tree
Google
GitHub Issues
Jira Issues
Code Outline
Code Highlights
PostgreSQL
Database Tables
Requesting Context Providers

Building Your Own Context Provider

Select the right model for the job

“Chat” model

Typically 30B+ parameters
Highest quality responses
Often run on server or used
via an API endpoint
Examples: GPT-4, DeepSeek
Coder 33B, Claude 3, Code
Llama 70B, etc.

“Tab” model

Typically 1-15B parameters
Quality vs. latency tradeoffs
Often run locally or on server
Examples: Codex, StarCoder
2, Replit Code, etc.

How to use your development data

Step 1 Step 2 Step 3
Collect your Improve the Improve the
dev data and compound Large Language

look at it AI system Models (LLMSs)

How to use your development data

Step 1 Step 2 Step 3
Collect your Improve the Improve the
dev data and compound Large Language

look at it Al system Models (LLMs)

Improve the LLMs

\

The ideal data for an LLM

Andrej Karpathy & X
@karpathy - Follow
The ideal training data for an LLM is not
what you wrote. It's the full sequence of
your internal thoughts and all the individual

edits while you wrote it.
But you make do with what there is.

11:07 AM - Jan 20, 2024 @)

® 34K @ Reply (2 Copylink

Read 190 replies

By-product of using LLMs — close to ideal data

When you use LLMs while coding, you create development data that shows
e The step-by-step process a developer takes to complete a task

e The context a developer uses to decide what to do at each step

e Natural language that explains the reasoning behind the steps

Google is already using their development data

Large sequence models for software development
activities

VAOVX)

compilers, unit

So what development data is helpful now?

Examples

Tab-autocomplete accepted / rejected suggestions
/edit accepted / rejected suggestions

Thumbs up / down on chat responses

The “apply this code” button

Manual edits 1 min, 1 hour, 1 day later

What results fromm RAG are used in the response
etc.

Use fine-tuning to improve existing LLMs

Domain-specific instructions + hundreds of GPU hours

Giga ML

Fine tuning for developers

S23 ACTIVE GENERATIVE-AI B2B ENTERPRISE

ENTERPRISE-SOFTWARE SAN FRANCISCO

Company

ditHub fine-tuned StarCoder 2 on their GigaML is fine-tuning StarCoder 2

codebase, docs, accepted tab on accepted tab autocomplete data
autocomplete dataq, etc.

Use domain-adaptive continued pre-training to
improve open-source LLMs

Billions of tokens of relevant company data + thousands of GPU hours

ChipNeMo: Domain-Adapted LLMs for Chip Design

gjie Liu®, Teodor-Dumitru Ene¥, Robert Kirby®, Chris Cheng®, Nathaniel Pinckney*, Rongjian Liang®
Jonah Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet Bayraktaroglu, Bonita Bhaskaran, Bryan Catanzaro
Arjun Chaudhuri, Sharon Clay, Bill Dally, Laura Dang, Parikshit Deshpande, Siddhanth Dhodhi, Sameer Halepete
Eric Hill, Jiashang Hu, Sumit Jain, Brucek Khailany, George Kokai, Kishor Kunal, Xiaowei Li 2 Code Llama: Specializing Llama 2 for code
Charley Lind, Hao Liu, Stuart Oberman, Sujeet Omar, Sreedhz Pmuy. Jonathan Raiman, Ambar Sarkar
Zhengjiang Shao, Hanfei Sun, Pratik P Suthar, Varun Tej, Walker Turner, Kaizhe Xu, Haoxing Ren .
NVIDI, 2.1 The Code Llama models family

Code Llama. The CODE LLAMA models constitute foundation models for code generation. They come
in four model sizes: 7B, 13B, 34B and 70B parameters. The 7B, 13B and 70B models are trained using an
,,,‘gmgc mm“l? e Loty e e e o T J F infilling objective (n 2.3), and are appropriate to be used in an IDE to complete code in the middle of
ng off-the-shelf commercial or open-source LLMS, poehot for GPU ASIC and Architec 5. a file, for example. The 34B ‘model was trained without the infilling objective. All CODE LLAMA models
e maens the ot d tation techs . A - 2 p N : P
fodlves & kenizers, domain.s o ptive cor nlzm‘:‘:(;' p::" r“;n“ U which understands internal HW designs and is are initialized with LLAMA 2 model weights and trained on 500B tokens from a code-heavy dataset (see
ing (SFT) with domain-speci istruct and explaining complex design to DA scripts generation for Section 2.2 for more details), exc D A 70B which was trained on 1T tokens. They are all
We evaruate these methods on (w0 domain specific tools based on Python and Tel for VLSI " p b
i i e fine-tuned to handle lon detailed in Section 2.4.
s tasks specified in i
and analysis as part of an internal bug and is:

techniques enable significant LLM performance Ryap, .
over general-purpose base Tiodels actus he thres evaluated Although general-purpose LLMs trained on vast amounts
applications, enabling up to 5 reduction with similar of internet data exhibit remarkable capabilities in generative
or better performance on 4 range ‘ot e lesign tasks. Our findings AT tasks across diverse domains (as demonstrated by Bubeck
also indicate that there’s still room for improvement between ¢ 5) i [9]), recent work such as BloombergGPT [10] and
our current results and ideal outcomes. We belicve that farther 1. *\0 0 o FEES R R T anccific 'EM mod.
investigation of domain-adapted LLM approaches will help close BioMe [11] demonstrate that domain-specific mod-
this gap in the future. els can nulperfum\ a E:neml pupose model on dommain-speciic

How ChipNeMo was How Code Llama
created by Nvidia was created by Meta

Pre-train your own LLM from scratch

Trillions of tokens of Internet data + company data + millions of GPU hours

.-

models

from scratch
& OpenAl

Custom models

Information The ustom
domain. This inclu every step of the model training process, from doing
additional domain s e- , to running a custom RL post-training process
tailored for the o] . izations will have exclusive access to their custom
models. This pr plicable to domains with extremely large
proprietary datasets—billions of tokens at minimum.

OpenAl, MosaicML, Together, etc. will
help you train your own custom model

== Yeplit VisitRepiit Pricing Careers

& Backtoblog

AL (Eng | | Infra

How to train your own Large Language Models

Replit tfrained their own model

2 signup

How to use your development data

Step 1 Step 2 Step 3
Collect your Improve the Improve the
dev data and compound Large Language

look at it AI system Models (LLMSs)

TL;DR: Dev data can be used to automate even more

Automated Unit Test Improvement using Large Language Models
at Meta

Nadia Alshahwan'
Jubin Chheda

An:

Finegenova

Beliz Gokkaya

Ma

Harman

Inna Harper
Alexandru Marginean
Shubho Sengupt
Eddy Wang
Meta Platforms Inc.,
Menlo Park, California, USA

ABSTRACT
‘This paper describes Meta’s TestGen-LLM tool, which us
sting human-written te

LLM verifies that its generated test classes successfully clear a set
of filters that assure measurable improvement over the original
test suite, thereby eliminating problems due to LLM halluc;
We describe the deployment of TestGen-LLM at Meta test

or the Instagram and Facebook platforms. In an eval

ies products for Ins
4

ge. During Meta’s Instagram and Facebook test-a-thons, it

improved 11.5% of all classes to which it was applied, with
its recommendations being accepted for production deployment
by Meta software engineers. We believe this is the first report on
industrial scale deployment of LLM-generated code backed by such
assurances of code improvement.

KEYWORDS
Unit Testing, Automated Test Generation, Large Language Models,
LLMs, Genetic Improvement.

1 INTRODUCTION

As part of our overall mission to automate unit test generation

for Android code, we have developed an automated

prover, TestGen-LL LM uses two of Meta’

Language Models (LLMs) to extend existing, human-written, Kotlin

test classes by generating additional test cases that cover previ-

and that increase overall test coverage.

mple of Assured Offline LLM-Based Software
Offline LLMSE) [6]

That s, unlike other LLM-based code and test generation tech-
niques, TestGen-LLM uses Assured Offline LLMSE to embed the
language models, as a service, in a larger software engincering

flow that ultimately recommends fully formed software im-
provements rather than smaller code snippets. These fully-formed
code improvements are backed by verifiable guarantees for im-
provement and non-regression of existing behavior. A filtration
process discards any test case that cannot be guaranteed to meet
the assurances.

‘The filtration process can be used to evaluate the performance of
a particular LLM, prompt strategy, or choice of hyper-parameters.

From Myth to Legend: How Generative Al can Supercharge Productivity to Create 10x Developers

Uber code assistant

ﬂ-=/ —~ Code

@ | gquestions

Uber

> M O 1517/3657

Fine tuned LLM

Uber code base

Based on
open-source
Codellama

> - > -
6| = $
k\; K& = /

O @ £ 5]

aL
ar

Thanks!

We are at the beginning on this journey :)

Lots more R&D to come!

We are hiring

Appendix

Al + Engineering = Magic at Airbnb C

ChatGPT GitHub Copilot Build your own

> M O 1:39/3210 v @@ @B £ 5] ar

GitHub teases Copilot enterprise plan
that lets companies customize for
their codebase

The plan will cost $39/month and will arrive in February, 2024

Paul Sawers @psa

Image Credits: CFOTO/Future Publishing / Getty Images

GitHub today announced plans for an enterprise subscription tier that will allow companies

to fine-tune its g based on their internal codebase.

July 3,2023

What GitHub Copilot Lacks: Fine-tuning on Your
Private Code

Jonathan Ma, Prem Nair, Douglas Chen, Nick Moy

Share this post n X

o TL;DR We prove that fine-tuning Codeium'’s generic base code model on unseen code leads to
ntent " . 5 3 D . s
ents substantial, observable improvements in suggestion quality over other tools such as GitHub Copilot.
Hallucinations and Why

Fine-tuning Matters

Experimental Setup:
Fine-tuned Codeium vs
GitHub Copilot

Results: Fine-tuned
Codeium Outperforms
GitHub Copilot

Task 1: Using the Right
Class Given Comment

Task 1 Take #2: Using
the Right Class Given
Comment

Task 2: Populating
Arguments

Hugging Face

Models Datasets Spaces Posts Docs

Back to blog

Introducing SafeCoder

Published August 22, 2023

Update on GitHub

@ ieffboudier g philschmid
\ Jeff Boudier Philipp Schmid

Today we are excited to announce SafeCoder - a code assistant solution built for the enterprise.

The goal of SafeCoder is to unlock software development productivity for the enterprise, with a
fully compliant and self-hosted pair programmer. In marketing speak: “your own on-prem

GitHub copilot”.

Before we dive deeper, here’s what you need to know:

SafeCoder is not a model, but a complete end-to-end commercial solution

SafeCoder is built with security and privacy as core principles - code never leaves the VPC

during training or inference
SafeCoder is designed for self-hosting by the customer on their own infrastructure

SafeCoder is designed for customers to own their own Code Large Language Model

Pricing

y 4 Sourcegraph Products v Pricing Enterprise Resources v Search public code Contact sales ‘ Login J Get Cody for free

< Blog

How Cody understands your codebase

Alex Isken, Corey Hill F

We often say that Cody uses a deep understanding of your codebase to help you write
and understand code faster. Meanwhile, we're frequently asked: How does Cody

understand my codebase? And what exactly does that mean?

In building Cody, we found that Large Language Models (LLMs), when applied to specific
use cases, are only as good as the context they’re given. For Cody, those use cases are
writing, understanding, and answering questions about code. Cody needs the context of a

user’s codebase to do those things effectively.
This blog unpacks why context matters and how we've built Cody Enterprise to use the

right context to help you write and understand code.

Why does context matter?

When it comes to Al chat and asking questions of an LLM, you can think of questions

loosely falling into two categories as they relate to context:

General coding questions that are not dependent on a user's context

Specific questions that are dependent on a user's existing code/context

copilot-explorer

Copilot Internals | thakkarparth007.github.io

Github Copilot has been incredibly useful to me. It can often magically read my mind and make useful suggestions. The thing that
surprised me the most was its ability to correctly “guess” functions/variables from surrounding code - including from other files. This
can only happen, if the copilot extension sends valuable information from surrounding code to the Codex model. | was curious about
how it worked, so | decided to take a look at the source code.

In this post, | try to answer specific questions about the internals of Copilot, while also describing some interesting observations | made
as | combed through the code. | will provide pointers to the relevant code for almost everything | talk about, so that interested folks can
take a look at the code themselves.

Over

This post is organized as follows:

Reverse Engineering preview
Copilot: a 10,000 feet view
Secret Sauce 1: Prompt engineering
What does a prompt look like?
How is the prompt prepared? A code walkthrough.
= A close look at Snippet Extraction
Secret Sauce 2: Model Invocation
Inline/GhostText
= Preventing poor requests via Contextual Filter
Copilot Panel
Don't show unhelpful completions
Secret Sauce 3: Telemetry
> Question 1: How is the 40% number measured?
Question 2: Does telemetry data include code snippets?
Important Update
Other random tidbits
Enabling verbose logging
Onwards
Links

Reverse Engineering preview

