
How to Use Your Development Data 
to Make LLMs Code 

Like You and Your Team
Tyler Dunn, Co-founder & CEO of Continue



Continue is on a mission to make 
building software feel like making music

Continue is a modular, open-source 
Copilot alternative

It’s built as a reusable set of 
components that enable developers to 
create their own copilot



First, why do I want to make LLMs 
code like me and my team?



As developers, we want to experience flow state



Getting stuck disrupts our flow state

This is why so many of us are excited about software development copilots



But bad / wrong suggestions disrupt flow state too

Blog post by



Okay, but what is 
development data?



Dev data = how you build software

Data on the stuff that happens in between Git commits

Created as a by-product of using LLMs while coding



How to use your development data

Step 1

Collect your 
dev data and 
look at it

Step 2

Improve the 
compound 
AI system

Step 3

Improve the 
Large Language 
Models (LLMs)



How to use your development data

Step 1

Collect your 
dev data and 
look at it

Step 2

Improve the 
compound 
AI system

Step 3

Improve the 
Large Language 
Models (LLMs)



Collect your dev data and look at it



Collect your development data and look at it



How to use your development data

Step 1

Collect your 
dev data and 
look at it

Step 2

Improve the 
compound 
AI system

Step 3

Improve the 
Large Language 
Models (LLMs)



How to use your development data

Step 1

Collect your 
dev data and 
look at it

Step 2

Improve the 
compound 
AI system

Step 3

Improve the 
Large Language 
Models (LLMs)



Improve the compound AI system



Software dev copilots are compound AI systems
Software development AI systems today include many components

● “Chat” model
● “Tab” model
● “Embeddings” model
● Local context engine
● Server context engine
● Filtering engine
● etc.



Provide clear and comprehensive instructions

vs.



Add a system message with instructions that should 
always be followed

vs.



Automatically filter for obviously bad suggestions 
and ask for a new suggestion

Examples

● Block suggestions matching public code
● Ensure only certain libraries are used
● Make sure suggestions pass your linter
● etc.



Improve how context from your codebase + software 
development lifecycle is retrieved and used



Select the right model for the job

“Chat” model

● Typically 30B+ parameters
● Highest quality responses
● Often run on server or used 

via an API endpoint
● Examples: GPT-4, DeepSeek 

Coder 33B, Claude 3, Code 
Llama 70B, etc.

“Tab” model

● Typically 1-15B parameters
● Quality vs. latency tradeoffs
● Often run locally or on server
● Examples: Codex, StarCoder 

2, Replit Code, etc.



How to use your development data

Step 1

Collect your 
dev data and 
look at it

Step 2

Improve the 
compound 
AI system

Step 3

Improve the 
Large Language 
Models (LLMs)



How to use your development data

Step 1

Collect your 
dev data and 
look at it

Step 2

Improve the 
compound 
AI system

Step 3

Improve the 
Large Language 
Models (LLMs)



Improve the LLMs



The ideal data for an LLM



By-product of using LLMs → close to ideal data

When you use LLMs while coding, you create development data that shows

● The step-by-step process a developer takes to complete a task

● The context a developer uses to decide what to do at each step

● Natural language that explains the reasoning behind the steps



Google is already using their development data



So what development data is helpful now?

Examples

● Tab-autocomplete accepted / rejected suggestions
● /edit accepted / rejected suggestions
● Thumbs up / down on chat responses
● The “apply this code” button
● Manual edits 1 min, 1 hour, 1 day later
● What results from RAG are used in the response
● etc.



Use fine-tuning to improve existing LLMs

dltHub fine-tuned StarCoder 2 on their 
codebase, docs, accepted tab 
autocomplete data, etc.

Domain-specific instructions + hundreds of GPU hours

GigaML is fine-tuning StarCoder 2 
on accepted tab autocomplete data



Use domain-adaptive continued pre-training to 
improve open-source LLMs

How Code Llama 
was created by Meta

How ChipNeMo was 
created by Nvidia

Billions of tokens of relevant company data + thousands of GPU hours



Pre-train your own LLM from scratch

OpenAI, MosaicML, Together, etc. will 
help you train your own custom model

Trillions of tokens of Internet data + company data + millions of GPU hours

Replit trained their own model



How to use your development data

Step 1

Collect your 
dev data and 
look at it

Step 2

Improve the 
compound 
AI system

Step 3

Improve the 
Large Language 
Models (LLMs)



TL;DR: Dev data can be used to automate even more



Thanks!

We are at the beginning on this journey :)

Lots more R&D to come!

We are hiring



Appendix














