

Deepyaman Datta

Unified Stream/Batch Execution with Ibis

Deepyaman Datta

Unified Stream/Batch Execution with Ibis

What is Ibis?

The portable Python dataframe library

3.9k stars 146 contributors

Have you ever...

...translated data analysis from pandas to PySpark?

...prototyped something in pandas, then thrown it over the wall to a data engineer?

...received some pandas code that was thrown over a wall?

...used Parquet as a cross-language serialization format?

The PyData Stack

Data is local

Data fits in memory

Adapted from Jake VanderPlas, "The Unexpected Effectiveness of Python in Science", PyCon 2017

Local execution

The PyData translation Problem

No one wants to write things twice, but...

Distributed / Prod

We need to talk about SQL

It's EVERYWHERE

It's between you and the data

SQL

Pros

Standardized[†]

Concise*

[†]Kind of, but also not really

Cons

Effectively untestable

*Sometimes inscrutable

Fails at runtime

Remote execution (the good kind)

Remote execution (the good kind)

Problem solved

NARRATOR: It wasn't

The translation problem

The SQL standard is a standard, but how standard are standards?

The translation problem

SQLite

```
SELECT
tconst,
CAST(averageRating AS REAL(53)) AS avg_rating,
CAST(numVotes AS INTEGER) AS num_votes
FROM ratings
```

PostgreSQL

```
SELECT
  tconst,
  CAST(averageRating AS DOUBLE PRECISION) AS avg_rating,
  CAST(numVotes AS BIGINT) AS num_votes
FROM ratings
```

The parametrization problem

One big query?

Or many small(er) queries?

What's the a solution?

Presented with:

- The translation problem
- The parameterization problem
- Want to use Python
- Don't want to write a bunch of SQL

I know! I'll generate strings."

- Everyone, at some point in their lives

For a more nuanced treatment of the topic, see <u>Gil Forsyth's talk at PuData NYC</u> or <u>Phillip Cloud's presentation at Trino Fest</u>

What if...

...instead of generating strings, you could write concise Python code that type checks and eventually generates strings?

Enter the Ibis

A lightweight Python library for data wrangling

Provides:

- Pythonic dataframe API
- Interfaces to 20+ query languages
- Deferred execution model

Deferred execution

Deferred execution

Deferred execution

I thought this talk was about streaming?"

Have you ever...

...translated data analysis from pandas to (Py)Flink?

...prototyped something in pandas, then thrown it over the wall to a data engineer?

...duplicated the same logic in batch and streaming contexts?

...backfilled a streaming feature on a batch backing table?

Streaming is different

Things that don't exist or aren't as important in batch:

- Streaming sources (append-only logs and changelogs) and sinks
- Time semantics (event time vs. processing time, watermarks)
- Table-valued functions (TVFs)
- Temporal (as-of) joins

```
This example uses mock payments data. The payment msq Kafka topic contains messages in the following format:
             "createTime": "2023-09-20 22:19:02.224",
             "orderId": 1695248388,
             "payAmount": 88694.71922270155,
             "payPlatform": 0,
             "provinceId": 6
[ ]: from itertools import islice
      from kafka import KafkaConsumer
      consumer = KafkaConsumer("payment_msg")
      for msg in islice(consumer, 3):
         print(msg)
import json
     import pandas as pd
      payments_df = pd.DataFrame(json.loads(row.value) for row in islice(consumer, 1881))
     payments_df["createTime"] = pd.to_datetime(payments_df["createTime"])
     payments_df
: import ibis
      con = ibis.duckdb.connect()
      t = con.create_table("payments", payments_df)
[]: agged = t.select(
          "provinceId",
          pay_amount=t.payAmount.sum().over(
              range=(-ibis.interval(seconds=10), 0),
              group by=t.provinceId,
              order_by=t.createTime,
           1,
```

agged

Supported backends

- BigQuery
- ClickHouse
- Dask
- DataFusion
- Druid
- DuckDB
- Exasol
- Flink
- Impala
- MSSQL

- MySQL
- Oracle
- pandas
- Polars
- PostgreSQL
- PySpark
- RisingWave
- Snowflake
- SQLite
- Trino

Scale from dev to prod with less rewriting

BUT: There are no golden tickets

- Floating point math exists
- Only SQL backends can execute SQL
- Some backend differences can't be abstracted away (regexes, data-dependent function behavior)

Maintain the same logic between streaming and batch

BUT: Streaming and batch are still different

Some batch operators don't make sense in a streaming context

What's next?

- Time travel support
- Iceberg integration
- Pattern recognition
- Additional streaming backends

Try Ibis today!

https://ibis-project.org

ibis-project/ibis

ibisData

ibis-project

Phillip in the Cloud cpcloud

```
pip install ibis-framework
pip install ibis-framework[{backend}]

conda install -c conda-forge ibis-framework
conda install -c conda-forge ibis-[{backend}]
```

