‘}7 VOLTRON DATA 28 March, 2024

Deepyaman Datta

Unified Stream/Batch
Execution with Ibis

Deepyaman Datta

Unified Stream/Batch
Execution with lbis

‘}7 VOLTRON DATA 28 March, 2023

What is |bis?

The portable Python dataframe library

3.9k stars
146 contributors

Have you ever...

..translated data analysis from pandas to PySpark?

..received some pandas code that was thrown over a wall?

The PyData Stack & s @ Sy oy

Data is local
Data fits in memory

astro|

A @ .\'ctwork,\'.

— SymPy o/ TR
| GM | Statshodels ~ SYMEY > scikit-image
1 Stotistics m Pytlon ~, ;

@ python

Adapted from Jake VanderPlas, “The Unexpected
Effectiveness of Python in Science”, PyCon 2017

DASK

Local execution

Local

/

£

Load data
Parse types
Perform analysis

~

connect()

table('ratings')

Slurp up the entire table

Remote Engine

/

~

The PyData translation Problem

No one wants to write things twice, but...

Local / Dev Distributed / Prod

(N O

|:E| 7 I spai’

We need to talk
about SQL

It’s EVERYWHERE

It’s between you and the data

| / o
> trino
? druid m J

MariaDB

Google n

Big Query

SQL

Pros Cons
Standardized’ Effectively untestable
Concise* *Sometimes inscrutable

Fails at runtime

fKind of, but also not really

Remote execution (the good kind)

Local

/%@\

Conjure SQL query

CCCCCC

Remote Engine

Remote execution (the good kind)

Local

~

W

K ‘ Conjure SQL query

~

~

|

%
<

nnnnnn

Remote Engine

Problem solved

NARRATOR: It wasn’t

The translation problem

The SQL standard is a standard, but how standard are standards?

| tconst | averageRating | numVotes
|

| :

a)

string	string	string
tt0000001	5.7	1919\n
tt0000002	5.8	260\n
tt0000003	6.5	1726\n
tt0000004	5.6	173\n
tt0000005	6.2	2541\n
tt0000006	5.1	175\n
tt0000007	5.4	797\n
tt0000008	5.4	2061\n
tt0000009	5.2	200\n

XX]
I 1
1 1
| tconst | avg_rating | num_votes
|
| a
| |
| string | float64 | int64 |
| | | |
| T T 1
tt0000001	5.7	1019
tt0000002	5.8	260
tt0000003	6.5	1726
tt0000004	5.6	173
tt0000005	6.2	2541
tt0000006	5.1	175
tt0000007	5.4	797
W
tt@000009 | . 200 |

| 5.2 |
| tt0000010 | 6.9 | 6949 |
| |
| 1

The translation problem

SELECT

tconst,
SQLrte CAST(averageRating AS REAL(53)) AS avg_rating,
CAST(numVotes AS INTEGER) AS num_votes

FROM ratings

SELECT

tconst,
PostgreSQL CAST(averageRating AS DOUBLE PRECISION) AS avg_rating,
CAST(numVotes AS BIGINT) AS num_votes

FROM ratings

The parametrization problem

One big query? Or many small(er) queries?

16

What’s the a solution?

Presented with:

The translation problem

The parameterization problem
Want to use Python

Don’t want to write a bunch of SQL

1

| know! I’ll generate strings.”

- Everyone, at some point in their lives

e B
t : b
Sl ool
A5 o uickmeme.com

For a more nuanced treatment of the topic, see Gil Forsyth’s talk at

PyData NYC or Phillip Cloud’s presentation at Trino Fest

https://www.youtube.com/watch?v=XdZklxTbCEA&t=438s
https://www.youtube.com/watch?v=XdZklxTbCEA&t=438s
https://youtu.be/JMUtPl-cMRc?t=512

What if...

..instead of generating strings, you could write concise Python
code that type checks and eventually generates strings?

Enter the lbis

A lightweight Python library
for data wrangling

Provides:

m Pythonic dataframe API

m Interfaces to 20+ query
languages

m Deferred execution
model

Deferred execution

Local

s

Build deferred expression
Validate = Compile = SQL

£

~

connect()

table('ratings')

Table schema

Send SQL query

Return results

Remote engine

~

‘ Execute query

£

~

)

Deferred execution

Local

s

Build deferred expression
Validate = Compile = SQL

£

~

table('ratings')

Table schema

connect()

Send SQL query

Return results

Metadata store

Remote engine

-

-

|

Execute query

Deferred execution

$
¢ h Local

(‘cings = ibis.table(\

[
("tconst", "str"),
("averageRating", "str"),
("numVotes", "str"),

1

name="ratings",

)

Remote engine

connect() / \
Send SQL query

‘ Execute query

Validate = Compile = SQL

Build deferred expression ‘

Return results

N v _ Y

1

| thought this talk was about
streaming?”

Have you ever...

..translated data analysis from pandas to (Py)Flink?

..duplicated the same logic in batch and streaming contexts?

Streaming is different

Things that don’t exist or aren’t as important in batch:

Streaming sources (append-only logs and changelogs) and sinks
Time semantics (event time vs. processing time, watermarks)
Table-valued functions (TVFs)

Temporal (as-of) joins

This example uses mock payments data. The payment_msg Kafka topic contains messages in the following formar:

{
“createTime": “2023-09-20 22:19:02.224%,
“orderId”: 1695248388,
“payAmount™: 88694,71922270155,
“payPlatform™: @,
"provinceld": 6

}

from itertools import islice
from kafka import KafkaConsumer

consumer = KafkaConsumer(“payment_msq")
for msg in islice(consumer, 3):
print{msg)

import json
import pandas as pd

payments_df = pd.DataFrase(json.loads(row.value) for row in islice(consumer, 1082))
payments_df ["createTime"| = pd.to_datetime{payments_df ["createTime"|)
payments_df

import ibis

con = ibis.duckdb.connect()
t = con.create_tablel“payments”, payments_¢f)
t

agged = t.select(
“provinceld”,
pay_amount=t.payAmount.sum({).over(
range=(-ibis.interval(seconds=18), @),
group_by=t.provinceld,
order_by=t.createTime,
),
)
agged

https://docs.google.com/file/d/1ZHC_afpdqJRv1-rNifqBDb539piErgyK/preview

Supported backends

BigQuery
ClickHouse
Dask
DataFusion
Druid
DuckDB
Exasol
Flink
Impala
MSSQL

MySQL
Oracle
pandas
Polars
PostgreSQL
PySpark
RisingWave
Snowflake
SOLite
Trino

Scale from dev to prod with less rewriting

BUT: There are no golden tickets

m Floating point math exists

m Only SQL backends can execute SQL

m Some backend differences can’t be abstracted away (regexes,
data-dependent function behavior)

Maintain the same logic between streaming

and batch
BUT: Streaming and batch are still different

m Some batch operators don’t make sense in a streaming context

What’s next?

Time travel support
lceberg integration
Pattern recognition
Additional streaming backends

Try lbis today!

@ https://ibis-project.org
O ibis-project/ibis
ibisData

8 ibis-project

° Phillip in the Cloud
cpcloud

pip install ibis-framework
pip install ibis-framework[{backend}]

conda install -c conda-forge ibis-framework
conda install -c conda-forge ibis-[{backend}]

