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Take away

For simpler data pipelines (ETL)
Observability pipeline tools are
Simpler, Efficient and More Reliable
Than Spark/Flink Data pipelines.



About me

● Principal Engineer @ Airbnb*.

● Work at intersection of Big data and 
Observability.

● LogSearch: ELK, Loglens, Astra (prev. KalDB)

● Tracing: Zipkin, PinTrace, SlackTrace, 
OpenTracing author.

● Large scale distributed systems.

*All opinions are my own and not my employers.
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Data about Data

120ZB
Data generated 

In 2023

22%
YoY data volume 

growth

280B
Data processing 

market size.

30%
Data real time 

processing.

https://explodingtopics.com/blog/data-generated-per-day
https://www.ibisworld.com/industry-statistics/market-size/data-processing-hosting-services-united-states/#:~:text=The%20market%20size%2C%20measured%20by,industry%20increased%202.6%25%20in%202023.
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf


Data Analytics
from 30000 feet

● We live in a world of ever increasing data volumes.

● Data is the new oil.

● Processing the data efficiently in real time unlocks new 
insights that help us build new customer experiences.

Process StoreInstrument 
and Emit

Monitor
Analyze
Decide

Respond



Data Analytics

Big Data Observability
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Big Data
Data streaming and Batch analytics

● We live in a world of ever increasing data volumes.

● Real time applications, mobile and cloud computing, AI, 
increasing need for privacy and security are all driving the 
increasing need for advanced data analytics systems.

● Data streaming systems like Flink, Spark etc.. have become 
very common tools for data processing and analysis.

● Wide range of applications across every aspect of modern 
life.



ETL
● ETL(Extract-Transform-Load) is a very popular application of 

data streaming jobs.

● Data is typically loaded from a source, applied light 
transformation and then ingested into a sink.

● A good chunk of data streaming jobs are ETL jobs.

○ Per ChatGPT, 50-70% of data streaming jobs are ETL.



Typical ETL Data Pipeline

Data 
streaming 

Flink/Spark

Data store
S3/ES

Data Source
App

Data 
Ingestion

kafka
User
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Observability

● Observability is a term originated in control theory.

● It refers to measure the internal state of systems by 
examining its outputs.

● Typically used to understand the behavior and performance 
of systems and to diagnose issues in applications and 
infrastructure.

● Often achieved through collection and analysis of data in the 
form of logs, metrics and traces.

● Observability is foundational for achieving reliability and 
performance of modern applications.

● Typical Observability tools are:

○ Datadog, Prometheus, ELK (Elasticsearch, Logstash, 
Kibana), Grafana etc..



Typical observability data pipeline

Data 
processing

Vector

Store
Elasticsearch
Metrics store

S3

Data Source
OTel

Visualize
Respond

Grafana
User



Screenshot of Observability tools
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Observability vs Big data: Market.

Big data Observability

Instrumentation and emit Custom Open Telemetry

Process Flink/Spark/Other Vector, Logstash, Open 
Telemetry Collector

Store Columnar stores Metrics (pre-aggregated) 
Logs (semi-structured data)
Traces (structured, hierarchical)
Events (Structured)

Monitor/Analyze/Decide UI, Notebooks Grafana, Alerting

Users Data engineers/Data scientists Software Engineers/SRE

Vendors Snowflake, Databricks, DBT, 
Airflow, Looker, BI tools

Datadog, Splunk, Grafana, 
Prometheus, Elasticsearch



Observability vs Big data: Tech stack.

Big data Observability

Data freshness Minutes Real time

Scale High latency, Low QPS, 10s of PBs Sub-second latency, high QPS, 
PBs

Data model Relational
OLAP

Metrics (pre-aggregated) 
logs (semi-structured data)
Traces (structured, hierarchical)

Schema Fixed Dynamic

Query language SQL PromQL, Text search, TraceQL

Users Data engineers/Data scientists Software Engineers/SRE

Use case Analyze large volumes of data. Real time monitoring and alerting

Retention Long. Short.
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Observability 
pipelines
for ETL pipelines

● Data pipelines are implemented using data streaming 
systems like Spark/Flink etc..

● Observability pipelines systems are implemented using 
systems like Open Telemetry collector, Vector etc..

● Applies to simple ETL pipelines:

○ Kafka -> Process -> Elasticsearch.

○ Network -> Process -> Kafka.

● Simple ETL pipeline.

○ No Joins.

○ No to very low state.

○ No complex computations.

● Data streaming pipelines are ideal for large scale complex 
computations.

○ Trade off efficiency for scale and durability.



Simple
Built-in Data Ingestion layer.

● Data pipelines written in Flink*/Spark can’t be run as a 
service listening for requests.

● Data pipelines have a separate data ingestion component.

○ Often bespoke and custom.

● Observability pipelines software can be run as a service.

○ No need to run a separate ingestion layer.

○ Same component for ingestion and transformation.



Simple
Config driven

● Data pipelines are often implemented using code.

● Observability pipelines are mostly config driven.

● Observability pipelines can perform simple filtering and 
transformation operations.

● Faster development cycles.



Simple
Sample Flink job for ingesting 
Events into elasticsearch.

// Flink job - ~80 lines
public class KafkaToElasticsearch {
    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        Properties kafkaProps = new Properties();
        kafkaProps.setProperty("bootstrap.servers", "localhost:9092");
        kafkaProps.setProperty("group.id", "test-group");

        // Adjust the Kafka consumer
        FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>(
                "your-topic-name",
                new SimpleStringSchema(),
                kafkaProps);

        Map<String, String> esConfig = new HashMap<>();
        esConfig.put("cluster.name", "elasticsearch");
        esConfig.put("bulk.flush.max.actions", "1");
        esConfig.put("hosts", "localhost:9200");

        ElasticsearchSink.Builder<String> esSinkBuilder = new ElasticsearchSink.Builder<>(
                esConfig,
                new ElasticsearchSinkFunction<String>() {
                    public IndexRequest createIndexRequest(String element) {
                        Map<String, String> json = new HashMap<>();
                        json.put("data", element);
                        return Requests.indexRequest()
                                .index("your-index")
                                .type("your-type")
                                .source(json);
                    }

                    @Override
                    public void process(String element, RuntimeContext ctx, RequestIndexer indexer) {
                        indexer.add(createIndexRequest(element));
                    }
                });

        // Kafka source
        DataStream<String> sourceStream = env.addSource(consumer);

        // Filter out messages based on a regular expression
        DataStream<String> filteredStream = sourceStream.filter(new FilterFunction<String>() {
            @Override
            public boolean filter(String value) throws Exception {
                // Adjust the field and regex according to your needs
                return !value.matches("your-regex-here");
            }
        });

        // Sink to Elasticsearch
        filteredStream.addSink(esSinkBuilder.build());

        env.execute("Kafka to Elasticsearch");
    }
}



Simple
Config driven development using vector 
sample.

[sources.kafka_source]

  type = "kafka" # type of the source

  bootstrap_servers = "<KAFKA_BROKERS>" 

  group_id = "kafka-consumer-group"

  topics = ["<KAFKA_TOPIC>"]

[transforms.filter_transform] # Drop messages based on a 
regular expression

  type = "filter"

  inputs = ["kafka_source"]

  condition = '''!matches(.message, "<REGEX_PATTERN>")''' 

[sinks.elasticsearch_sink]

  type = "elasticsearch" 

  inputs = ["filter_transform"]

  endpoint = "<ELASTICSEARCH_ENDPOINT>"

  index = "<INDEX_NAME>-%F"

  bulk_action = "index"



Simple
Deploy

● Flink/Spark jobs have complex state and are complex to 
run.. They are different than running a micro service.

○ Needs special deployment process.

○ Custom observability to monitor.

● Observability pipelines can be deployed on K8s easily.

○ Works like a microservice.

○ Observability built in.



Efficient
>5x more efficient

● Data ingestion pipelines trade off performance for 
scalability. (COST Paper)

○ Spark jobs to take 10x more resources than an 
equivalent single threaded Java application.

● Observability pipelines are closer to single threaded Java 
programs so they perform a more efficient ETL. 

○ Anecdotal benchmark is >5x.

● Observability pipelines can be scaled up and down using 
auto-scaling groups.

https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-mcsherry.pdf


Efficient
Multi-sink ingestion

● Data pipelines used in Flink are ideal for single sink 
ingestion.

○ Infra cost is proportional to number of sinks in typical 
configuration.

● Observability pipelines enable multi-sink ingestion.

○ Infra cost is fixed.



Efficient
Multi-sink ingestion in Observability 
pipeline

Data pipeline 
Vector

Sink 1
Elasticsearch

Data Source
HTTP/Kafka

Sink 2
Kafka



Efficient
Multi-sink ingestion in Observability 
pipeline

Sink 2 fails.

Data pipeline 
Vector

Sink 1
Elasticsearch

Data Source
HTTP/Kafka

Sink 2
Kafka



Efficient
Multi-sink ingestion in Observability 
pipeline

Sink 2 fails.
Persist data to local file.

Data pipeline 
Vector

Sink 1
Elasticsearch

Data Source
HTTP/Kafka

Sink 2
Kafka

File



Efficient
Multi-sink ingestion in Observability 
pipeline.

Data is backfilled when Sink 2 is back.

Data pipeline 
Vector

Sink 1
Elasticsearch

Data Source
HTTP/Kafka

Sink 2
Kafka

File



Available
Incremental deployments

● Data pipelines are complex stateful entities.

○ Designed for complex computations.

● Deploying data pipelines often takes several minutes. 
Proportional to job size and complexity.

○ Challenging to hit data freshness SLA.

● Observability pipelines can be deployed incrementally 
without downtime.



Available
Handle load spikes

● Data ingestion can spiky.

○ Data ingestion pipelines need techniques for load 
shedding, buffering, rate limiting etc..

● Data streaming pipelines need to built with these features in 
mind.

● Observability pipelines come with load shedding, buffering 
and rate limiting built in.



Secure
● Run multiple pipelines on the same host. 

○ No code shared between apps.

● Practices from microservices world apply here.

○ No special security required.
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Conclusion

● Observability and Big data are two broad 
ways of analyzing data. 

○ Lots of overlap between these 
domains.

○ Differ in scale of data, QPS and 
Latency. 

● Observability pipelines can be more 
efficient, simpler, highly available and 
flexible for simpler ETL pipelines than data 
pipelines.

○ Data streaming pipelines are ideal for 
high fidelity complex computations 
over large data volumes.



Advantages of Observability vs data pipelines*

Simple Available Efficient

Highly available.
No availability loss during 
deployment.

Resource efficient
Multiple-sinks.
Productive developers.
Fast iterations.

Simpler to run and scale.
Config driven.
Exposed to internet.
Secure.
Same tool for ingestion and 
transformation.

*For simple ETL jobs



All product names, logos, and brands are property of their respective owners. All company, product and service
names used in this presentation are for identification purposes only. Use of these names, logos, and brands does not
imply endorsement.

All the views are my own and not my employers.



Q & A



Suman Karumuri
https://www.linkedin.com/in/mansu/

Thank you!


