Building
Secure, Reliable and Efficient
Data ingestion pipelines
Suman Karumuri

Data Council, Austin, March 28, 2024
He/Him



Introduction

Big Data vs Observability
Observability pipelines for ETL
Conclusion



For simpler data pipelines (ETL)

Observability pipeline tools are
Simpler, Efficient and More Reliable

Than Spark/Flink Data pipelines.

Take away



e Principal Engineer @ Airbnb*.

e Work at intersection of Big data and
Observability.

About me e LogSearch: ELK, Loglens, Astra (prev. KalDB)

G oaws

e Tracing: Zipkin, PinTrace, SlackTrace,
OpenTracing author.

a
g @ .." e Large scale distributed systems.
O

*All opinions are my own and not my employers.




Introduction

Big Data vs Observability
Observability pipelines for ETL
Conclusion



Data about Data

120z

Data generated
In 2023

22%

YoY data volume
growth

2808

Data processing
market size.

30%

Data real time
processing.


https://explodingtopics.com/blog/data-generated-per-day
https://www.ibisworld.com/industry-statistics/market-size/data-processing-hosting-services-united-states/#:~:text=The%20market%20size%2C%20measured%20by,industry%20increased%202.6%25%20in%202023.
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

e We live in a world of ever increasing data volumes.

Data Analytics e Data s the new oil.

from 30000 feet e Processing the data efficiently in real time unlocks new

insights that help us build new customer experiences.

Instrument Monitor
and Emit Process Store Analyze Respond

Decide




Data Analytics

Big Data Observability




Introduction

Intro to Big data
Big Data vs Observability
Observability pipelines for ETL
Conclusion



Big Data

Data streaming and Batch analytics

We live in a world of ever increasing data volumes.

Real time applications, mobile and cloud computing, Al,
increasing need for privacy and security are all driving the
increasing need for advanced data analytics systems.

Data streaming systems like Flink, Spark etc.. have become
very common tools for data processing and analysis.

Wide range of applications across every aspect of modern
life.



ETL

ETL(Extract-Transform-Load) is a very popular application of
data streaming jobs.

Data is typically loaded from a source, applied light
transformation and then ingested into a sink.

A good chunk of data streaming jobs are ETL jobs.

o  Per ChatGPT, 50-70% of data streaming jobs are ETL.



Typical ETL Data Pipeline

Data Source Datg Datq Data store
Ingestion streaming User

AT kafka Flink/Spark Seli=e




About me

Introduction
Introduction to Observability

Big Data vs Observability
Observability pipelines for ETL
Conclusion



Observability

Observability is a term originated in control theory.

It refers to measure the internal state of systems by
examining its outputs.

Typically used to understand the behavior and performance
of systems and to diagnose issues in applications and
infrastructure.

Often achieved through collection and analysis of data in the
form of logs, metrics and traces.

Observability is foundational for achieving reliability and
performance of modern applications.

Typical Observability tools are:

o Datadog, Prometheus, ELK (Elasticsearch, Logstash,
Kibana), Grafana etc..



Typical observability data pipeline

Data Source Data Store Visualize
H Elasticsearch

OTel processmg Metrlcs store Respond User
Vector Grafana




Screenshot of Ob

Cluster Status

Uptime

3.1 week

RAMUsage

8.34GB

Usage Network

Datastore Status

1508

9%

INTESK201

87%

Hypervisor Status

Hypenvisor CPU

Usage Avg. MhZ

i,

20 (%) ©0

= esizon 1 zinbra o cu sageavenge
= st 0022 o cu e vege

10M8s

0ifs

20

[}

0

Cluster CPU

ChsterNetwark Usage

[T

VMSAFST

9%

ZNTESK202

(7}

um

0610

[}

10

VeeanBackup veeamsnvzinbraio

NA

ZNTESX2NVMe-01

Hypenvisor Memory

50
70 0w 0

= e o000 zinbe o mem sage sverge
= e don {02 zinbea o mem sage sverge

I
LWALVA'

Chuster Storage Adpter

ZEXTNETAPP-01

5.0%

ZNTFESX2-SS0-01

K kiban

© Discover

Visualize
i
Dashboard
L
Timelion

Machine Learning

Graph
Dev Tools
Monitoring

ZEXTONAP-001 Management

34%

INTESK:$50-02

Hypenvior Net Usage

S elastic
s =
20 ow @
<] Logout
AT e —

= esidon 002 zimrajonetusage seage O Collapse

servability tools

13,991 hits

Search

Add afilter +

logstash-+

8 status:200 AND extension:PHP)

Selected Fields

Available Fields &

Popular

bytes

machine.os

Top 5 valuesin

win8

url

url_count
@message

@tags

4541500 records

aQ

aQ

Qa

Qa

aQ

@timestamp

id

_index

_score

ype

»

ol

Time

August 22nd 2017, 22:41:50.090

August 22nd 2017, 22:36:47.459

August 22nd 2017, 22:27:22.677

August 22nd 2017, 22:20:58.781

August 22nd 2017, 22:13:34.0%

New Save Open Share Reporting < @ August19th 2017, 22:32:12.111 to August 22nd 2017, 22:47:08.997 %
Uses lucene query syntax  lucene v n
August 19th 2017, 22:32:12.111 - August 22nd 2017, 22:47:08.997 —  Auto 4
I | ‘ |
FH‘V— ,,,,,, ] ﬂ—ﬁr—ﬁ — ’7 ‘ F!"ﬂm,
utc_time per hour

_source

index: logstash-0 Gtimestamp: August 22nd 2017, 22:41:50.090 ips 55.149.159.66 extension: jpg response: 200
geo.coordinates: { "lat": 36.68827778, "lon": -78.05447222 } geo.sre: PH geo.dest: IN geo.sredest: PH:IN tags: success, inf
0 utc_time: August 22nd 2017, 22:41:50.090 referer: http://wm.slate.con/error/cloude-nicollier ageat: Mozilla/5.0 (X11; Linux

x8664; rv:6.001) Gecko/20110421 Firefox/6.0a1 clientip: 55.149.159.66 bytes: 7.226KB host: media-for-the-masses.theacademyofp

erformingartsandscience.org request: /uploads/catherine-colenan.jpg url: https://media-for formingar

index: logstash-0 @timestamp: August 22nd 2017, 22:36:47.459 ip: 52.32.151.209 extension: jpg response: 200

geo.coordinates: { "lat": 38.57072444, "lon": 90.15622111 } geo.sres WX geo.dest: (N geo.srcdest: MK:(N @tags: success, inf
0 ute_tine: August 22nd 2017, 22:36:47.459 referers http://nytines.con/success/jos-hern-ndez agent: Mozilla/s.0 (XL1; Linux 8
6._64; rv:6.0a1) Gecko/20110421 Firefox/6.0al clientip: 52.32.151.209 bytes: 7.266KB host: media-for-the-masses.theacademyofper

formingartsandscience.org request: /uploads/robert-springer.jpg urls https://medio-for-the-nasses. theacademyofperformingartsand

index: logstash-0 Gtimestamp: August 22nd 2017, 22:27:22.677 ips 73.157.198.34 extension: png response: 200
geo.coordinates: { "lat": 30.77883333, "lon": -86.52211111 } geo.sres (N geo.dest: DI geo.srcdest: CN:DZ eta
urity ute_time: August 22nd 2017, 22:27:22.677 referer: http://Facebook.con/success/alexander-poleshchuk agent: Mozilla/s.0 (X
11; Linux 1686) AppleWebKit/534.24 (KHTML, like Gecko) Chrome/11.0.696.50 Safari/534.2¢ clientip: 73.157.198.34 bytes: 2.772kB

success, sec

host: media-for-the formingar ience.org request: /upl en-nyberg.png url:s https://media-for-

index: logstash-0 Gtimestamp: August 22nd 2017, 22:20:58.781 ips 59.186.215.45 extension: jpg response: 200

geo.coordinates: { "lat": 4504993556, "lon": -110.7466008 } geo.src: WM geo.dest: BF geo.srcdest: WM:BF 8tags: success, inf

0 utc_tine: August 22nd 2017, 22:20:58.781 referer: http://twitter.con/success/robert-curbean agent: Mozilla/5.0 (X11; Linux i
686) ApplellebKit/534.24 (KHTML, Like Gecko) Chrome/11.0.696.50 Safari/534.24 clientip: 59.186.215.45 bytes: 7.205KB host: medi
ience.org request: /uploads/frederick-gregory.jpg uels https://media-for-the-na

a-for-the-ma:

performingar

index: logstash-0 Gtinestamps August 22nd 2017, 22:13:34.0%6 ips 251.73.207.227 extensions jpg response: 200




Introduction

Big Data vs Observability
Observability pipelines for ETL
Conclusion



Observability vs Big data: Market.

Big data

Observability

Instrumentation and emit

Custom

Open Telemetry

Process Flink/Spark/Other Vector, Logstash, Open
Telemetry Collector
Store Columnar stores Metrics (pre-aggregated)

Logs (semi-structured data)
Traces (structured, hierarchical)
Events (Structured)

Monitor/Analyze/Decide

Ul, Notebooks

Grafana, Alerting

Users

Data engineers/Data scientists

Software Engineers/SRE

Vendors

Snowflake, Databricks, DBT,
Airflow, Looker, Bl tools

Datadog, Splunk, Grafana,
Prometheus, Elasticsearch




Observability vs Big data: Tech stack.

Big data

Observability

Data freshness

Minutes

Real time

Scale High latency, Low QPS, 10s of PBs | Sub-second latency, high QPS,
PBs
Data model Relational Metrics (pre-aggregated)
OLAP logs (semi-structured data)
Traces (structured, hierarchical)
Schema Fixed Dynamic
Query language SQL PromQL, Text search, TraceQL

Users Data engineers/Data scientists Software Engineers/SRE
Use case Analyze large volumes of data. Real time monitoring and alerting
Retention Long. Short.




Introduction
Big Data vs Observability

Observability pipelines for ETL
ingestion

Conclusion



Observability
pipelines

for ETL pipelines

Data pipelines are implemented using data streaming
systems like Spark/Flink etc..

Observability pipelines systems are implemented using
systems like Open Telemetry collector, Vector etc..

Applies to simple ETL pipelines:
o Kafka -> Process -> Elasticsearch.
o  Network -> Process -> Kafka.
Simple ETL pipeline.
o No Joins.
o No to very low state.
o No complex computations.

Data streaming pipelines are ideal for large scale complex
computations.

o Trade off efficiency for scale and durability.



Simple

Built-in Data Ingestion layer.

Data pipelines written in Flink*/Spark can’t be run as a
service listening for requests.

Data pipelines have a separate data ingestion component.
o  Often bespoke and custom.

Observability pipelines software can be run as a service.
o No need to run a separate ingestion layer.

o Same component for ingestion and transformation.



Simple

Config driven

Data pipelines are often implemented using code.
Observability pipelines are mostly config driven.

Observability pipelines can perform simple filtering and
transformation operations.

Faster development cycles.



Simple

Sample Flink job for ingesting
Events into elasticsearch.

// Flink job - ~80 lines

public class KafkaToElasticsearch {
public static void main(String[] args) throws Exception {
final s tionEnvi t env = S tionEnvi t.ge tionEnvi

Properties kafkaProps = new Properties();
kafkaProps.setProperty ("bootstrap.servers", "localhost:9092");
kafkaProps.setProperty ("group.id", "test-group");

// Adjust the Kafka consumer

FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>(
"your-topic-name",
new SimpleStringSchema(),

kafkaProps) ;
Map<String, String> esConfig = new HashMap<>() ;
esConfig.put("cluster.name", "elasticsearch");
esConfig.put ("bulk.flush.max.actions", "1");

esConfig.put("hosts", "localhost:9200");

ElasticsearchSink.Builder<String> esSinkBuilder = new ElasticsearchSink.Builder<>(

esConfig,
new ElasticsearchSinkFunction<String>() {
public I t createInd t(String element) {

Map<String, String> json = new HashMap<>();
json.put("data", element);
return Requests.indexRequest ()

.index ("your-index")

.type ("your-type")

.source (json) ;

}

@Override

public void process(String element, RuntimeContext ctx, RequestIndexer indexer)

indexer.add (createIndexRequest (element)) ;
}
b

// Kafka source
DataStream<String> sourceStream = env.addSource (consumer) ;

// Filter out messages based on a regular expression

DataStream<String> filteredStream = sourceStream.filter (new FilterFunction<String>() {

@Override

public boolean filter (String value) throws Exception {
// Adjust the field and regex according to your needs
return !value.matches ("your-regex-here") ;

b

// sink to Elasticsearch
filteredStream.addSink (esSinkBuilder.build()) ;

env.execute ("Kafka to Elasticsearch");

{



[sources.kafka source]
type = "kafka" # type of the source
bootstrap servers = "<KAFKA BROKERS>"
group_id = "kafka-consumer-group"

topics = ["<KAFKA TOPIC>"]

[transforms.filter transform] # Drop messages based on a
regular expression

type = "filter"

Simple

Config driven development using vector
sample.

inputs = ["kafka_source"]

condition = '''!matches(.message, "<REGEX PATTERN>")'''

[sinks.elasticsearch_sink]
type = "elasticsearch"
inputs = ["filter transform"]
endpoint = "<ELASTICSEARCH ENDPOINT>"
index = "<INDEX NAME>-%F"

bulk action = "index"



Simple

Deploy

Flink/Spark jobs have complex state and are complex to
run.. They are different than running a micro service.

o Needs special deployment process.
o  Custom observability to monitor.

Observability pipelines can be deployed on K8s easily.
o  Works like a microservice.

o  Observability built in.



Efficient

>5x more efficient

Data ingestion pipelines trade off performance for
scalability. (COST Paper)

o  Spark jobs to take 10x more resources than an
equivalent single threaded Java application.

Observability pipelines are closer to single threaded Java
programs so they perform a more efficient ETL.

o Anecdotal benchmark is >5x.

Observability pipelines can be scaled up and down using
auto-scaling groups.


https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-mcsherry.pdf

e Data pipelines used in Flink are ideal for single sink
ingestion.

Efficient o Infra cost is proportional to number of sinks in typical

configuration.
Multi-sink ingestion

e Observability pipelines enable multi-sink ingestion.

o Infra cost is fixed.



Data Source

HTTP/Kafka
Efficient Data pipeline
Multi-sink ingestion in Observability Vector
pipeline
Sink 1 Sink 2

Elasticsearch Kafka




Data Source

HTTP/Kafka
Efficient Data pipeline
Vector
Multi-sink ingestion in Observability
pipeline
Sink 2 fails.

Sink 1

Elasticsearch




Data Source
HTTP/Kafka

A A

(] [ ] i i
Efficient Data pipeline S
Vector
Multi-sink ingestion in Observability
pipeline

Sink 2 fails.
Persist data to local file.

Y

Sink 1
Elasticsearch




Efficient

Multi-sink ingestion in Observability
pipeline.

Data is backfilled when Sink 2 is back.

Data Source
HTTP/Kafka

Data pipeline
Vector

y

Sink 1

Elasticsearch

Sink 2
Kafka




Available

Incremental deployments

Data pipelines are complex stateful entities.
o Designed for complex computations.

Deploying data pipelines often takes several minutes.
Proportional to job size and complexity.

o Challenging to hit data freshness SLA.

Observability pipelines can be deployed incrementally
without downtime.



e Data ingestion can spiky.

o Data ingestion pipelines need techniques for load
Available shedding, buffering, rate limiting etc..

e Data streaming pipelines need to built with these features in
mind.

Handle load spikes

e Observability pipelines come with load shedding, buffering
and rate limiting built in.



e Run multiple pipelines on the same host.
secure o No code shared between apps.
e Practices from microservices world apply here.

o No special security required.



Introduction

Big Data vs Observability
Observability pipelines for ETL
Conclusion



Conclusion

Observability and Big data are two broad
ways of analyzing data.

o Lots of overlap between these
domains.

o Differ in scale of data, QPS and
Latency.

Observability pipelines can be more
efficient, simpler, highly available and
flexible for simpler ETL pipelines than data
pipelines.

o Data streaming pipelines are ideal for
high fidelity complex computations
over large data volumes.



Advantages of Observability vs data pipelines*

*For simple ETL jobs

©

&

L

Simple

Simpler to run and scale.
Config driven.

Exposed to internet.
Secure.

Same tool for ingestion and
transformation.

Available

Highly available.
No availability loss during
deployment.

Efficient

Resource efficient
Multiple-sinks.
Productive developers.
Fast iterations.



All product names, logos, and brands are property of their respective owners. All company, product and service

names used in this presentation are for identification purposes only. Use of these names, logos, and brands does not|

imply endorsement.

All the views are my own and not my employers,



Q&A



Thank you!

Suman Karumuri
https://www.linkedin.com/in/mansu/



