
Suman Karumuri
Data Council, Austin, March 28, 2024

He/Him

Building
Secure, Reliable and Efficient

Data ingestion pipelines

Introduction
Big Data vs Observability
Observability pipelines for ETL
Conclusion

Take away

For simpler data pipelines (ETL)
Observability pipeline tools are
Simpler, Efficient and More Reliable
Than Spark/Flink Data pipelines.

About me

● Principal Engineer @ Airbnb*.

● Work at intersection of Big data and
Observability.

● LogSearch: ELK, Loglens, Astra (prev. KalDB)

● Tracing: Zipkin, PinTrace, SlackTrace,
OpenTracing author.

● Large scale distributed systems.

*All opinions are my own and not my employers.

Introduction
Big Data vs Observability
Observability pipelines for ETL
Conclusion

Data about Data

120ZB
Data generated

In 2023

22%
YoY data volume

growth

280B
Data processing

market size.

30%
Data real time

processing.

https://explodingtopics.com/blog/data-generated-per-day
https://www.ibisworld.com/industry-statistics/market-size/data-processing-hosting-services-united-states/#:~:text=The%20market%20size%2C%20measured%20by,industry%20increased%202.6%25%20in%202023.
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf

Data Analytics
from 30000 feet

● We live in a world of ever increasing data volumes.

● Data is the new oil.

● Processing the data efficiently in real time unlocks new
insights that help us build new customer experiences.

Process StoreInstrument
and Emit

Monitor
Analyze
Decide

Respond

Data Analytics

Big Data Observability

Introduction
Intro to Big data

Big Data vs Observability
Observability pipelines for ETL
Conclusion

Big Data
Data streaming and Batch analytics

● We live in a world of ever increasing data volumes.

● Real time applications, mobile and cloud computing, AI,
increasing need for privacy and security are all driving the
increasing need for advanced data analytics systems.

● Data streaming systems like Flink, Spark etc.. have become
very common tools for data processing and analysis.

● Wide range of applications across every aspect of modern
life.

ETL
● ETL(Extract-Transform-Load) is a very popular application of

data streaming jobs.

● Data is typically loaded from a source, applied light
transformation and then ingested into a sink.

● A good chunk of data streaming jobs are ETL jobs.

○ Per ChatGPT, 50-70% of data streaming jobs are ETL.

Typical ETL Data Pipeline

Data
streaming

Flink/Spark

Data store
S3/ES

Data Source
App

Data
Ingestion

kafka
User

About me
Introduction

Introduction to Observability
Big Data vs Observability
Observability pipelines for ETL
Conclusion

Observability

● Observability is a term originated in control theory.

● It refers to measure the internal state of systems by
examining its outputs.

● Typically used to understand the behavior and performance
of systems and to diagnose issues in applications and
infrastructure.

● Often achieved through collection and analysis of data in the
form of logs, metrics and traces.

● Observability is foundational for achieving reliability and
performance of modern applications.

● Typical Observability tools are:

○ Datadog, Prometheus, ELK (Elasticsearch, Logstash,
Kibana), Grafana etc..

Typical observability data pipeline

Data
processing

Vector

Store
Elasticsearch
Metrics store

S3

Data Source
OTel

Visualize
Respond

Grafana
User

Screenshot of Observability tools

Introduction
Big Data vs Observability
Observability pipelines for ETL
Conclusion

Observability vs Big data: Market.

Big data Observability

Instrumentation and emit Custom Open Telemetry

Process Flink/Spark/Other Vector, Logstash, Open
Telemetry Collector

Store Columnar stores Metrics (pre-aggregated)
Logs (semi-structured data)
Traces (structured, hierarchical)
Events (Structured)

Monitor/Analyze/Decide UI, Notebooks Grafana, Alerting

Users Data engineers/Data scientists Software Engineers/SRE

Vendors Snowflake, Databricks, DBT,
Airflow, Looker, BI tools

Datadog, Splunk, Grafana,
Prometheus, Elasticsearch

Observability vs Big data: Tech stack.

Big data Observability

Data freshness Minutes Real time

Scale High latency, Low QPS, 10s of PBs Sub-second latency, high QPS,
PBs

Data model Relational
OLAP

Metrics (pre-aggregated)
logs (semi-structured data)
Traces (structured, hierarchical)

Schema Fixed Dynamic

Query language SQL PromQL, Text search, TraceQL

Users Data engineers/Data scientists Software Engineers/SRE

Use case Analyze large volumes of data. Real time monitoring and alerting

Retention Long. Short.

Introduction
Big Data vs Observability
Observability pipelines for ETL
ingestion
Conclusion

Observability
pipelines
for ETL pipelines

● Data pipelines are implemented using data streaming
systems like Spark/Flink etc..

● Observability pipelines systems are implemented using
systems like Open Telemetry collector, Vector etc..

● Applies to simple ETL pipelines:

○ Kafka -> Process -> Elasticsearch.

○ Network -> Process -> Kafka.

● Simple ETL pipeline.

○ No Joins.

○ No to very low state.

○ No complex computations.

● Data streaming pipelines are ideal for large scale complex
computations.

○ Trade off efficiency for scale and durability.

Simple
Built-in Data Ingestion layer.

● Data pipelines written in Flink*/Spark can’t be run as a
service listening for requests.

● Data pipelines have a separate data ingestion component.

○ Often bespoke and custom.

● Observability pipelines software can be run as a service.

○ No need to run a separate ingestion layer.

○ Same component for ingestion and transformation.

Simple
Config driven

● Data pipelines are often implemented using code.

● Observability pipelines are mostly config driven.

● Observability pipelines can perform simple filtering and
transformation operations.

● Faster development cycles.

Simple
Sample Flink job for ingesting
Events into elasticsearch.

// Flink job - ~80 lines
public class KafkaToElasticsearch {
 public static void main(String[] args) throws Exception {
 final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

 Properties kafkaProps = new Properties();
 kafkaProps.setProperty("bootstrap.servers", "localhost:9092");
 kafkaProps.setProperty("group.id", "test-group");

 // Adjust the Kafka consumer
 FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>(
 "your-topic-name",
 new SimpleStringSchema(),
 kafkaProps);

 Map<String, String> esConfig = new HashMap<>();
 esConfig.put("cluster.name", "elasticsearch");
 esConfig.put("bulk.flush.max.actions", "1");
 esConfig.put("hosts", "localhost:9200");

 ElasticsearchSink.Builder<String> esSinkBuilder = new ElasticsearchSink.Builder<>(
 esConfig,
 new ElasticsearchSinkFunction<String>() {
 public IndexRequest createIndexRequest(String element) {
 Map<String, String> json = new HashMap<>();
 json.put("data", element);
 return Requests.indexRequest()
 .index("your-index")
 .type("your-type")
 .source(json);
 }

 @Override
 public void process(String element, RuntimeContext ctx, RequestIndexer indexer) {
 indexer.add(createIndexRequest(element));
 }
 });

 // Kafka source
 DataStream<String> sourceStream = env.addSource(consumer);

 // Filter out messages based on a regular expression
 DataStream<String> filteredStream = sourceStream.filter(new FilterFunction<String>() {
 @Override
 public boolean filter(String value) throws Exception {
 // Adjust the field and regex according to your needs
 return !value.matches("your-regex-here");
 }
 });

 // Sink to Elasticsearch
 filteredStream.addSink(esSinkBuilder.build());

 env.execute("Kafka to Elasticsearch");
 }
}

Simple
Config driven development using vector
sample.

[sources.kafka_source]

 type = "kafka" # type of the source

 bootstrap_servers = "<KAFKA_BROKERS>"

 group_id = "kafka-consumer-group"

 topics = ["<KAFKA_TOPIC>"]

[transforms.filter_transform] # Drop messages based on a
regular expression

 type = "filter"

 inputs = ["kafka_source"]

 condition = '''!matches(.message, "<REGEX_PATTERN>")'''

[sinks.elasticsearch_sink]

 type = "elasticsearch"

 inputs = ["filter_transform"]

 endpoint = "<ELASTICSEARCH_ENDPOINT>"

 index = "<INDEX_NAME>-%F"

 bulk_action = "index"

Simple
Deploy

● Flink/Spark jobs have complex state and are complex to
run.. They are different than running a micro service.

○ Needs special deployment process.

○ Custom observability to monitor.

● Observability pipelines can be deployed on K8s easily.

○ Works like a microservice.

○ Observability built in.

Efficient
>5x more efficient

● Data ingestion pipelines trade off performance for
scalability. (COST Paper)

○ Spark jobs to take 10x more resources than an
equivalent single threaded Java application.

● Observability pipelines are closer to single threaded Java
programs so they perform a more efficient ETL.

○ Anecdotal benchmark is >5x.

● Observability pipelines can be scaled up and down using
auto-scaling groups.

https://www.usenix.org/system/files/conference/hotos15/hotos15-paper-mcsherry.pdf

Efficient
Multi-sink ingestion

● Data pipelines used in Flink are ideal for single sink
ingestion.

○ Infra cost is proportional to number of sinks in typical
configuration.

● Observability pipelines enable multi-sink ingestion.

○ Infra cost is fixed.

Efficient
Multi-sink ingestion in Observability
pipeline

Data pipeline
Vector

Sink 1
Elasticsearch

Data Source
HTTP/Kafka

Sink 2
Kafka

Efficient
Multi-sink ingestion in Observability
pipeline

Sink 2 fails.

Data pipeline
Vector

Sink 1
Elasticsearch

Data Source
HTTP/Kafka

Sink 2
Kafka

Efficient
Multi-sink ingestion in Observability
pipeline

Sink 2 fails.
Persist data to local file.

Data pipeline
Vector

Sink 1
Elasticsearch

Data Source
HTTP/Kafka

Sink 2
Kafka

File

Efficient
Multi-sink ingestion in Observability
pipeline.

Data is backfilled when Sink 2 is back.

Data pipeline
Vector

Sink 1
Elasticsearch

Data Source
HTTP/Kafka

Sink 2
Kafka

File

Available
Incremental deployments

● Data pipelines are complex stateful entities.

○ Designed for complex computations.

● Deploying data pipelines often takes several minutes.
Proportional to job size and complexity.

○ Challenging to hit data freshness SLA.

● Observability pipelines can be deployed incrementally
without downtime.

Available
Handle load spikes

● Data ingestion can spiky.

○ Data ingestion pipelines need techniques for load
shedding, buffering, rate limiting etc..

● Data streaming pipelines need to built with these features in
mind.

● Observability pipelines come with load shedding, buffering
and rate limiting built in.

Secure
● Run multiple pipelines on the same host.

○ No code shared between apps.

● Practices from microservices world apply here.

○ No special security required.

Introduction
Big Data vs Observability
Observability pipelines for ETL
Conclusion

Conclusion

● Observability and Big data are two broad
ways of analyzing data.

○ Lots of overlap between these
domains.

○ Differ in scale of data, QPS and
Latency.

● Observability pipelines can be more
efficient, simpler, highly available and
flexible for simpler ETL pipelines than data
pipelines.

○ Data streaming pipelines are ideal for
high fidelity complex computations
over large data volumes.

Advantages of Observability vs data pipelines*

Simple Available Efficient

Highly available.
No availability loss during
deployment.

Resource efficient
Multiple-sinks.
Productive developers.
Fast iterations.

Simpler to run and scale.
Config driven.
Exposed to internet.
Secure.
Same tool for ingestion and
transformation.

*For simple ETL jobs

All product names, logos, and brands are property of their respective owners. All company, product and service
names used in this presentation are for identification purposes only. Use of these names, logos, and brands does not
imply endorsement.

All the views are my own and not my employers.

Q & A

Suman Karumuri
https://www.linkedin.com/in/mansu/

Thank you!

