Building a Unified Feature
Platform with DuckDB and

Arrow

Michael Eastham
Chief Architect, Tecton Al

ection

Who's Tecton?

PURPOSE Activating data to power every experience with Al/ML

FOUNDERS The creators of Uber’s Michelangelo Al Platform
¢ Created the first machine learning “feature store”
e Scaled from O to 1000’s of models in production

MATURITY Founded 2018
e $160M raised

CUSTOMERS emsesiawse: A ATLASSIAN B pLaio depop R@BLEAX tide

INVESTORS ~ andreessen. GEQUOIAZ {5 KLEINER PERKINS.

Tecion

What's Tecton?

Tightly integrated Purpose-built to address the
development experience and unique data requirements and
managed infrastructure challenges for Al/ML.

| |

Tecton is a data platform for production ML

|

For when the use of models require
reliability, performance, prediction
accuracy, cost effectiveness, and scale

Tecion

Why Tecton?

Production ML is a Massive Data Problem

Tecion

The data journey from source-to-serve is consuming

aH Experiment

Clean and Prep
Raw Data

Real-Time

Define Batch
Features

Define Stream
Features

Streaming

Define Real-Time
Features

Create
Point-in-Time
Training Data Set

Batch

Manage Data
Infrastructure

Perform CRUD
Operations

A Slow to build, maintain, and manage

2cton

A\ Productionize

Rewrite Feature

: : Definition

—<> Schedule

. E Production Jobs

Synchronize Data

: Across Stores

—_—

o Set Up

: g Incrementals

Manage Data

o Infra & Resources

—_—

Manage the

: Orchestrator
Setup Proper

Error Handling

Materialize
Across Stores

Ensure Process
Dependencies

Monitor Data
Quality Issues

Testing Online
Accuracy/No Skew

Monitor Source
Schema Drift

Monitor Data
Pipelines

Master Modeling
in Online Store

A Govern

Understand Use &
Lineage in Models

Govern Data
Security/Privacy

Enable CI/CD for
Code Revisions

Enable Feature
Reuse and Sharing

Alert on Changes
to Definitions

Manage Feature
Sprawl

Turn-Off Inactive
Features

& Manual, error-prone systems

Support Any
Performance SLA

Integrate with
Real-Time Data

Create Feature
Vectors in Real-Time

Build a Real-time
Retrieval System

Build a Unified
Serving API

Build Add’l
Caching Layers

Architect Parallel
Processing

Development-related

Infrastructure-related

Compute Some

Features on the Fly

Serve Features as
Microservices

. Training
Shift Transform Code -
Out of App :
Master Query
Optimization
Inference

Ensure Proper
Error Handling

Harden for
Reliability

Architect for Easy
Scalability

A Difficult to scale

How?

e Provide a declarative framework in which users (Data Scientists, Data Engineers, ML Engineers)
define the transformation from their raw data into production-ready features.
e Orchestrate pipelines which implement these transformations on:
o Historical Data (i.e. Backfills)
o Recent Data
In Batches, or Streaming
e These pipelines populate storage (i.e. the Feature Store), which serves:
o Offline Queries:
Run in batches, each query is for a given (entity, timestamp)
Optimized for throughput
Use Case: Training; Offline/Batch Inference
o Online Queries:
Each query is for the most recent data for agiven entity
Optimized for latency
20T0N - Use Case: Online Inference

Why?

e Asingle, declarative Feature definition drives your whole ML system:
o Backfilling, stream ingestion, re-ingesting data to recover from upstream errors, all use
the same feature definition
o Thetraining and serving systems use the same feature definition
Details of pipeline management are abstracted away
This includes experimentation: user can develop with our framework iteratively in
notebooks, so there is not a separate “productionisation” step once useful features are
identified
e Uniform Feature definitions form the basis for monitoring, governance, lineage, feature sharing
and reuse, etc. functionality.

Tecion

wf

>°b< Snowflake =~ ——

4 P) Online Store
(Redis/Dynamo/Bigtable)

y R /
Bigtable —> Filter Transform Aggregate
\)
Offline Store
Ve 1
(Delta Lake)
E v DataLake ~——
ww
. e

Offline
Retrieval

Tecion

2cton

| timestamp

| 2023-01-23T03:00:002
| 2023-01-23T04:00:002
| 2023-01-23T03:00:002
| 2023-01-23T04:00:00Z

clicks_1lh
786
657
168
248

item_id
8FuiRFi8
Jdb) 8FuiRFi8
Zp9xZZKU
© Snowflake ——
>4§ Zp9xZZKU
J
4 N\ /
Bigtable —> Filter
\& J L /
s N
Eww“ v DatalLake ——
ww
< 7
1
1
]
1
]
1
1
1
item_id | timestamp
8FuiRFi8 | 2023-01-23T03:00:21Z
8FuiRFi8 | 2023-01-23T04:00:322
8FuiRFi8 | 2023-01-23T04:01:052
8FuiRFi8 | 2023-01-23T04:01:102

L7/ Transform H‘J /Ld
/

il

Online Store
(Redis/Dynamo/Bigtable)

Offline Store
(Delta Lake)

item_id | timestamp -]
8FuiRFi8 | 2023-01-23T03:10:052 Offline
8FuiRFi8 | 2023-01-23T04:32:31z["~ ~~~~==7=7=777 Retrieval
8FuiRFi8 | 2023-01-23T04:54:422Z
1
’I
4
1
Y
item id | timestamp | clicks_1h | clicks_2h
8FuiRFi8 | 2023-01-23T03:10:05z | 786 | 1324
8FuiRFi8 | 2023-01-23T04:32:31Z | 657 | 1443
8FuiRFi8 | 2023-01-23T04:54:42Z | 657 | 1443

>:°:< Snowflake

-
Bigtable
|

Online Store
(Redis/Dynamo/Bigtable)

P
E m Data Lake
ww
o

A\

b

Tecion

’I
o L 4
________ S APACHE%_“_"_--_--—--"'

=/ Filter Transform Aggregate
A A A
: ; P Offline Store
N O R T—— #% (Delta Lake)
’ ! o r

fole

Materialization Query ./

Retrieval

ST

Retrieval Query

Spark

e Customers write pyspark/Spark SQL transformations
themselves

e We combine these transformations with our own query library
which handles time filtering, incremental aggregations, and
writing into the Feature Store

e These combined jobs are deployed in the customer’s Spark
environment (Databricks/EMR/Dataproc). Customers control
the configuration of these jobs, including cluster size.

Tecion

Problem: Spark is Confusing

Tecion

What does this error mean?

Py4JJavaError: An error occurred while calling 0137.showString.
: java.util.concurrent.ExecutionException: Boxed Error
at scala.concurrent.impl.Promise$.resolver(Promise.scala:83)
at scala.concurrent.impl.Promise$.scalaSconcurrent$implSPromise$SresolveTry(Promise.scala:75)
at scala.concurrent.impl.Promise$KeptPromise$.apply(Promise.scala:402)
at scala.concurrent.Promise$.fromTry(Promise.scala:138)
at scala.concurrent.Promise$.failed(Promise.scala:124)
at scala.concurrent.Future$.failed(Future.scala:619)

Source:
https://stackoverflow.com/questions/75522599/
what-is-the-cause-of-this-error-code-was-workin

g-before-and-randomly-started-to

at org.apache.spark.sql.execution.exchange.ShuffleExchangelLike.S$anonfunSmaterializeFuture$1(ShuffleExchangeExec.scala:104)

at org.apache.spark.sql.util.LazyValue.getOrInit(LazyValue.scala:41)

at org.apache.spark.sql.execution.exchange.Exchange.getOrInitMaterializeFuture(Exchange.scala:68)

at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.materializeFuture(ShuffleExchangeExec.scala:96)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.materialize(ShuffleExchangeExec.scala:84)
at org.apache.spark.sql.execution.exchange.ShuffleExchangelLike.materialize$(ShuffleExchangeExec.scala:83)
at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.materialize(ShuffleExchangeExec.scala:128)
at org.apache.spark.sql.execution.adaptive.ShuffleQueryStageExec.doMaterialize(QueryStageExec.scala:161)
at org.apache.spark.sql.execution.adaptive.QueryStageExec.S$anonfunSmaterialize$1(QueryStageExec.scala:74)
at org.apache.spark.sql.execution.SparkPlan.$anonfunSexecuteQuery$1(SparkPlan.scala:223)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)

at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:220)

at org.apache.spark.sql.execution.adaptive.QueryStageExec.materialize(QueryStageExec.scala:74)

at org.apache.spark.sql.execution.adaptive.MaterializeExecutable.tryStart(AdaptiveExecutable.scala:396)
at org.apache.spark.sql.execution.adaptive.AdaptiveExecutorRuntime.startChild(AdaptiveExecutor.scala:225)
at org.apache.spark.sql.execution.adaptive.ExecutionHelper.start(ExecutionHelper.scala:47)

at org.apache.spark.sql.execution.adaptive.QueryStageExecutable$Sanon$2.S8anonfunSnew$1(AdaptiveExecutable.scala:251)
at org.apache.spark.sql.execution.adaptive.ExecutionHelperS$SListener.S$SanonfunSonChildSuccess$2(ExecutionHelper.scala:55)
at org.apache.spark.sql.execution.adaptive.ExecutionHelperS$SListener.SanonfunSonChildSuccess$28adapted(ExecutionHelper.scala:54)

at scala.Option.foreach(Option.scala:257)

at org.apache.spark.sql.execution.adaptive.ExecutionHelperS$SListener.S$SanonfunSonChildSuccess$1(ExecutionHelper.scala:54)
at org.apache.spark.sql.execution.adaptive.ExecutionHelperS$SListener.SanonfunSonChildSuccess$18adapted(ExecutionHelper.scala:53)

at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:58)

at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:51)

at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)

at org.apache.spark.sql.execution.adaptive.ExecutionHelperS$SListener.onChildSuccess(ExecutionHelper.scala:53)

at org.apache.spark.sql.execution.adaptive.AdaptiveExecutorRuntime.$anonfun$onActiveChildSuccess$2(AdaptiveExecutor.scala:314)
at org.apache.spark.sql.execution.adaptive.AdaptiveExecutorRuntime.$8anonfun$onActiveChildSuccess$2Sadapted(AdaptiveExecutor.scala:314)

at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:58)

at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:51)
o la.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
'\'.gt:o|r!

N . N ot e m g e a A

.apache.spark.sql.execution.adaptive.AdaptiveExecutorRuntime.onActiveChildSuccess(AdaptiveExecutor.scala:314)

13

https://stackoverflow.com/questions/75522599/what-is-the-cause-of-this-error-code-was-working-before-and-randomly-started-to
https://stackoverflow.com/questions/75522599/what-is-the-cause-of-this-error-code-was-working-before-and-randomly-started-to
https://stackoverflow.com/questions/75522599/what-is-the-cause-of-this-error-code-was-working-before-and-randomly-started-to

Caused
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at
at

by:

org.

org

org.
org.
org.
org.
org.
org.

org

org.
org.

org

org.
org.
org.
org.
org.
org.

org

org.
org.

org

org.
org.
org.

org

org.
org.

org

org.
org.
org.
org.
org.
org.

org

org.
org.

org

org.
org.
org.
org.
. 76

java.lang.NoSuchMethodError: org.apache.sedona.core.utils.SedonaConf.<init>(Lorg/apache/spark/SparkConf;)V

apache.
.apache.
apache.
apache.
apache.
apache.
apache.
apache.
.apache.
apache.
apache.
.apache.
apache.
apache.
apache.
apache.
apache.
apache.
.apache.
apache.
apache.
.apache.
apache.
apache.
apache.
.apache.
apache.
apache.
.apache.
apache.
apache.
apache.
apache.
apache.
apache.
.apache.
apache.
apache.
.apache.
apache.
apache.
apache.
apache.

more

2cton

spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.
spark.

sql.
sql.
sql.
sql.
sql.
.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
sql.
sql.
sql.
sql.
sql.
sql.
sql.
sql.
sql.
.execution.SparkPlan.$8anonfunSexecuteQuery$1(SparkPlan.scala:223)
rdd.
sql.
sql.
sql.
sql.
sql.
rdd.
sql.
sql.
sql.
sql.
sql.
sql.
sql.
sql.
sql.
.execution.SparkPlan.$8anonfunSexecuteQuery$1(SparkPlan.scala:223)
rdd.
sql.
sql.
sql.
sql.
sql.
sql.
sql.
sql.
.execution.exchange.ShuffleExchangelLike.$8anonfunSmaterializeFuture$1(ShuffleExchangeExec.scala:100)

rdd

sql

sql

sql

sedona_sql.strategy.join.TraitJoinQueryExec.doExecute(TraitJoinQueryExec.scala:63)
sedona_sql.strategy.join.TraitJoinQueryExec.doExecute$(TraitJoinQueryExec.scala:56)
sedona_sql.strategy.join.RangeJoinExec.doExecute(RangeJoinExec.scala:37)
execution.SparkPlan.$8anonfun$execute$1(SparkPlan.scala:185)
execution.SparkPlan.$8anonfunSexecuteQuery$1(SparkPlan.scala:223)

execution.SparkPlan.executeQuery(SparkPlan.scala:220)
execution.SparkPlan.execute(SparkPlan.scala:181)
execution.InputAdapter.inputRDD(WholeStageCodegenExec.scala:525)
execution.InputRDDCodegen.inputRDDs(WholeStageCodegenExec.scala:453)
execution.InputRDDCodegen.inputRDDs$(WholeStageCodegenExec.scala:452)
execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:496)
execution.joins.BroadcastHashJoinExec.inputRDDs(BroadcastHashJoinExec.scala:178)
execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:746)
execution.SparkPlan.$8anonfunSexecute$1(SparkPlan.scala:185)

RDDOperationScope$.withScope(RDDOperationScope.scala:151)
execution.SparkPlan.executeQuery(SparkPlan.scala:220)
execution.SparkPlan.execute(SparkPlan.scala:181)
execution.ProjectExec.doExecute(basicPhysicalOperators.scala:92)
execution.SparkPlan.$8anonfunSexecute$1(SparkPlan.scala:185)
execution.SparkPlan.$8anonfunSexecuteQuery$1(SparkPlan.scala:223)
RDDOperationScope$.withScope(RDDOperationScope.scala:151)
execution.SparkPlan.executeQuery(SparkPlan.scala:220)
execution.SparkPlan.execute(SparkPlan.scala:181)
execution.InputAdapter.inputRDD(WholeStageCodegenExec.scala:525)
execution.InputRDDCodegen.inputRDDs(WholeStageCodegenExec.scala:453)
execution.InputRDDCodegen.inputRDDs$(WholeStageCodegenExec.scala:452)
execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:496)
execution.aggregate.HashAggregateExec.inputRDDs(HashAggregateExec.scala:137)
execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:746)
execution.SparkPlan.$8anonfunSexecute$1(SparkPlan.scala:185)

RDDOperationScope$.withScope(RDDOperationScope.scala:151)
execution.SparkPlan.executeQuery(SparkPlan.scala:220)

execution.SparkPlan.execute(SparkPlan.scala:181)
execution.exchange.ShuffleExchangeExec.inputRDD$1zycompute(ShuffleExchangeExec.scala:160)
execution.exchange.ShuffleExchangeExec.inputRDD(ShuffleExchangeExec.scala:160)
execution.exchange.ShuffleExchangeExec.mapOutputStatisticsFuture$lzycompute(ShuffleExchangeExec.scala:164)
execution.exchange.ShuffleExchangeExec.mapOutputStatisticsFuture(ShuffleExchangeExec.scala:163)
execution.exchange.ShuffleExchangelLike.SanonfunSmaterializeFuture$2(ShuffleExchangeExec.scala:100)
catalyst.errors.package$.attachTree(package.scala:52)

‘ ChatGPT

The error message indicates that a “NoSuchMethodExrrox ™ occurred, specifically referencing the

constructor of the “SedonaConf " class from the “org.apache.sedona.core.utils " package. This

error typically happens when there's a mismatch between the compiled code and the runtime

environment, often due to different versions of libraries being used.

Tecion

Tecion

We want to help our users when they run
into problems, but the surface area of
Spark failures makes this really difficult

Tecion

Spark Configuration

e Spark Properties

o Dynamically Loading Spark Properties

o Viewing Spark Properties

o Available Properties

Application Properties
Runtime Environment
Shuffle Behavior
Spark Ul
Compression and Serialization
Memory Management
Execution Behavior
Executor Metrics
Networking
Scheduling
Barrier Execution Mode
Dynamic Allocation
Thread Configurations
Spark Connect
= Server Configuration
Security
Spark SQL
= Runtime SQL Configuration
= Static SQL Configuration
Spark Streaming
SparkR
GraphX
Deploy
Cluster Managers
= YARN
= Mesos
= Kubernetes

Source: https://spark.apache.org/docs/latest/configuration.html

17

https://spark.apache.org/docs/latest/configuration.html

Problem: Spark complicates
deployments

e Werequire a managed Spark environment
(Databricks/EMR/DataProc) to use our product

e When acustomer isn’t an existing user of Spark, this often
involves pulling in additional parties that have to be consulted
as part of the sales process

Tecion

Problem: Spark is heavyweight

e Setting up Spark to run on your laptop is possible, but
cumbersome and prone to behavior differences to

“production.”

e Spinning up a fresh Spark cluster to try something out can take
10+ minutes

e => Notarewarding environment for experimentation and
iteration

Tecion

Tecion

Spark is often not the right tool for the
problems our users are trying to solve

20

When Spark is not a good fit for the use case, it degrades Tecton’s
value proposition:
e The experimentation experience is not smooth
e The pipelines are managed, but the area of shared
responsibility is awkward. Customers might still have to
learn a lot about configuring Spark

Tecion

Tecion

MotherDUCK PRODUCT COMPANY v COMMUNITY BLC

< GO BACK TO BLOG

BIG DATA IS DEAD

2023/02/07
BY JORDAN TIGANI

Source: https://motherduck.com/blog/big-data-is-dead/

22

https://motherduck.com/blog/big-data-is-dead/

Can we do better?

Tecion

Product Priorities

e Enable domain experts to do their feature engineering using
tools that they’re familiar with, which is often SQL or Pandas.

e Polished integrations with Data Warehouses

e Iteration and Experimentation experience that’s 10x better
than what we previously had with Spark

Tecion

Requirements: Devex

e Customers should have flexibility to express their
transformations in the language/framework they want to use.

e Often times this means Pandas or SQL

e Might also want to support things like Polars or Ibis

e |t should be easy for us to add support for different options,
without sacrificing performance.

Tecion

Requirements: Local First

Tecion

We want a delightful local development experience. Usually
this is within a notebook running on a laptop or a service like
Collab, Deepnote, or Hex.

It should be fast to start up

It should not require complex dependencies which can’t easily
be distributed through pip (such as a JVM and Hadoop JARSs)
It must be able to process non-trivial queries with constrained
resources.

Requirements: Easy to Deploy

e No mandatory third party vendors like we have with Spark
e Be extremely frugal with configuration options

Tecion

Requirements: Data Sources

We must be able to integrate with a wide variety of Data Sources

Snowflake

BigQuery

Data Lakes

Local Files

Down the road: RedShift, Postgres...

o O O O O

Tecion

Building Blocks: Apache Arrow

What is Arrow?

Format

Apache Arrow defines a language-independent
columnar memory format for flat and
hierarchical data, organized for efficient
analytic operations on modern hardware like
CPUs and GPUs. The Arrow memory format
also supports zero-copy reads for lightning-fast
data access without serialization overhead.

Learn more about the design or read the
specification.

2cton

Libraries

Arrow's libraries implement the format and
provide building blocks for a range of use cases,
including high performance analytics. Many
popular projects use Arrow to ship columnar
data efficiently or as the basis for analytic
engines.

Libraries are available for C, C++, C#, Go, Java,
JavaScript, Julia, MATLAB, Python, R, Ruby, and
Rust. See how to install and get started.

Ecosystem

Apache Arrow is software created by and for
the developer community. We are dedicated to
open, kind communication and consensus
decisionmaking. Our committers come from a
range of organizations and backgrounds, and
we welcome all to participate with us.

Learn more about how you can ask questions
and get involved in the Arrow project.

Source: https://arrow.apache.ora/

29

https://arrow.apache.org/

Building Blocks: DuckDB

e “DuckDBis afastin-process analytical
database”
e Or, the SQLite of analytical queries

Tecion

DuckDB

30

Arrow

Why DuckDB

Performance

Seamless integration allows us to flexibly Fast & Lightweight

integrate new data sources, transformation

modes, etc.

Tecion

Can process non-trivial datasets with
modest amounts of RAM due to streaming,
out-of-core

Simplicity

Eliminates the complexities of distributed query
engines, Spark/Hadoop configuration, etc., which
are unnecessary for the datasets we're typically
dealing with.

31

&
v

Do« Ssnowflake

-
-
7

@ Bigtable

(A\

ww

)

wwww Data Lake
ww

Tecion

»

Filter

Transform Aggregate ——

» M

»

32

(E)
avVe
K/\}

Snowflake

@ Bigtable

4 3\

ww

)

wwww Data Lake
ww

Tecion

33

-
x
>O Snowflake |———
_ 4 Y, Online Store
(Redis/Dynamo/Bigtable)
. N\ /’ /
Bigtabl "/ Fil / [Transt A t f

@ igtable ¥ ilter /——7/ ransform ggregaei/——<

|

J / / L / L

o Offline Store
) (Delta Lake)
AN DataLake @~ f+———
ww
&

@ Duckos @ puckos / omine |

K/\}

....... Retrieval /

N >>> » M M oo ’>>>

. google-cloud-bigquery
. snowflake-connector-python
________________________ Offline

T2cToN Results

K/\}

(&
> o Snowflake |———
_ 4 Y, Online Store
(Redis/Dynamo/Bigtable)

Vs ~ [] / 7 7
/ /|]]
Bigtable > —>/ Filter ~———»/ Transform ;L Aggregate —
/ / / / [
\ J L i; L /'/ L /

Offline Store
(Delta Lake)

»
E \ann, DatalLake ———
ww
o

O
c
0
=
O
w
-

Offline |
Retrieval

/

I L 1

Native Libraries:

\}‘7
W
Y/

: ' . DuckDB

I« pyarrow ' .« Pandas 5
' . deltalake ! ' . Polars z
!« google-cloud-bigquery ' |« pyarrow f
p o snowflake-connector-python : 1 =

________________________ Offline
thon Results 35

&
v

Do« Ssnowflake

-
-
7

@ Bigtable

(A\

ww

)

wwww Data Lake
ww

Tecion

»

Filter

Transform Aggregate ——

» M

»

36

Why do we have Delta?

In a word, atomicity:

e When appending new time ranges
e When partially deleting data
e When optimizing object size

Additionally, speeds up some types of operations by storing
table metadata in a more convenient format

Tecion 37

Tecion

AﬁAcu:&

Spark® presto i

X

n»

snowflake @

- @ik K trino

/\ DELTA LAKE

Integrations

| |
Azure .u ! !
Synapse vAaTTquAon j DataHub ®: P :
| |

Source: https://delta.io/

amazon
REDSHIFT

38

https://delta.io/

e Reads Delta Tables into pyarrow tables
and/or datasets €
e Limited write functionality:

Delta Rust API o Does not support the full range of
docs | source code write Operations
Rust Python o Not compatible with Spark’s

This library allows Rust (with Python bindings) low Ki
ing pr I
level access to Delta tables and is intended to be used DynamODB IOC g p OtOCO

with data processing frameworks like datafusion, O Certaln Commlt metadata nOt
ballista, rust-dataframe, vega, etc. Su pported
e Limited AWS auth options

Tecion 39

Are we stuck?

Thankfully not, but we need to understand a bit of how Delta works under the covers..

Tecion

s3://bucket/my_table/

- date=2023-01-23/ “metaData”: {

| | 18559b25.parquet “schema”: [
— 6e654e81.parquet {“name”: “ts”, “type”: “timestamp”},
date=2023-01-24/ {“name” : “date”, “type”: “string”},
— 2514ade3.parquet {“name”: “clicks_1h", “type”: “long”},

_delta_log/ “partitionColumns”: |
- 0000.json “date”

|
]
| |~ 328f83d6.parquet }
]
| |~ 0081.json

s3://bucket/my_table/ {

|- date=2023-01-23/ "add”: {

| |~ 18559b25.parquet "path": "date=2023-01-23/18559b25.parquet”,
|- 6e654e81.parquet "partitionValues": {"date": "2023-01-23"},

|

| date=2023-01-24/ "size": 19842442
| |~ 2514ade3.parquet

| |~ 328f83d6.parquet
|_

|

|

_delta_log/

- 0000.json "add": {
- 0001.json "path": "date=2023-01-23/6e654e81.parquet”,

"partitionValues": {"date": "2023-01-23"},
"size": 25739734

Deleting a subset of keys

s3://bucket/my_table/ {
date=2023-01-23/ "remove": {
38559b25 parquet "path”: "date=2023-01-23/18559b25.parquet”,
6e654e81.parquet "partitionValues": {"date": "2023-01-23"},
7fea8d91.parquet "size": 19842442
date=2023-01-24/ }
2514ade3.parquet }
328f83d6.parquet {
_delta_log/ "add": {
0000. json "path": "date=2023-01-23/7fea8d91.parquet"”,
0001.json "partitionValues": {"date": "2023-01-23"},
0002 . json "size": 17498312
b

Solution

e delta-standaloneis a JVM library which is part of the upstream Delta project. It
does all of the transaction log management without touching the underlying data
(parquet) files.

e Weuutilize it by spinning up a JVM as a sidecar to our main Python process, and
send it messages when we need to mutate the Delta log.

Tecion

Solution

e Todelete alist of keys using this method:

o Usedelta-standalone to read the list of files in the current version of the
table

o Loadthe parquet files as a pyarrow dataset, filter out the keys to delete
using DuckDB, and write the result to a new set of parquet files

o Tell delta-standalone to write “add” and “remove” logs for all of the affected
files.

o Do the entire thing over again if you hit a conflict writing a log.

Tecion

Alternatives Explored

e Switch to (Iceberg|Hudi)
e Improveondelta-rs

Tecion

DuckDB Extension

e Problem: We have some esoteric aggregations we need to support (incremental
versions of approximate quantile and approximate count distinct)
e DuckDB allows adding new aggregations in extensions.
e Maintenance and distribution is a little painful:
o Extension APls are not stable; every minor release so far has required
changes.
o Need to distribute a compiled extension for every OS/Architecture
combination you want to support.
o Built-indistribution mechanism is not versioned: you only get to publish
one extension version per DuckDB version.

Tecion 47

Snowflake Integration

Tecion

E [):O:< Snowflake J—b/j%T sform —>/Agg regate —
i Snowflake : ;{ A gﬂif:,""e]

Query K

—————————————————————————————————

Tecion 49

Tecion

Results (so far)

Released in Private Preview in January, along with some additional streaming ingest
functionality which is outside of the scope of this talk.

Together with the streaming functionality we are calling this configuration “Rift”
Private preview has included a mix of new customers who never used Spark,
customers who did use Spark, and a number of prospects.

Hypothesis about Rift being easier to deploy and faster to production than Spark has
been borne out so far.

50

Performance: Materialization Query

Label Instance(s) Hourly
Spark 2x m6id.xlarge | $0.4746*
Rift 1x r5.2xlarge $0.5600
2xlarge

Rift 1x r5.xlarge $0.2800
xlarge

*Hourly cost does not include
Driver or DBUS

Tecion

2GiB, 35M Row Dataset

0:40:00

0:30:00

0:20:00

0:10:00

0:00:00

Spark Rift Rift
2xlarge xlarge

No Aggregations

B Query Time [Startup Time

Spark Rift Rift
2xlarge xlarge

1 Day Aggregations

Spark Rift Rift
2xlarge xlarge

1 Hour Aggegations

Performance: Materialization Query

Label Instance(s) Hourly
Spark 4x m6id.xlarge | $0.9492*
Rift 1x r5.2xlarge $1.1200

*Hourly cost does not include
Driver or DBUs

Tecion

9GiB, 150M Row Dataset

1:00:00

0:45:00

0:30:00

0:15:00

0:00:00

B Query Time [Startup Time

Spark Rift

No Aggregations

Spark Rift

1 Day Aggregations

Spark Rift

1 Hour Aggegations

52

Tecion

The End

Find me afterwards to ask questions!
Tecton is hiring Remotely as well as in NYC and SF!

53

