
Building a Unified Feature
Platform with DuckDB and
Arrow
Michael Eastham
Chief Architect, Tecton AI

PURPOSE

FOUNDERS The creators of Uber’s Michelangelo AI Platform
● Created the first machine learning “feature store”

● Scaled from 0 to 1000’s of models in production

MATURITY Founded 2018
● $160M raised

CUSTOMERS

INVESTORS

Who’s Tecton?

Examples include:

Activating data to power every experience with AI/ML

3

Tecton is a data platform for production ML

Tightly integrated
development experience and
managed infrastructure

For when the use of models require
reliability, performance, prediction
accuracy, cost effectiveness, and scale

Purpose-built to address the
unique data requirements and
challenges for AI/ML.

What’s Tecton?

Production ML is a Massive Data Problem
Why Tecton?

Batch

Streaming

Real-Time

Inference

Training

Productionize

Materialize
Across Stores

Ensure Process
Dependencies

Monitor Data
Quality Issues

Testing Online
Accuracy/No Skew

Rewrite Feature
Definition

Schedule
Production Jobs

Synchronize Data
Across Stores

Set Up
Incrementals

Manage Data
Infra & Resources

Manage the
Orchestrator

Setup Proper
Error Handling

Monitor Source
Schema Drift

Monitor Data
Pipelines

Master Modeling
in Online Store

Understand Use &
Lineage in Models

Govern Data
Security/Privacy

Enable CI/CD for
Code Revisions

Enable Feature
Reuse and Sharing

Alert on Changes
to Definitions

Manage Feature
Sprawl

Turn-Off Inactive
Features

Govern

The data journey from source-to-serve is consuming

Experiment

Clean and Prep
Raw Data

Define Batch
Features

Define Stream
Features

Define Real-Time
Features

Create
Point-in-Time

Training Data Set

Manage Data
Infrastructure

Perform CRUD
Operations

Serve

Support Any
Performance SLA

Integrate with
Real-Time Data

Create Feature
Vectors in Real-Time

Compute Some
Features on the Fly

Serve Features as
Microservices

Shift Transform Code
Out of App

Build a Real-time
Retrieval System

Build a Unified
Serving API

Build Add’l
Caching Layers

Architect Parallel
Processing

Master Query
Optimization

Ensure Proper
Error Handling

Harden for
Reliability

Architect for Easy
Scalability

Manual, error-prone systemsSlow to build, maintain, and manage Difficult to scale

Development-related

Infrastructure-related

5

How?
• Provide a declarative framework in which users (Data Scientists, Data Engineers, ML Engineers)

define the transformation from their raw data into production-ready features.

• Orchestrate pipelines which implement these transformations on:

○ Historical Data (i.e. Backfills)

○ Recent Data

∙ In Batches, or Streaming

• These pipelines populate storage (i.e. the Feature Store), which serves:

○ Offline Queries:

∙ Run in batches, each query is for a given (entity, timestamp)

∙ Optimized for throughput

∙ Use Case: Training; Offline/Batch Inference

○ Online Queries:

∙ Each query is for the most recent data for a given entity

∙ Optimized for latency

∙ Use Case: Online Inference 6

Why?
• A single, declarative Feature definition drives your whole ML system:

○ Backfilling, stream ingestion, re-ingesting data to recover from upstream errors, all use

the same feature definition

○ The training and serving systems use the same feature definition

○ Details of pipeline management are abstracted away

○ This includes experimentation: user can develop with our framework iteratively in

notebooks, so there is not a separate “productionisation” step once useful features are

identified

• Uniform Feature definitions form the basis for monitoring, governance, lineage, feature sharing

and reuse, etc. functionality.

7

8

9

10

11

Spark

● Customers write pyspark/Spark SQL transformations

themselves

● We combine these transformations with our own query library

which handles time filtering, incremental aggregations, and

writing into the Feature Store

● These combined jobs are deployed in the customer’s Spark

environment (Databricks/EMR/Dataproc). Customers control

the configuration of these jobs, including cluster size.

12

Problem: Spark is Confusing

13

Py4JJavaError: An error occurred while calling o137.showString.
: java.util.concurrent.ExecutionException: Boxed Error
 at scala.concurrent.impl.Promise$.resolver(Promise.scala:83)
 at scala.concurrent.impl.Promise$.scala$concurrent$impl$Promise$$resolveTry(Promise.scala:75)
 at scala.concurrent.impl.Promise$KeptPromise$.apply(Promise.scala:402)
 at scala.concurrent.Promise$.fromTry(Promise.scala:138)
 at scala.concurrent.Promise$.failed(Promise.scala:124)
 at scala.concurrent.Future$.failed(Future.scala:619)
 at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.$anonfun$materializeFuture$1(ShuffleExchangeExec.scala:104)
 at org.apache.spark.sql.util.LazyValue.getOrInit(LazyValue.scala:41)
 at org.apache.spark.sql.execution.exchange.Exchange.getOrInitMaterializeFuture(Exchange.scala:68)
 at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.materializeFuture(ShuffleExchangeExec.scala:96)
 at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.materialize(ShuffleExchangeExec.scala:84)
 at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.materialize$(ShuffleExchangeExec.scala:83)
 at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.materialize(ShuffleExchangeExec.scala:128)
 at org.apache.spark.sql.execution.adaptive.ShuffleQueryStageExec.doMaterialize(QueryStageExec.scala:161)
 at org.apache.spark.sql.execution.adaptive.QueryStageExec.$anonfun$materialize$1(QueryStageExec.scala:74)
 at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:223)
 at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
 at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:220)
 at org.apache.spark.sql.execution.adaptive.QueryStageExec.materialize(QueryStageExec.scala:74)
 at org.apache.spark.sql.execution.adaptive.MaterializeExecutable.tryStart(AdaptiveExecutable.scala:396)
 at org.apache.spark.sql.execution.adaptive.AdaptiveExecutorRuntime.startChild(AdaptiveExecutor.scala:225)
 at org.apache.spark.sql.execution.adaptive.ExecutionHelper.start(ExecutionHelper.scala:47)
 at org.apache.spark.sql.execution.adaptive.QueryStageExecutable$$anon$2.$anonfunnew1(AdaptiveExecutable.scala:251)
 at org.apache.spark.sql.execution.adaptive.ExecutionHelper$Listener.$anonfun$onChildSuccess$2(ExecutionHelper.scala:55)
 at org.apache.spark.sql.execution.adaptive.ExecutionHelper$Listener.$anonfun$onChildSuccess$2$adapted(ExecutionHelper.scala:54)
 at scala.Option.foreach(Option.scala:257)
 at org.apache.spark.sql.execution.adaptive.ExecutionHelper$Listener.$anonfun$onChildSuccess$1(ExecutionHelper.scala:54)
 at org.apache.spark.sql.execution.adaptive.ExecutionHelper$Listener.$anonfun$onChildSuccess$1$adapted(ExecutionHelper.scala:53)
 at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:58)
 at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:51)
 at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
 at org.apache.spark.sql.execution.adaptive.ExecutionHelper$Listener.onChildSuccess(ExecutionHelper.scala:53)
 at org.apache.spark.sql.execution.adaptive.AdaptiveExecutorRuntime.$anonfun$onActiveChildSuccess$2(AdaptiveExecutor.scala:314)
 at org.apache.spark.sql.execution.adaptive.AdaptiveExecutorRuntime.$anonfun$onActiveChildSuccess2adapted(AdaptiveExecutor.scala:314)
 at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:58)
 at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:51)
 at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
 at org.apache.spark.sql.execution.adaptive.AdaptiveExecutorRuntime.onActiveChildSuccess(AdaptiveExecutor.scala:314)
 at org.apache.spark.sql.execution.adaptive.AdaptiveExecutorRuntime.onChildSuccess(AdaptiveExecutor.scala:284)
 at org.apache.spark.sql.execution.adaptive.AdaptiveExecutor.$anonfun$doRun$1(AdaptiveExecutor.scala:92)
 at org.apache.spark.sql.execution.adaptive.AdaptiveExecutor.$anonfun$doRun1adapted(AdaptiveExecutor.scala:91)
 at scala.collection.mutable.HashMap.$anonfun$foreach$1(HashMap.scala:145)
 at scala.collection.mutable.HashTable.foreachEntry(HashTable.scala:235)
 at scala.collection.mutable.HashTable.foreachEntry$(HashTable.scala:228)
 at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40)
 at scala.collection.mutable.HashMap.foreach(HashMap.scala:145)
 at org.apache.spark.sql.execution.adaptive.AdaptiveExecutor.doRun(AdaptiveExecutor.scala:91)
 at org.apache.spark.sql.execution.adaptive.AdaptiveExecutor.tryRunningAndGetFuture(AdaptiveExecutor.scala:66)
 at org.apache.spark.sql.execution.adaptive.AdaptiveExecutor.execute(AdaptiveExecutor.scala:57)
 at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.$anonfun$getFinalPhysicalPlan$1(AdaptiveSparkPlanExec.scala:184)
 at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772)
 at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.getFinalPhysicalPlan(AdaptiveSparkPlanExec.scala:183)
 at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.executeCollect(AdaptiveSparkPlanExec.scala:404)
 at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3733)
 at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2762)
 at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3724)
 at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:107)
 at org.apache.spark.sql.execution.SQLExecution$.withTracker(SQLExecution.scala:232)
 at org.apache.spark.sql.execution.SQLExecution$.executeQuery$1(SQLExecution.scala:110)
 at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:135)
 at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:107)
 at org.apache.spark.sql.execution.SQLExecution$.withTracker(SQLExecution.scala:232)
 at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:135)
 at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:253)
 at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:134)
 at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772)
 at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:68)
 at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3722)
 at org.apache.spark.sql.Dataset.head(Dataset.scala:2762)
 at org.apache.spark.sql.Dataset.take(Dataset.scala:2969)
 at org.apache.spark.sql.Dataset.getRows(Dataset.scala:302)
 at org.apache.spark.sql.Dataset.showString(Dataset.scala:339)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:498)
 at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
 at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
 at py4j.Gateway.invoke(Gateway.java:282)
 at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
 at py4j.commands.CallCommand.execute(CallCommand.java:79)
 at py4j.GatewayConnection.run(GatewayConnection.java:238)
 at java.lang.Thread.run(Thread.java:750)

What does this error mean?
Source:
https://stackoverflow.com/questions/75522599/
what-is-the-cause-of-this-error-code-was-workin
g-before-and-randomly-started-to

https://stackoverflow.com/questions/75522599/what-is-the-cause-of-this-error-code-was-working-before-and-randomly-started-to
https://stackoverflow.com/questions/75522599/what-is-the-cause-of-this-error-code-was-working-before-and-randomly-started-to
https://stackoverflow.com/questions/75522599/what-is-the-cause-of-this-error-code-was-working-before-and-randomly-started-to

14

Caused by: java.lang.NoSuchMethodError: org.apache.sedona.core.utils.SedonaConf.<init>(Lorg/apache/spark/SparkConf;)V
 at org.apache.spark.sql.sedona_sql.strategy.join.TraitJoinQueryExec.doExecute(TraitJoinQueryExec.scala:63)
 at org.apache.spark.sql.sedona_sql.strategy.join.TraitJoinQueryExec.doExecute$(TraitJoinQueryExec.scala:56)
 at org.apache.spark.sql.sedona_sql.strategy.join.RangeJoinExec.doExecute(RangeJoinExec.scala:37)
 at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:185)
 at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:223)
 at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
 at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:220)
 at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:181)
 at org.apache.spark.sql.execution.InputAdapter.inputRDD(WholeStageCodegenExec.scala:525)
 at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs(WholeStageCodegenExec.scala:453)
 at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs$(WholeStageCodegenExec.scala:452)
 at org.apache.spark.sql.execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:496)
 at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.inputRDDs(BroadcastHashJoinExec.scala:178)
 at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:746)
 at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:185)
 at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:223)
 at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
 at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:220)
 at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:181)
 at org.apache.spark.sql.execution.ProjectExec.doExecute(basicPhysicalOperators.scala:92)
 at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:185)
 at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:223)
 at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
 at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:220)
 at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:181)
 at org.apache.spark.sql.execution.InputAdapter.inputRDD(WholeStageCodegenExec.scala:525)
 at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs(WholeStageCodegenExec.scala:453)
 at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs$(WholeStageCodegenExec.scala:452)
 at org.apache.spark.sql.execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:496)
 at org.apache.spark.sql.execution.aggregate.HashAggregateExec.inputRDDs(HashAggregateExec.scala:137)
 at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:746)
 at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:185)
 at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:223)
 at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
 at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:220)
 at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:181)
 at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.inputRDD$lzycompute(ShuffleExchangeExec.scala:160)
 at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.inputRDD(ShuffleExchangeExec.scala:160)
 at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.mapOutputStatisticsFuture$lzycompute(ShuffleExchangeExec.scala:164)
 at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.mapOutputStatisticsFuture(ShuffleExchangeExec.scala:163)
 at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.$anonfun$materializeFuture$2(ShuffleExchangeExec.scala:100)
 at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52)
 at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.$anonfun$materializeFuture$1(ShuffleExchangeExec.scala:100)
 ... 76 more

15

16

We want to help our users when they run
into problems, but the surface area of
Spark failures makes this really difficult

17Source: https://spark.apache.org/docs/latest/configuration.html

https://spark.apache.org/docs/latest/configuration.html

Problem: Spark complicates
deployments

18

● We require a managed Spark environment

(Databricks/EMR/DataProc) to use our product

● When a customer isn’t an existing user of Spark, this often

involves pulling in additional parties that have to be consulted

as part of the sales process

19

Problem: Spark is heavyweight

● Setting up Spark to run on your laptop is possible, but

cumbersome and prone to behavior differences to

“production.”

● Spinning up a fresh Spark cluster to try something out can take

10+ minutes

● => Not a rewarding environment for experimentation and

iteration

20

Spark is often not the right tool for the
problems our users are trying to solve

21

When Spark is not a good fit for the use case, it degrades Tecton’s
value proposition:
● The experimentation experience is not smooth
● The pipelines are managed, but the area of shared

responsibility is awkward. Customers might still have to
learn a lot about configuring Spark

22Source: https://motherduck.com/blog/big-data-is-dead/

https://motherduck.com/blog/big-data-is-dead/

Can we do better?

24

Product Priorities

● Enable domain experts to do their feature engineering using

tools that they’re familiar with, which is often SQL or Pandas.

● Polished integrations with Data Warehouses

● Iteration and Experimentation experience that’s 10x better

than what we previously had with Spark

25

Requirements: Devex

● Customers should have flexibility to express their

transformations in the language/framework they want to use.

● Often times this means Pandas or SQL

● Might also want to support things like Polars or Ibis

● It should be easy for us to add support for different options,

without sacrificing performance.

26

Requirements: Local First

● We want a delightful local development experience. Usually

this is within a notebook running on a laptop or a service like

Collab, Deepnote, or Hex.

● It should be fast to start up

● It should not require complex dependencies which can’t easily

be distributed through pip (such as a JVM and Hadoop JARs)

● It must be able to process non-trivial queries with constrained

resources.

27

Requirements: Easy to Deploy

● No mandatory third party vendors like we have with Spark

● Be extremely frugal with configuration options

28

Requirements: Data Sources

We must be able to integrate with a wide variety of Data Sources

○ Snowflake

○ BigQuery

○ Data Lakes

○ Local Files

○ Down the road: RedShift, Postgres…

Building Blocks: Apache Arrow

29Source: https://arrow.apache.org/

https://arrow.apache.org/

Building Blocks: DuckDB
● “DuckDB is a fast in-process analytical

database”

● Or, the SQLite of analytical queries

30

Why DuckDB

Performance

Fast & Lightweight

Can process non-trivial datasets with

modest amounts of RAM due to streaming,

out-of-core

31

Arrow

Seamless integration allows us to flexibly

integrate new data sources, transformation

modes, etc.

Simplicity

Eliminates the complexities of distributed query

engines, Spark/Hadoop configuration, etc., which

are unnecessary for the datasets we’re typically

dealing with.

32

33

34

35

36

Why do we have Delta?

In a word, atomicity:

● When appending new time ranges

● When partially deleting data

● When optimizing object size

Additionally, speeds up some types of operations by storing

table metadata in a more convenient format

37

38Source: https://delta.io/

https://delta.io/

39

● Reads Delta Tables into pyarrow tables
and/or datasets 🎉

● Limited write functionality:
○ Does not support the full range of

write operations
○ Not compatible with Spark’s

DynamoDB locking protocol
○ Certain commit metadata not

supported
● Limited AWS auth options

40

Are we stuck?

Thankfully not, but we need to understand a bit of how Delta works under the covers..

s3://bucket/my_table/
├─ date=2023-01-23/
│ ├─ 18559b25.parquet
│ ├─ 6e654e81.parquet
├─ date=2023-01-24/
│ ├─ 2514ade3.parquet
│ ├─ 328f83d6.parquet
├─ _delta_log/
│ ├─ 0000.json
│ ├─ 0001.json

41

“metaData”: {
 “schema”: [
 {“name”: “ts”, “type”: “timestamp”},
 {“name”: “date”, “type”: “string”},
 {“name”: “clicks_1h”, “type”: “long”},
 },
 “partitionColumns”: [
 “date”
]
}

s3://bucket/my_table/
├─ date=2023-01-23/
│ ├─ 18559b25.parquet
│ ├─ 6e654e81.parquet
├─ date=2023-01-24/
│ ├─ 2514ade3.parquet
│ ├─ 328f83d6.parquet
├─ _delta_log/
│ ├─ 0000.json
│ ├─ 0001.json

42

{
 "add": {
 "path": "date=2023-01-23/18559b25.parquet",
 "partitionValues": {"date": "2023-01-23"},
 "size": 19842442
 }
}
{
 "add": {
 "path": "date=2023-01-23/6e654e81.parquet",
 "partitionValues": {"date": "2023-01-23"},
 "size": 25739734
 }
}

s3://bucket/my_table/
├─ date=2023-01-23/
│ ├─ 18559b25.parquet
│ ├─ 6e654e81.parquet
│ ├─ 7fea8d91.parquet
├─ date=2023-01-24/
│ ├─ 2514ade3.parquet
│ ├─ 328f83d6.parquet
├─ _delta_log/
│ ├─ 0000.json
│ ├─ 0001.json
│ ├─ 0002.json

43

{
 "remove": {
 "path": "date=2023-01-23/18559b25.parquet",
 "partitionValues": {"date": "2023-01-23"},
 "size": 19842442
 }
}
{
 "add": {
 "path": "date=2023-01-23/7fea8d91.parquet",
 "partitionValues": {"date": "2023-01-23"},
 "size": 17498312
 }
}

Deleting a subset of keys

44

Solution
• delta-standalone is a JVM library which is part of the upstream Delta project. It

does all of the transaction log management without touching the underlying data

(parquet) files.

• We utilize it by spinning up a JVM as a sidecar to our main Python process, and

send it messages when we need to mutate the Delta log.

45

Solution
• To delete a list of keys using this method:

○ Use delta-standalone to read the list of files in the current version of the

table

○ Load the parquet files as a pyarrow dataset, filter out the keys to delete

using DuckDB, and write the result to a new set of parquet files

○ Tell delta-standalone to write “add” and “remove” logs for all of the affected

files.

○ Do the entire thing over again if you hit a conflict writing a log.

Alternatives Explored
● Switch to (Iceberg|Hudi)

● Improve on delta-rs

46

DuckDB Extension
• Problem: We have some esoteric aggregations we need to support (incremental

versions of approximate quantile and approximate count distinct)

• DuckDB allows adding new aggregations in extensions.

• Maintenance and distribution is a little painful:

○ Extension APIs are not stable; every minor release so far has required

changes.

○ Need to distribute a compiled extension for every OS/Architecture

combination you want to support.

○ Built-in distribution mechanism is not versioned: you only get to publish

one extension version per DuckDB version.

47

48

Snowflake Integration

49

Results (so far)
• Released in Private Preview in January, along with some additional streaming ingest

functionality which is outside of the scope of this talk.

• Together with the streaming functionality we are calling this configuration “Rift”

• Private preview has included a mix of new customers who never used Spark,

customers who did use Spark, and a number of prospects.

• Hypothesis about Rift being easier to deploy and faster to production than Spark has

been borne out so far.

50

51

Performance: Materialization Query

Label Instance(s) Hourly

Spark 2x m6id.xlarge $0.4746*

Rift
2xlarge

1x r5.2xlarge $0.5600

Rift
xlarge

1x r5.xlarge $0.2800

*Hourly cost does not include
Driver or DBUS

52

Performance: Materialization Query

Label Instance(s) Hourly

Spark 4x m6id.xlarge $0.9492*

Rift 1x r5.2xlarge $1.1200

*Hourly cost does not include
Driver or DBUs

• Find me afterwards to ask questions!

• Tecton is hiring Remotely as well as in NYC and SF!

53

The End

