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PURPOSE

FOUNDERS The creators of Uber’s Michelangelo AI Platform
● Created the first machine learning “feature store”

● Scaled from 0 to 1000’s of models in production

MATURITY Founded 2018
● $160M raised 

CUSTOMERS

INVESTORS

Who’s Tecton?

Examples include:

Activating data to power every experience with AI/ML
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Tecton is a data platform for production ML

Tightly integrated 
development experience and 
managed infrastructure 

For when the use of models require 
reliability, performance, prediction 
accuracy, cost effectiveness, and scale

Purpose-built to address the 
unique data requirements and 
challenges for AI/ML.

What’s Tecton?



Production ML is a Massive Data Problem
Why Tecton?
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Across Stores

Ensure Process 
Dependencies 

Monitor Data 
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Testing Online 
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Rewrite Feature 
Definition

Schedule 
Production Jobs

Synchronize Data 
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Set Up 
Incrementals

Manage Data 
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Manage the 
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Pipelines
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Govern Data 
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Enable CI/CD for 
Code Revisions
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Reuse and Sharing 
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The data journey from source-to-serve is consuming 

Experiment
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Operations
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Performance SLA
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Real-Time Data
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Compute Some 
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Manual, error-prone systemsSlow to build, maintain, and manage Difficult to scale

Development-related

Infrastructure-related
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How?
• Provide a declarative framework in which users (Data Scientists, Data Engineers, ML Engineers) 

define the transformation from their raw data into production-ready features.

• Orchestrate pipelines which implement these transformations on:

○ Historical  Data (i.e. Backfills)

○ Recent Data

∙ In Batches, or Streaming

• These pipelines populate storage (i.e. the Feature Store), which serves:

○ Offline Queries:

∙ Run in batches, each query is for a given (entity, timestamp)

∙ Optimized for throughput

∙ Use Case: Training; Offline/Batch Inference

○ Online Queries:

∙ Each query is for the most recent data for a given entity

∙ Optimized for latency

∙ Use Case: Online Inference 6



Why?
• A single, declarative Feature definition drives your whole ML system:

○ Backfilling, stream ingestion, re-ingesting data to recover from upstream errors, all use 

the same feature definition

○ The training and serving systems use the same feature definition

○ Details of pipeline management are abstracted away

○ This includes experimentation: user can develop with our framework iteratively in 

notebooks, so there is not a separate “productionisation” step once useful features are 

identified

• Uniform Feature definitions form the basis for monitoring, governance, lineage, feature sharing 

and reuse, etc. functionality.

7
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Spark

● Customers write pyspark/Spark SQL transformations 

themselves

● We combine these transformations with our own query library 

which handles time filtering, incremental aggregations, and 

writing into the Feature Store

● These combined jobs are deployed in the customer’s Spark 

environment (Databricks/EMR/Dataproc). Customers control 

the configuration of these jobs, including cluster size.
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Problem: Spark is Confusing
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Py4JJavaError: An error occurred while calling o137.showString.
: java.util.concurrent.ExecutionException: Boxed Error
    at scala.concurrent.impl.Promise$.resolver(Promise.scala:83)
    at scala.concurrent.impl.Promise$.scala$concurrent$impl$Promise$$resolveTry(Promise.scala:75)
    at scala.concurrent.impl.Promise$KeptPromise$.apply(Promise.scala:402)
    at scala.concurrent.Promise$.fromTry(Promise.scala:138)
    at scala.concurrent.Promise$.failed(Promise.scala:124)
    at scala.concurrent.Future$.failed(Future.scala:619)
    at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.$anonfun$materializeFuture$1(ShuffleExchangeExec.scala:104)
    at org.apache.spark.sql.util.LazyValue.getOrInit(LazyValue.scala:41)
    at org.apache.spark.sql.execution.exchange.Exchange.getOrInitMaterializeFuture(Exchange.scala:68)
    at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.materializeFuture(ShuffleExchangeExec.scala:96)
    at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.materialize(ShuffleExchangeExec.scala:84)
    at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.materialize$(ShuffleExchangeExec.scala:83)
    at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.materialize(ShuffleExchangeExec.scala:128)
    at org.apache.spark.sql.execution.adaptive.ShuffleQueryStageExec.doMaterialize(QueryStageExec.scala:161)
    at org.apache.spark.sql.execution.adaptive.QueryStageExec.$anonfun$materialize$1(QueryStageExec.scala:74)
    at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:223)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:220)
    at org.apache.spark.sql.execution.adaptive.QueryStageExec.materialize(QueryStageExec.scala:74)
    at org.apache.spark.sql.execution.adaptive.MaterializeExecutable.tryStart(AdaptiveExecutable.scala:396)
    at org.apache.spark.sql.execution.adaptive.AdaptiveExecutorRuntime.startChild(AdaptiveExecutor.scala:225)
    at org.apache.spark.sql.execution.adaptive.ExecutionHelper.start(ExecutionHelper.scala:47)
    at org.apache.spark.sql.execution.adaptive.QueryStageExecutable$$anon$2.$anonfun$new$1(AdaptiveExecutable.scala:251)
    at org.apache.spark.sql.execution.adaptive.ExecutionHelper$Listener.$anonfun$onChildSuccess$2(ExecutionHelper.scala:55)
    at org.apache.spark.sql.execution.adaptive.ExecutionHelper$Listener.$anonfun$onChildSuccess$2$adapted(ExecutionHelper.scala:54)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.sql.execution.adaptive.ExecutionHelper$Listener.$anonfun$onChildSuccess$1(ExecutionHelper.scala:54)
    at org.apache.spark.sql.execution.adaptive.ExecutionHelper$Listener.$anonfun$onChildSuccess$1$adapted(ExecutionHelper.scala:53)
    at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:58)
    at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:51)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
    at org.apache.spark.sql.execution.adaptive.ExecutionHelper$Listener.onChildSuccess(ExecutionHelper.scala:53)
    at org.apache.spark.sql.execution.adaptive.AdaptiveExecutorRuntime.$anonfun$onActiveChildSuccess$2(AdaptiveExecutor.scala:314)
    at org.apache.spark.sql.execution.adaptive.AdaptiveExecutorRuntime.$anonfun$onActiveChildSuccess$2$adapted(AdaptiveExecutor.scala:314)
    at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:58)
    at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:51)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
    at org.apache.spark.sql.execution.adaptive.AdaptiveExecutorRuntime.onActiveChildSuccess(AdaptiveExecutor.scala:314)
    at org.apache.spark.sql.execution.adaptive.AdaptiveExecutorRuntime.onChildSuccess(AdaptiveExecutor.scala:284)
    at org.apache.spark.sql.execution.adaptive.AdaptiveExecutor.$anonfun$doRun$1(AdaptiveExecutor.scala:92)
    at org.apache.spark.sql.execution.adaptive.AdaptiveExecutor.$anonfun$doRun$1$adapted(AdaptiveExecutor.scala:91)
    at scala.collection.mutable.HashMap.$anonfun$foreach$1(HashMap.scala:145)
    at scala.collection.mutable.HashTable.foreachEntry(HashTable.scala:235)
    at scala.collection.mutable.HashTable.foreachEntry$(HashTable.scala:228)
    at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40)
    at scala.collection.mutable.HashMap.foreach(HashMap.scala:145)
    at org.apache.spark.sql.execution.adaptive.AdaptiveExecutor.doRun(AdaptiveExecutor.scala:91)
    at org.apache.spark.sql.execution.adaptive.AdaptiveExecutor.tryRunningAndGetFuture(AdaptiveExecutor.scala:66)
    at org.apache.spark.sql.execution.adaptive.AdaptiveExecutor.execute(AdaptiveExecutor.scala:57)
    at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.$anonfun$getFinalPhysicalPlan$1(AdaptiveSparkPlanExec.scala:184)
    at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772)
    at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.getFinalPhysicalPlan(AdaptiveSparkPlanExec.scala:183)
    at org.apache.spark.sql.execution.adaptive.AdaptiveSparkPlanExec.executeCollect(AdaptiveSparkPlanExec.scala:404)
    at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3733)
    at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2762)
    at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3724)
    at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:107)
    at org.apache.spark.sql.execution.SQLExecution$.withTracker(SQLExecution.scala:232)
    at org.apache.spark.sql.execution.SQLExecution$.executeQuery$1(SQLExecution.scala:110)
    at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:135)
    at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:107)
    at org.apache.spark.sql.execution.SQLExecution$.withTracker(SQLExecution.scala:232)
    at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:135)
    at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:253)
    at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:134)
    at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:772)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:68)
    at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3722)
    at org.apache.spark.sql.Dataset.head(Dataset.scala:2762)
    at org.apache.spark.sql.Dataset.take(Dataset.scala:2969)
    at org.apache.spark.sql.Dataset.getRows(Dataset.scala:302)
    at org.apache.spark.sql.Dataset.showString(Dataset.scala:339)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:238)
    at java.lang.Thread.run(Thread.java:750)

What does this error mean?
Source: 
https://stackoverflow.com/questions/75522599/
what-is-the-cause-of-this-error-code-was-workin
g-before-and-randomly-started-to

https://stackoverflow.com/questions/75522599/what-is-the-cause-of-this-error-code-was-working-before-and-randomly-started-to
https://stackoverflow.com/questions/75522599/what-is-the-cause-of-this-error-code-was-working-before-and-randomly-started-to
https://stackoverflow.com/questions/75522599/what-is-the-cause-of-this-error-code-was-working-before-and-randomly-started-to
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Caused by: java.lang.NoSuchMethodError: org.apache.sedona.core.utils.SedonaConf.<init>(Lorg/apache/spark/SparkConf;)V
    at org.apache.spark.sql.sedona_sql.strategy.join.TraitJoinQueryExec.doExecute(TraitJoinQueryExec.scala:63)
    at org.apache.spark.sql.sedona_sql.strategy.join.TraitJoinQueryExec.doExecute$(TraitJoinQueryExec.scala:56)
    at org.apache.spark.sql.sedona_sql.strategy.join.RangeJoinExec.doExecute(RangeJoinExec.scala:37)
    at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:185)
    at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:223)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:220)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:181)
    at org.apache.spark.sql.execution.InputAdapter.inputRDD(WholeStageCodegenExec.scala:525)
    at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs(WholeStageCodegenExec.scala:453)
    at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs$(WholeStageCodegenExec.scala:452)
    at org.apache.spark.sql.execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:496)
    at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.inputRDDs(BroadcastHashJoinExec.scala:178)
    at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:746)
    at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:185)
    at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:223)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:220)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:181)
    at org.apache.spark.sql.execution.ProjectExec.doExecute(basicPhysicalOperators.scala:92)
    at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:185)
    at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:223)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:220)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:181)
    at org.apache.spark.sql.execution.InputAdapter.inputRDD(WholeStageCodegenExec.scala:525)
    at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs(WholeStageCodegenExec.scala:453)
    at org.apache.spark.sql.execution.InputRDDCodegen.inputRDDs$(WholeStageCodegenExec.scala:452)
    at org.apache.spark.sql.execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:496)
    at org.apache.spark.sql.execution.aggregate.HashAggregateExec.inputRDDs(HashAggregateExec.scala:137)
    at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:746)
    at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute$1(SparkPlan.scala:185)
    at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery$1(SparkPlan.scala:223)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:220)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:181)
    at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.inputRDD$lzycompute(ShuffleExchangeExec.scala:160)
    at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.inputRDD(ShuffleExchangeExec.scala:160)
    at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.mapOutputStatisticsFuture$lzycompute(ShuffleExchangeExec.scala:164)
    at org.apache.spark.sql.execution.exchange.ShuffleExchangeExec.mapOutputStatisticsFuture(ShuffleExchangeExec.scala:163)
    at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.$anonfun$materializeFuture$2(ShuffleExchangeExec.scala:100)
    at org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:52)
    at org.apache.spark.sql.execution.exchange.ShuffleExchangeLike.$anonfun$materializeFuture$1(ShuffleExchangeExec.scala:100)
    ... 76 more



15



16

We want to help our users when they run 
into problems, but the surface area of 
Spark failures makes this really difficult



17Source: https://spark.apache.org/docs/latest/configuration.html

https://spark.apache.org/docs/latest/configuration.html


Problem: Spark complicates
deployments
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● We require a managed Spark environment 

(Databricks/EMR/DataProc) to use our product

● When a customer isn’t an existing user of Spark, this often 

involves pulling in additional parties that have to be consulted 

as part of the sales process
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Problem: Spark is heavyweight

● Setting up Spark to run on your laptop is possible, but 

cumbersome and prone to behavior differences to 

“production.”

● Spinning up a fresh Spark cluster to try something out can take 

10+ minutes

● => Not a rewarding environment for experimentation and 

iteration



20

Spark is often not the right tool for the 
problems our users are trying to solve
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When Spark is not a good fit for the use case, it degrades Tecton’s 
value proposition:
● The experimentation experience is not smooth
● The pipelines are managed, but the area of shared 

responsibility is awkward. Customers might still have to 
learn a lot about configuring Spark



22Source: https://motherduck.com/blog/big-data-is-dead/

https://motherduck.com/blog/big-data-is-dead/


Can we do better?
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Product Priorities

● Enable domain experts to do their feature engineering using 

tools that they’re familiar with, which is often SQL or Pandas.

● Polished integrations with Data Warehouses

● Iteration and Experimentation experience that’s 10x better 

than what we previously had with Spark
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Requirements: Devex

● Customers should have flexibility to express their 

transformations in the language/framework they want to use.

● Often times this means Pandas or SQL

● Might also want to support things like Polars or Ibis

● It should be easy for us to add support for different options, 

without sacrificing performance.
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Requirements: Local First

● We want a delightful local development experience. Usually 

this is within a notebook running on a laptop or a service like 

Collab, Deepnote, or Hex.

● It should be fast to start up

● It should not require complex dependencies which can’t easily 

be distributed through pip (such as a JVM and Hadoop JARs)

● It must be able to process non-trivial queries with constrained 

resources.
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Requirements: Easy to Deploy

● No mandatory third party vendors like we have with Spark

● Be extremely frugal with configuration options
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Requirements: Data Sources

We must be able to integrate with a wide variety of Data Sources

○ Snowflake

○ BigQuery

○ Data Lakes

○ Local Files

○ Down the road: RedShift, Postgres…



Building Blocks: Apache Arrow

29Source: https://arrow.apache.org/

https://arrow.apache.org/


Building Blocks: DuckDB
● “DuckDB is a fast in-process analytical 

database”

● Or, the SQLite of analytical queries

30



Why DuckDB

Performance

Fast & Lightweight

Can process non-trivial datasets with 

modest amounts of RAM due to streaming, 

out-of-core

31

Arrow

Seamless integration allows us to flexibly 

integrate new data sources, transformation 

modes, etc.

Simplicity

Eliminates the complexities of distributed query 

engines, Spark/Hadoop configuration, etc., which 

are unnecessary for the datasets we’re typically 

dealing with.
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Why do we have Delta?

In a word, atomicity:

● When appending new time ranges

● When partially deleting data

● When optimizing object size

Additionally, speeds up some types of operations by storing 

table metadata in a more convenient format

37



38Source: https://delta.io/

https://delta.io/
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● Reads Delta Tables into pyarrow tables 
and/or datasets 🎉

● Limited write functionality:
○ Does not support the full range of 

write operations
○ Not compatible with Spark’s 

DynamoDB locking protocol
○ Certain commit metadata not 

supported
● Limited AWS auth options
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Are we stuck?

Thankfully not, but we need to understand a bit of how Delta works under the covers..



s3://bucket/my_table/
├─ date=2023-01-23/
│  ├─ 18559b25.parquet
│  ├─ 6e654e81.parquet
├─ date=2023-01-24/
│  ├─ 2514ade3.parquet
│  ├─ 328f83d6.parquet
├─ _delta_log/
│  ├─ 0000.json
│  ├─ 0001.json

41

“metaData”: {
  “schema”: [
    {“name”: “ts”, “type”: “timestamp”},
    {“name”: “date”, “type”: “string”},
    {“name”: “clicks_1h”, “type”: “long”},
  },
  “partitionColumns”: [
    “date”
  ]
}



s3://bucket/my_table/
├─ date=2023-01-23/
│  ├─ 18559b25.parquet
│  ├─ 6e654e81.parquet
├─ date=2023-01-24/
│  ├─ 2514ade3.parquet
│  ├─ 328f83d6.parquet
├─ _delta_log/
│  ├─ 0000.json
│  ├─ 0001.json

42

{
  "add": {
    "path": "date=2023-01-23/18559b25.parquet",
    "partitionValues": {"date": "2023-01-23"},
    "size": 19842442
  }
}
{
  "add": {
    "path": "date=2023-01-23/6e654e81.parquet",
    "partitionValues": {"date": "2023-01-23"},
    "size": 25739734
  }
}



s3://bucket/my_table/
├─ date=2023-01-23/
│  ├─ 18559b25.parquet
│  ├─ 6e654e81.parquet
│  ├─ 7fea8d91.parquet
├─ date=2023-01-24/
│  ├─ 2514ade3.parquet
│  ├─ 328f83d6.parquet
├─ _delta_log/
│  ├─ 0000.json
│  ├─ 0001.json
│  ├─ 0002.json

43

{
  "remove": {
    "path": "date=2023-01-23/18559b25.parquet",
    "partitionValues": {"date": "2023-01-23"},
    "size": 19842442
  }
}
{
  "add": {
    "path": "date=2023-01-23/7fea8d91.parquet",
    "partitionValues": {"date": "2023-01-23"},
    "size": 17498312
  }
}

Deleting a subset of keys
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Solution
• delta-standalone is a JVM library which is part of the upstream Delta project. It 

does all of the transaction log management without touching the underlying data 

(parquet) files.

• We utilize it by spinning up a JVM as a sidecar to our main Python process, and 

send it messages when we need to mutate the Delta log.
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Solution
• To delete a list of keys using this method:

○ Use delta-standalone to read the list of files in the current version of the 

table

○ Load the parquet files as a pyarrow dataset, filter out the keys to delete 

using DuckDB, and write the result to a new set of parquet files

○ Tell delta-standalone to write “add” and “remove” logs for all of the affected 

files.

○ Do the entire thing over again if you hit a conflict writing a log.



Alternatives Explored
● Switch to (Iceberg|Hudi)

● Improve on delta-rs
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DuckDB Extension
• Problem: We have some esoteric aggregations we need to support (incremental 

versions of approximate quantile and approximate count distinct)

• DuckDB allows adding new aggregations in extensions.

• Maintenance and distribution is a little painful:

○ Extension APIs are not stable; every minor release so far has required 

changes.

○ Need to distribute a compiled extension for every OS/Architecture 

combination you want to support.

○ Built-in distribution mechanism is not versioned: you only get to publish 

one extension version per DuckDB version.

47
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Snowflake Integration
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Results (so far)
• Released in Private Preview in January, along with some additional streaming ingest 

functionality which is outside of the scope of this talk.

• Together with the streaming functionality we are calling this configuration “Rift”

• Private preview has included a mix of new customers who never used Spark, 

customers who did use Spark, and a number of prospects.

• Hypothesis about Rift being easier to deploy and faster to production than Spark has 

been borne out so far.
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Performance: Materialization Query

Label Instance(s) Hourly

Spark 2x m6id.xlarge $0.4746*

Rift 
2xlarge

1x r5.2xlarge $0.5600

Rift 
xlarge

1x r5.xlarge $0.2800

*Hourly cost does not include 
Driver or DBUS
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Performance: Materialization Query

Label Instance(s) Hourly

Spark 4x m6id.xlarge $0.9492*

Rift 1x r5.2xlarge $1.1200

*Hourly cost does not include 
Driver or DBUs



• Find me afterwards to ask questions!

• Tecton is hiring Remotely as well as in NYC and SF!
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The End


