

Rethinking the DAG
Escaping the workflow ↔ data platform
impedance mismatch

Pete Hunt
CEO - Dagster Labs

Agenda

● About me
● The mess we’re in

○ Developer velocity
○ Stack complexity
○ Data decentralization

● The impedance mismatch
● Rethinking the DAG and its implications

Who am I?

Ran data teams at Twitter and
co-founded a streaming data
company for detecting online abuse

Founding member of the React
project at Facebook

CEO at Dagster Labs
● Dagster Core (OSS)
● Dagster+ (coming April 17)

The mess we’re in

Imagine yourself as a new Head of
Data at a Series B company building

a Spotify competitor

Lydia / Analytics Engineer

Olivia / CEO

Ed / Head of Marketing

Wade / Head of Sales

Joel / Customer Success Manager

Joel / Data Contractor at ACME Analytics

Grace / Product Manager

Peyton / Data Engineer

Carlie / Product Engineer

Oscar / ML Engineer

Hector / Data Scientist

Luke / Data Engineering Lead

Luke / Data Engineering Lead

Weekly

Hourly Hourly

Daily

Luke / Data Engineering Lead

Weekly

Hourly Hourly

Daily

Ad hoc

Daily

Hourly

Hourly

Daily

Daily

Weekly

Ad hoc

Weekly

Daily

Hourly

Weekly

Ad hoc

Ad hoc

Ad hoc

Ad hoc

Ad hoc

Daily

Luke / Data Engineering Lead

Weekly

Hourly Hourly

Daily

Ad hoc

Daily

Hourly

Hourly

Daily

Daily

Weekly

Ad hoc

Weekly

Daily

Hourly

Weekly

Ad hoc

Ad hoc

Ad hoc

Ad hoc

Ad hoc

Daily

⚠ This failed

⚠ Testing in Prod

⚠ This ran late

⚠ This looks off

⚠ Someone changed this

Luke / Data Engineering Lead

Luke / Data Engineering Lead

Weekly

Hourly Hourly

Daily

Ad hoc

Daily

Hourly

Hourly

Daily

Daily

Weekly

Ad hoc

Weekly

Daily

Hourly

Weekly

Ad hoc

Ad hoc

Ad hoc

Ad hoc

Ad hoc

Daily

Luke’s life is chaos

Slow & painful
dev experience
Hard to identify, debug and
fix problems across a large
codebase that cuts across
multiple tools

Chaotic & intricate
ownership
Difficult to strike a balance
between centralization and
decentralization while
maximizing productivity.

Complex & costly
tech stack
Dozens of point solutions
to integrate and maintain
with no “single pane of
glass” for observability.

Why?

Skill issue?

ZIRPy venture-backed data companies?

Is data just that hard?

The root technical cause

An impedance mismatch between
workflow engines and the rest of

the data platform

When two layers of a system use
fundamentally incompatible domain models

Impedance mismatch?

The impedance mismatch in data

Workflow-oriented tools
Focused on the task: a function that performs some work
and can depend on other tasks.

Examples: bash scripts, Python functions, K8s jobs

Workflow Engines The rest of the platform

Asset-oriented tools
Focused on the data asset: an object in persistent storage
that captures some understanding of the world

Examples: database tables, ML model, dashboards

What does this mean?

Scheduling inflexibility

Workflow tasks do not have a notion of “freshness”
leading to unnecessary spend by excessively
rematerializing assets..

Mismatched programming model

Engineers are more productive when they can think
declaratively in terms of desired outputs (assets).

Many-to-one relationship between
assets and workflow steps

Single workflow tasks like `dbt run` may produce
many data assets.

Metadata and observability

The workflow engine has the execution logs, some
other system has the schema. A separate data
catalog needs to be integrated to join the data
together and make it useful for stakeholders

How does the world change when we move from
workflow-orientation to asset-orientation?

Dev experience

Stack complexity

Ownership

The dev experience
is slow & painful

Our hero Luke gets a bug report that
the weekly report is missing data.

He searches around his data catalog,
but it was last updated 2 weeks ago
because the sync job broke.

He has to spelunk through the
codebase, reading git blame and
grepping for every string he can think
of to find the code that is related to the
problematic data asset.

The dev experience is
slow & painful

He pushes it to the staging environment, which
takes 15 minutes, to see if it works.

The dev experience is
slow & painful

Oops, he made a typo, time to wait another 15
minutes while we push again…

How the impedance mismatch caused
Luke’s problems

Opaque relationship between data
assets and pipeline code

● Data pipelines were written in a
workflow-oriented style.

● There was no clear correspondence between
the data asset and the workflow task that
produced it

No single source of truth

● The data catalog had to assemble a view of
the world using the exhaust of several tools

● Workflow-oriented orchestrator required
manual integration to associate metadata
with the entry in the catalog

● The integration between the two tools broke

Workflow-oriented vs Asset-oriented code

Workflow-oriented UI

Asset-oriented UI - Catalog

Asset-oriented UI - Catalog

Asset-oriented UI - lineage

Asset-oriented UI - lineage

The tech stack is
complex & expensive

Luke’s customers, data pipeline
authors, want to be alerted if their data
fails quality checks.

● He negotiates a deal with a vendor
● Asks his stakeholders to tag all of their queries
● They say: “Q1 2025”

Luke’s customers also want to move
some data around.

● He negotiates a deal with an ELT vendor
● Writes a custom operator for his stakeholders to use
● Needs to remember to wire it up to every other tool in

the stack

Luke gets the Snowflake bill for the
month and it’s up 400%

● He looks at the query_history table and sees its driven
by a query that has no attribution information

● He greps through the codebase and eventually finds the
code that issues the query

● He fixes the bug, but asks his customers to tag their
queries for next time.

● They say: “Q1 2025”

By the end of the year, he’s bought 20
different data tools and runs 10 new
OSS services.

Oh, and his platform eng
counterparts just got laid off, so
he has to carry the pager every
week now.

Why the impedance mismatch made Luke
buy more tools

Disconnected systems

Because Fivetran and Monte
Carlo are asset-oriented tools
and Airflow is not, Luke had to
prod his stakeholders to do an
expensive, manual integration
phase for each data asset.

Poor observability

Because Airflow is a workflow
engine, it does not have any
built-in features that support
asset-oriented capabilities like
data observability, cost
management and data
discovery, necessitating the
purchase, integration and
maintenance of numerous point
solutions.

Manual integration

Similarly, he was unable to
attribute Snowflake spend to
specific teams or assets
without hours or days of sifting
through the codebase, or
asking his stakeholders to,
again, manually tag each one of
their queries.

Why the impedance mismatch made Luke
buy more tools

Manual tagging of queries

● Airflow is workflow-oriented, and has no
knowledge of which tasks correspond to
which data assets

● For this reason, Airflow can’t help Luke’s
customers with this problem, so they must
tag their queries with asset attribution
manually, which is expensive and fragile.

No data observability

● As tasks in workflow engines are black boxes,
Airflow has no knowledge of the data they
are operating on.

● Thus, Airflow’s observability is limited to
high-level cluster and workflow health.

● There is no visibility into the data itself,
necessitating manual integration of point
solutions.

Cost control with Dagster Insights

Cost control with Dagster Insights

Data Quality checks with Dagster

Data Quality checks with Dagster

Ownership is chaotic
& complicated

All of the data teams got reorged,
and now workflows are shared
between multiple teams.

Teams start to step on each others’
toes technically and socially.

They eventually conclude that it’s
easier to spin up separate
infrastructure for their workflows
than collaborate on a single
instance.

Because there are multiple owners
and Airflow instances, stakeholders
are more confused than ever. The
#help-data Slack channel is chaos.

Why the impedance mismatch made
ownership complicated

Workflow-oriented orchestration (Airflow, others)

Why the impedance mismatch made
ownership complicated

Workflow-oriented orchestration (Airflow, others)

Why the impedance mismatch made
ownership complicated

Asset-oriented orchestration adds an overlay layer

Wrapping up

● There is an impedance mismatch between workflow-oriented
orchestrators and the rest of the (asset-oriented) data platform.

● This impedance mismatch causes problems with:
○ Developer experience
○ Stack complexity
○ Collaboration

● There is a way out

Thanks!

● @floydophone on Twitter
● linkedin.com/in/pwhunt on LinkedIn
● dagster.io for Dagster
●

http://linkedin.com/in/pwhunt

Notes from Schrockn

● Introduce that the orchestrator needs to be the central tool in the stack
○ Orchestrator is asset oriented
○ Data engineers need to live in it / uber DAG
○ Needs to be designed for the SDLC
○ Uber dag

■ “Everyone’s saying it”
● Dev workflow doesn’t connect to asset orientation, or does not land

○ Cut it
○ Pivot to just about going from data asset to code and back again.
○ Intuitive, no centralized uberdag, basis for making the system of record for data assets

● Simply slide #59 re: monte carlo, make more concrete
● Cut some vendor names
● Create an “after” picture of the system diagram. “It changes the game”

