Using AI, Mathematics, and Statistics to Find Similar Data in Massive Data Ecosystems

Collibra

Eric Warner, PhD Senior Manager, AI Engineering

What is Collibra? | Collibra is the system of engagement for data

쁥 Collibra

2

Who? | Collibra Artificial Intelligence Team

Eric Warner Larry Hau Senior Al Manager Senior Director, Product

Staff Product Manager

Discovery

Gretel De Paepe Principal Data Scientist

Anna FilipiakKelsey SchusterStaff Al EngineerSenior Al Engineer

AI Engineer

Delivery

Nick Evers Senior Al Engineer

Operations

ballo Charlie Ang Eng Staff Ops Eng

What? | Data Similarity

쁥 Collibra

Why? | Data Similarity

Data is a \$273T market¹

A company with a thousand data workers wastes time equivalent to \$5.7 million a year trying to find relevant data²

By 2026, 60% of GenAl applications will fail due to bad, wrong, or not enough data³

Estimated volume of data created, source

Collibra

AI | Riding the Tidal Wave of Hype

쁥 Collibra

Copyright © 2024, Collibra. All rights reserved.

LLMs do not come without cost...

Compute Used for AI Training Runs

Total compute used to train notable Al models, measured in total FLOP (floating-point operations) | Logarithmic

...or upside

<u>Source</u>

Navigating the Keys to Data Science

At a high level, how could this (inefficiently) work?

Compute Efficiency: O(p²m²n³)m²)* Storage Requirements: 300.02 TB

(100,000 tables, 100 cols per table, 50 entries per column)

*250 quadrillion computations in the above example or ~79 years if GPU can do 100 million comparisons per second

Clearly, this is not feasible

So how are we actually achieving this?

Let's start at the outcome

Copyright © 2024, Collibra. All rights reserved.

Constraints Drive Solutions

Challenge | Our algorithm

- Must run on customer hardware
- Cannot phone home to an internal or 3rd-party API
- Must actually be able to determine similar/duplicate data

Data Source Constraints

column

...we must compress... ...and add noise...

Given a series of columns... ...randomly sampled and streamed in batches... Collibra

101

..while achieving >90% accuracy. How??

PATENT PENDING

Our schema aims to maintain as much information as possible while maintaining security and legal boundaries

PATENT PENDING

At a high level, how does this actually work?

Compression

This is not new....

Morse Code (1840's)

A •	N —•]	?
B	0	2	!
С —	P	3	
D	Q	4	,
Ε•	R	5	;
F	S •••	6	:
G ——•	Т —	7	+ ••
Η ••••	U •••	8	
••	V	9	/
J •———	W	0	=
К —	X		
L	Y		
M	Z ——…		

source

Shannon Coding (1940's)

i	pi	I,	$\sum_{n=0}^{i-1} p_n$	Previous value in binary	Codeword for a _j
1	0.36	2	0.0	0.0000	00
2	0.18	3	0.36	0.0101	010
3	0.18	3	0.54	0.1000	100
4	0.12	4	0.72	0.1011	1011
5	0.09	4	0.84	0.1101	1101
6	0.07	4	0.93	0.1110	1110

source

...and very relevant to current trends in Al....

Google DeepMind

Language Modeling Is Compression

Grégoire Delétang^{*1}, Anian Ruoss^{*1}, Paul-Ambroise Duquenne², Elliot Catt¹, Tim Genewein¹, Christopher Mattern¹, Jordi Grau-Moya¹, Li Kevin Wenliang¹, Matthew Aitchison¹, Laurent Orseau¹, Marcus Hutter¹ and Joel Veness¹ *Equal contributions, ¹Google DeepMind, ²Meta AI & Inria

🏪 Collibra

Burning Question | Similar vs Duplicate?

This is not a record-to-record match, but rather a **column-to-column statistical comparison**

PROS

- Computational time
- Spatial requirements
- Does not store raw customer data at rest (lower risk)

CONS

- Sample Accuracy | Exact row comparisons are not done
- Column comparisons are statistical comparisons, not exact matching
- We see a maximum number of rows

Bottom Line | We believe that this method improves at volume, i.e., with more tables & columns comes more accuracy & utility

Constraints Drive Solutions

Challenge | Our algorithm

- Must run on customer hardware
- Cannot phone home to an internal or 3rd-party API
- Must actually be able to determine similar/duplicate data

Solution | Let's go back to basics

- Decompose data into a series of statistical properties which minimize compression loss
- Build an algorithm which fits the needs of the end-user

<u>source</u>

Navigating the Keys to Data Science

Prolonged Value | Technology Solution

 $\operatorname{col}_1 \operatorname{col}_2 \operatorname{col}_3 \operatorname{col}_4 \operatorname{col}_5 \operatorname{col}_6 \operatorname{col}_7 \operatorname{col}_8$

Compressed Data Representation

Context surrounding the data

Copyright © 2024, Collibra. All rights reserved.

Prolonged Value | Technology Solution

Prolonged Value | Technology Solution

Expanding the Use-Case | What is RAG Anyways?

Concluding Remarks

- Sometimes, you need a sledgehammer. Other times, you need a scalpel
- Finding the right people to navigate the various avenues of...
 - Mathematics
 - Statistics
 - ML
 - Neural Networks
 - LLMs

...will drive pragmatic, performant solutions

• At Collibra, the AI team navigated those various bounds to deliver a data similarity solution which walks the tightrope of performance, compute, and scalability

Imagine.art 's interpretation of 'Data Council'

Thank you!

Copyright © 2024, Collibra. All rights reserved.