Continuous Data Pipeline for
Benchmarking & Data Set
Augmentation

Ivan Aguilar - 03.30.23 i: 3t teleskope

About me

Data Scientist at Teleskope.ai
Formerly MLE at Forge.ai
Baseball Fan

Hobby Potter

ivan@teleskope.ai

Blackbox

The Problem -

How do we make sure our model is doing what
we think it should be doing?

Why is this a problem?

® Confidential Customer Data
® Data Drift
® Training data can drift away from production environment data
® Blind spots in training
® Set it and forget it
® Shifting Priorities

® Model maintenance might become a lower priority

Usual Approaches

® Quality Training
® High quality data and the right architecture for your approach is essential
® Spot Check Results

® At arbitrary times check arbitrary amounts of data to get an idea of our model
performance

® User Feedback

® Once a model is live getting validation from users is essential

® Hope for the Best

Our Approach

How do we operationalize our quality control loop
and stay up to date with our performance?

Open Source Data API’s

® Find a list of APIs
® Curated lists on GitHub
® Sites you frequently use already
® Pick APIs that have data resembling your production data \C IS
® |In this example we look at conversation data @
® Determine copyright requirements and terms you need to follow

® Be a good internet user and make sure to not abuse these services

Celery

How to manage your tasks

® Task queue
® Good for distributing work across servers/nodes
® Create cron jobs
® Keep workload balanced
® \ery quick set up and support for many queue systems

® Can help you persist results to a database

Integrations

Connect to external APIs + internal model

® Fetching Data

® Use API to gather data and store it as tasks in the queue

® Control volume of data and frequency of calls within the task queue
® Running Classifications

® Pull tasks off of the queue and generate classifications

® Persist the results in a database for the annotation and review tasks

Task Overview

Gathering Data and Generating Classifications

. f'A
E —> @ ML Model
v

s
_

Results DB

Task Queue

API Data

Now What?

Once we have all of this data from these APIls and our
results, what can we use this for?

Using Results

Scale.Al / doccano

® Scale Al

® Pay as you go annotation shop with API

® Quick annotation of your data with customizable review and annotator
count

® doccano
® Open source annotation tool with API for internal annotation

® Bare bones app that lets you annotate your own documents

Annotations Overview
Gathering Annotations

Task Queue

~

A
del

Annotated docs

Results DB

Using Results

Scale.Al / doccano

® With the annotations have task compute performance metrics
® Accuracy
® Element Type Precision/Recall Splits
® Comparison of previous models

® Additional training data for future model improvements

® Essential for keeping track of where model needs to improve and what kind
of data is needed to improve coverage

Annotations Overview
Gathering Annotations

ML Model

v >

Task Queue ﬁ

A
! e #
APl Data ﬂ
Annotated ..
docs Performance by label (#match, #model, #ref) (precision, recall, Fl):
- B-NP: (12000, 12358, 12407) (0.9710, 0.9672, 0.9691)
L B-PP: (4707, 4872, 4805) (0.9661, 0.9796, 0.9728)
I-NP: (13984, 14484, 14359) (0.9655, 0.9739, 0.9697)
B-VP: (4466, 4662, 4653) (0.9580, 0.9598, 0.9589)
I-VP: (2549, 2698, 2643) (0.9448, 0.9644, 0.9545)
B-SBAR: (448, 498, 534) (0.8996, 0.8390, 0.8682)
0: (5939, 6113, 6174) (0.9715, 0.9619, 0.9667)
B-ADJP: (322, 403, 438) (0.7990, 0.7352, 0.7658)
Results DB B-ADVP: (711, 835, 866) (0.8515, 0.8210, 0.8360)
Weekly I-ADVP: (54, 82, 89) (0.6585, 0.6067, 0.6316)
I-ADJP: (110, 137, 167) (0.8029, 0.6587, 0.7237)
I-SBAR: (2, 15, 4) (0.1333, 0.5000, 0.2105)
I-PP: (34, 42, 48) (0.8095, 0.7083, 0.7556)
B-PRT: (80, 102, 106) (0.7843, 0.7547, 0.7692)
B-LST: (0, 0, 4) (0.0000, 0.0000, 0.0000)
B-INTJ: (1, 1, 2) (1.0000, 0.5000, 0.6667)

I-INTJT: (0, 0, Q) (***&*%, *kkkks wxkxkk)

B-CONJP: (5, 7, 9) (0.7143, 0.5556, 0.6250)
‘ ' I-CONJP: (10, 12, 13) (0.8333, 0.7692, 0.8000)
‘2 E ; : |' I-PRT: (0, 0, 0) (¥***%%, *xxxsx, *xxxxtx)
B-UCP: (0, 0, 0) (F***%%, *xxttt, kkkkkx)
I-UCP: (0, 0, 0) (k*kkwk, *xxxxx, xxxxxx)

Macro-average precision, recall, F1l: (0.639239, 0.602512, 0.611086)
Item accuracy: 45422 / 47321 (0.9599)

Instance accuracy: 1176 / 2011 (0.5848)

Elapsed time: 0.940000 [sec] (2140.4 [instance/sec])

|

Using Metrics And Reviewed Data

® Dashboard to have regularly updated metrics on performance
® Using the findings to target additional training data sources
® Targeted improvements

® Additional data to train with from your review set

Final Thoughts

® Usual Approaches are still important
® Customer feedback essential for fine tuning down the line
® |nitial training set and annotation guide are critical

® Visibility is Key

® Testing your model with continuous data provides insight which might be
otherwise hidden

® Detecting changes in the performance as leading indicator of maintenance
needs

® |nitial Success at Teleskope

® Reducing FP and improving precision/recall for traditionally noisy elements

Thanks!

Teleskope team and/or open source contributors and/or audience!

\ P agunt
kg @ ey Fgeoﬁl
x - = e

Some Links

® https://qgithub.com/public-apis/public-apis

® hitps://github.com/Kaagale/kaggle-api

® https://qithub.com/scaleapi/scaleapi-python-client

® https://qithub.com/doccano/doccano-client

® https://docs.celeryqg.dev/en/stable/qgetting-started/introduction.html

https://github.com/public-apis/public-apis
https://github.com/Kaggle/kaggle-api
https://github.com/scaleapi/scaleapi-python-client
https://github.com/doccano/doccano-client
https://docs.celeryq.dev/en/stable/getting-started/introduction.html

