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What is Whatnot?

e Livestream & async
e-commerce platform

e Collectibles and
community-driven markets

e Fastest growing
marketplace in the United
States.



https://www.businesswire.com/news/home/20220721005684/en/Whatnot-raises-260M-Series-D-co-led-by-DST-Global-and-CapitalG-to-expand-its-live-social-commerce-marketplace
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Our data stack

Events sent from Whatnot Systems

We write a lot — check out our blog

Data stack v3 — Snowflake, AWS, Dagster,
DBT, Segment, Kafka.

Started ~2 years ago when the company
was ~20 employees. Now we are ~400!
Today we'll be talking about data
contracts in our events system.

Over the past ~2 years, the number of

events we've sent per month has

increased over 100x, with an average e "’
MoM increase of ~30%
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https://medium.com/whatnot-engineering

The problems

e Major problems:
o  Wild west - inconsistent/huge
number of tables, fields, etc.
o  Starting from scratch each time we
wanted to make new events.
o  No ownership/accountability —
difficult and slow to fix issues.
e Whatnot is super data-driven — we saw
this as a big risk, and decided to invest

heavily to improve it.
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What we did

A complete overhaul of the events system

e Significant investment in the unification of our
events into one “data highway”.
e Conformed all existing events into Actor Action
Object model
e We accomplished this by building 4 components:
o Interface
o Schema
o Pipeline
o  Exposure
e Leaned heavily on code generation and PR review

process to allow us to move fast with high quality.
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Example: a user follows another user



Step 1: Declare schema

message UserFollowedUserEvent {

google.protobuf.Int64Value follower_id
google.protobuf.Int64Value followee_id

UserFollowedUserEvent user_followed_user = 17 [
(event_metadata).description.value = "Fires when a user starts following other user.",
(event_metadata).team_owner.value = "Foundations"

e




Step 2: Implement producer

def user_followed user(
*,
follower_id: int,
followee_id: int,

event = UserFollowedUserEvent()
set_nullable_value(event.follower_id, follower_id)

set_nullable_value(event.followee_id, followee_id)

user_followed user(follower id=user_id, followee_id=user_id_to follow)

Shown here: Protobuf Python API implementation



https://protobuf.dev/getting-started/pythontutorial/#protobuf-api

Step 3: Query

select date_trunc(day, event_timestamp) dt
, count(*)
6 BACKEND EVENTS from backend__events
— where 1=1

and event_name = 'user_followed_user'
and event_timestamp >= '2023-02-25"'

6 FRONTEND—EVENTS and event_timestamp < sysdate()::date
group by 1
order by 1 desc;

/\—/\__/

select *
from backend__events
where event_name = 'user_followed_user'

limit 10;
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Maintaining quality
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We catch errors at various stages of development:
e Before anything is implemented

o  Automated checks (using Python unit tests
and open source protobuf tooling) on the
schema to ensure backwards compatibility,
schema validity, naming conventions, etc..

e During development

o Easy path to write unit tests asserting

semantic quality of the data.
e After we've shipped

o In-flight monitoring using DataDog metrics
and alerting on schema issues.

o QA checks that run in the warehouse using

custom observability tooling.



Learnings

e Code generation is A Good Thing.
e The earlier the better.
e The more focus on the users of the system (event

producers and the data consumers), the better.



Thank you!



