
Zack Klein

Data Contracts in the
Modern Data Stack

● Livestream & async

e-commerce platform

● Collectibles and

community-driven markets

● Fastest growing
marketplace in the United
States.

What is Whatnot?

https://www.businesswire.com/news/home/20220721005684/en/Whatnot-raises-260M-Series-D-co-led-by-DST-Global-and-CapitalG-to-expand-its-live-social-commerce-marketplace
https://www.businesswire.com/news/home/20220721005684/en/Whatnot-raises-260M-Series-D-co-led-by-DST-Global-and-CapitalG-to-expand-its-live-social-commerce-marketplace
https://www.businesswire.com/news/home/20220721005684/en/Whatnot-raises-260M-Series-D-co-led-by-DST-Global-and-CapitalG-to-expand-its-live-social-commerce-marketplace

● We write a lot – check out our blog

● Data stack v3 – Snowflake, AWS, Dagster,

DBT, Segment, Kafka.

● Started ~2 years ago when the company

was ~20 employees. Now we are ~400!

● Today we’ll be talking about data

contracts in our events system.

● Over the past ~2 years, the number of

events we’ve sent per month has

increased over 100x, with an average

MoM increase of ~30%

Our data stack

https://medium.com/whatnot-engineering

● Major problems:

○ Wild west – inconsistent/huge

number of tables, fields, etc.

○ Starting from scratch each time we

wanted to make new events.

○ No ownership/accountability –

difficult and slow to fix issues.

● Whatnot is super data-driven – we saw

this as a big risk, and decided to invest

heavily to improve it.

The problems

What we did

● Significant investment in the unification of our

events into one “data highway”.

● Conformed all existing events into Actor Action

Object model

● We accomplished this by building 4 components:

○ Interface

○ Schema

○ Pipeline

○ Exposure

● Leaned heavily on code generation and PR review

process to allow us to move fast with high quality.

A complete overhaul of the events system

Example: a user follows another user

Step 1: Declare schema

Step 2: Implement producer

Shown here: Protobuf Python API implementation

https://protobuf.dev/getting-started/pythontutorial/#protobuf-api

Step 3: Query

Maintaining quality
We catch errors at various stages of development:
● Before anything is implemented

○ Automated checks (using Python unit tests

and open source protobuf tooling) on the

schema to ensure backwards compatibility,

schema validity, naming conventions, etc..

● During development

○ Easy path to write unit tests asserting

semantic quality of the data.

● After we’ve shipped

○ In-flight monitoring using DataDog metrics

and alerting on schema issues.

○ QA checks that run in the warehouse using

custom observability tooling.

Learnings

● Code generation is A Good Thing.

● The earlier the better.

● The more focus on the users of the system (event

producers and the data consumers), the better.

Thank you!

