Data Contracts in the
Modern Data Stack

Zack Klein QP whatnot

What is Whatnot?

e Livestream & async
e-commerce platform

e Collectibles and
community-driven markets

e Fastest growing
marketplace in the United
States.

https://www.businesswire.com/news/home/20220721005684/en/Whatnot-raises-260M-Series-D-co-led-by-DST-Global-and-CapitalG-to-expand-its-live-social-commerce-marketplace
https://www.businesswire.com/news/home/20220721005684/en/Whatnot-raises-260M-Series-D-co-led-by-DST-Global-and-CapitalG-to-expand-its-live-social-commerce-marketplace
https://www.businesswire.com/news/home/20220721005684/en/Whatnot-raises-260M-Series-D-co-led-by-DST-Global-and-CapitalG-to-expand-its-live-social-commerce-marketplace

Our data stack

Events sent from Whatnot Systems

We write a lot — check out our blog

Data stack v3 — Snowflake, AWS, Dagster,
DBT, Segment, Kafka.

Started ~2 years ago when the company
was ~20 employees. Now we are ~400!
Today we'll be talking about data
contracts in our events system.

Over the past ~2 years, the number of

events we've sent per month has

increased over 100x, with an average e "’
MoM increase of ~30%

2022-03

Month

2023-01

https://medium.com/whatnot-engineering

The problems

e Major problems:
o Wild west - inconsistent/huge
number of tables, fields, etc.
o Starting from scratch each time we
wanted to make new events.
o No ownership/accountability —
difficult and slow to fix issues.
e Whatnot is super data-driven — we saw
this as a big risk, and decided to invest

heavily to improve it.

00000D0D0D0D00D00O0O0DODOCOOOO

ACTIVITIES_TAB_TAP
APPLICATION_BACKGROUNDED
APPLICATION_INSTALLED
APPLICATION_OPENED
APPLICATION_UPDATED

APP_OPEN

APP_STORE_UPSELL_SHOWN
CALENDAR_ADD_TAP
CALENDAR_PERMISSION_DENIED
CARET_TAP

CATEGORY_EXPAND_TAP
CATEGORY_FOLLOW_TAP

CATEGORY_TAP
CATEGORY_UNFOLLOW_ALERT_CANCEL_TAP
CATEGORY_UNFOLLOW_ALERT_IMPRESSION
CATEGORY_UNFOLLOW_GOT_IT_TAP
CHAT_TAGGING_SETTING_TAP
CHAT_TAGGING_SET_SETTING_TAP
CLIENT_SYSTEM_MEASUREMENT_EVENT

CLIP_SHARE_TAP

0000O0D0D0ODO0DO0DO0DODODOOODOOOODO

DROPS_TAB_TAP
DROP_SHARE_TAP
EXPLORE_FEED_CLOSED
EXPLORE_FEED_OPENED
GO_LIVE_TAP
GRADING_DESCRIPTION_ADDED
GRADING_DESCRIPTION_UPDATED
GRADING_SUBMITTED
GRADING_TOGGLE
HOME_TAB_CATEGORIES_TAP
HOME_TAB_COUNTRY_TAP
HOME_TAB_FOR_YOU_TAP
HOME_TAB_TAP

IDENTIFIES

IMPRESSION
INSTALL_ATTRIBUTED
INVITE_FROM_CONTACTS_TAP
LIFECYCLE_V2

LISTING_SAVE_TAP

00000D0DO0D0ODO0ODO0ODOCOODOOOOGO

LIVE_ITEM_LIST_AUCTION_TAP

LIVE_ITEM_LIST_AVAILABLE_TAP

LIVE_ITEM_LIST_BUY_NOW_CONFIRM_TAP

LIVE_ITEM_LIST_BUY_NOW_TAP

LIVE_ITEM_LIST_CANCEL_TAP

LIVE_ITEM_LIST_GIVEAWAY_TAP

LIVE_ITEM_LIST_PURCHASED_TAP

LIVE_ITEM_LIST_SEARCH_TAP

LIVE_ITEM_LIST_SOLD_TAP

LIVE_ITEM_LIST_TAP

LIVE_PAYMENT_ADDRESS_CANCEL_TAP

LIVE_PAYMENT_ADDRESS_SAVE_TAP

LIVE_PAYMENT_ADDRESS_TAP

LIVE_PAYMENT_PAYMENT_SELECT_TAP

LIVE_PAYMENT_TAP

LIVE_PINNED_BUY_NOW_CONFIRM_TAP

LIVE_PINNED_BUY_NOW_TAP

LIVE_QUICK_ADD_CATEGORY_TAP

What we did

A complete overhaul of the events system

e Significant investment in the unification of our
events into one “data highway”.
e Conformed all existing events into Actor Action
Object model
e We accomplished this by building 4 components:
o Interface
o Schema
o Pipeline
o Exposure
e Leaned heavily on code generation and PR review

process to allow us to move fast with high quality.

Backend

Frontend

Event Producers

Main E
Backend

-—

Live
Service

Android

-—

Web

(Codegen Interface]

t

Unit
Tests

Event Consumers

(%) CONFLUENT 3

o
" snonfiake

Ingestion pipeline

segment

Segment
Debugger

Quality
Monitoring

(Codegen Interface]
Schema Regustry ’

{ protobu’y O

Example: a user follows another user

Step 1: Declare schema

message UserFollowedUserEvent {

google.protobuf.Int64Value follower_id
google.protobuf.Int64Value followee_id

UserFollowedUserEvent user_followed_user = 17 [
(event_metadata).description.value = "Fires when a user starts following other user.",
(event_metadata).team_owner.value = "Foundations"

e

Step 2: Implement producer

def user_followed user(
*,
follower_id: int,
followee_id: int,

event = UserFollowedUserEvent()
set_nullable_value(event.follower_id, follower_id)

set_nullable_value(event.followee_id, followee_id)

user_followed user(follower id=user_id, followee_id=user_id_to follow)

Shown here: Protobuf Python API implementation

https://protobuf.dev/getting-started/pythontutorial/#protobuf-api

Step 3: Query

select date_trunc(day, event_timestamp) dt
, count(*)
6 BACKEND EVENTS from backend__events
— where 1=1

and event_name = 'user_followed_user'
and event_timestamp >= '2023-02-25"'

6 FRONTEND—EVENTS and event_timestamp < sysdate()::date
group by 1
order by 1 desc;

/\—/__/

select *
from backend__events
where event_name = 'user_followed_user'

limit 10;

02-25 02-27 03-01 03-03 03-05

Maintaining quality

A\

\\

)N

We catch errors at various stages of development:
e Before anything is implemented

o Automated checks (using Python unit tests
and open source protobuf tooling) on the
schema to ensure backwards compatibility,
schema validity, naming conventions, etc..

e During development

o Easy path to write unit tests asserting

semantic quality of the data.
e After we've shipped

o In-flight monitoring using DataDog metrics
and alerting on schema issues.

o QA checks that run in the warehouse using

custom observability tooling.

Learnings

e Code generation is A Good Thing.
e The earlier the better.
e The more focus on the users of the system (event

producers and the data consumers), the better.

Thank you!

