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Session Goals

Highlight value of unit testing
data science code

Cover key concepts Empower you to write 
production-ready code
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Case Study: WarnerMedia video archival

Computer Vision
workstream

Metadata extraction
(with OCR)

Audio
workstream

Consolidation

Raw Footage

Timestamps
Report

aka.ms/cse-warnermedia-action-cut 

https://aka.ms/cse-warnermedia-action-cut


aka.ms/cse-warnermedia-action-cut 

How can we quickly pinpoint errors?

Are we confident in the code we are merging in?

Do we get consistent, replicable results?

https://aka.ms/cse-warnermedia-action-cut


What is unit testing?

Verifies that each “unit” of code 
works as expected

Helpful with

• Collaborative coding

• Reproducibility

• Reducing debugging time
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When are unit tests written?

Alternate Approach
Test-driven development (TDD), where tests are developed alongside code from the start

Exploratory 
Data Analysis

POC 
Development

MVP 
Development

Moving to 
Production

Unit testing optional Unit testing optional Unit testing encouraged Unit testing required



Unit Testing General concepts and specific techniques
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General Concepts

Clean code The 3 A’s Sample Data PR builds
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Clean Code

Organized methods and classes, clear naming, docstrings and type hinting

Docstring



The 3 A’s

• Arrange -> Act -> Assert

• Arrange: Prepare arguments to pass 
into the function being tested

• Act: Call the function being tested

• Assert: Compare actual vs expected



Sample Data
Representative input and edge cases

Why?
• Focus on the tested method
• Minimize execution time
• Maintain small repo size

How?
• Create samples from open-source data

(with appropriate licensing)
• Create synthetic data



Example: Medical Image Redaction

aka.ms/presidio-dicom-blog

https://aka.ms/presidio-dicom-blog


Selected images from open-source dataset for the evaluation of medical 
image de-identification and unit testing

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=80969777 

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=80969777


PR Builds
Validate that tests pass before 
merging changes via Pull Request

How it works

• Build validation policy set in repo

• Tests are run automatically upon 
PR update

• PR is blocked if tests fail
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Writing Techniques

Fixtures Parameterization Exceptions Mocking



Fixtures

• Pass the same object into 
multiple tests

• Reduce redundancy

• Scope can be modified



Parameterization

Test edge cases & multiple sets of arguments, reduce redundancy in test definition

Sets of argument values

Arguments being parameterized



Exceptions

Verify exceptions are 
raised correctly in certain 
conditions
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Primary method (method we want to test)

Intermediary methods
(other methods called inside)



Mocking

• Focus on testing primary method

• Predefine intermediary return values 
(mock data)

• Check mocker patches are called
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Mocking

Effective code when we mock called methodsOriginal code

pd.DataFrame(
)

pd.DataFrame(
)

Return values specified 
in the mock calls



Imported library calls

Yes, do mock:

Custom methods with tests

Calls to external services

No, do not mock:

Custom methods without tests

Basic necessary operations
(e.g., pandas.read_csv(), np.as_array())

pd.DataFrame(
)

pd.DataFrame(
)

Return values specified 
in the mock calls



Conclusion Recap and Q&A



Value of unit testing DS code

Production

One essential part of writing 
production-level solutions

Quality

Promotes quality code and 
reduces downstream headache

Collaboration

Improve collaborative 
development experience

Unit testing is not just for software engineers. It’s for data scientists, too!



Covered concepts

Clean code The 3 A’s Sample Data PR builds

Fixtures Parameterization Exceptions Mocking
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Resources

Test practices for data science applications 

using Python

https://medium.com/data-science-at-microsoft/tes

ting-practices-for-data-science-applications-using

-python-71c271cd8b5e 

02

Code-with engineering playbook

https://microsoft.github.io/code-with-engineering-

playbook/machine-learning/ml-testing/ 

01

Pytest documentation

https://docs.pytest.org/en/7.2.x/ 
05

Example repository used in this deck

https://github.com/niwilso/ds-unit-testing 
03

Testing Best Practices for ML Libraries

https://towardsdatascience.com/testing-best-pr

actices-for-machine-learning-libraries-41b7d036

2c95 

06

Unit testing best practices

https://brightsec.com/blog/unit-testing-best-pra

ctices/  

04

https://medium.com/data-science-at-microsoft/testing-practices-for-data-science-applications-using-python-71c271cd8b5e
https://medium.com/data-science-at-microsoft/testing-practices-for-data-science-applications-using-python-71c271cd8b5e
https://medium.com/data-science-at-microsoft/testing-practices-for-data-science-applications-using-python-71c271cd8b5e
https://microsoft.github.io/code-with-engineering-playbook/machine-learning/ml-testing/
https://microsoft.github.io/code-with-engineering-playbook/machine-learning/ml-testing/
https://docs.pytest.org/en/7.2.x/
https://github.com/niwilso/ds-unit-testing
https://towardsdatascience.com/testing-best-practices-for-machine-learning-libraries-41b7d0362c95
https://towardsdatascience.com/testing-best-practices-for-machine-learning-libraries-41b7d0362c95
https://towardsdatascience.com/testing-best-practices-for-machine-learning-libraries-41b7d0362c95
https://brightsec.com/blog/unit-testing-best-practices/
https://brightsec.com/blog/unit-testing-best-practices/


Q&A

/nile-wilson

Contact Info:

https://www.linkedin.com/in/nile-wilson/


Appendix



What to Test

• Unit tests exist to ensure that the 
functions we develop work as expected

• Calls to external services should not be 
tested in unit tests

• 100% code coverage is not usually 
required for a repository

Library to check Pytest coverage:
https://pypi.org/project/pytest-cov/ 

https://pypi.org/project/pytest-cov/
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Different types of tests

· Integration test: Ensure full solution (which uses the units) works as 
expected given a toy dataset

· Smoke tests: Ensure all critical aspects of the solution work as 
expected given a toy dataset
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Mock data

· When mocking calls, we 
sometimes need to create “mock 
data” to use as the return value

· Can be as simple or as complex 
as needed

· Can be defined in the test script 
(e.g., parameterized input, fixture, 
or in # Arrange) or imported from 
another file


