
Writing production-level data
science code:

The value of unit testing

Nile Wilson, PhD
Senior Data Scientist, Microsoft Industry Solutions Engineering

Nile Wilson
Sr Data Scientist, Microsoft Industry Solutions Engineering

• PhD in bioengineering,
focus on Brain-Computer Interfaces
(University of Washington, Seattle, 2019)

• Over 3.5 years of experience developing
production-level data science solutions
with enterprise customers

/nile-wilson

https://www.linkedin.com/in/nile-wilson/

ELT
layout

Session Goals

Highlight value of unit testing
data science code

Cover key concepts Empower you to write
production-ready code

ELT
layout

Case Study: WarnerMedia video archival

Computer Vision
workstream

Metadata extraction
(with OCR)

Audio
workstream

Consolidation

Raw Footage

Timestamps
Report

aka.ms/cse-warnermedia-action-cut

https://aka.ms/cse-warnermedia-action-cut

aka.ms/cse-warnermedia-action-cut

How can we quickly pinpoint errors?

Are we confident in the code we are merging in?

Do we get consistent, replicable results?

https://aka.ms/cse-warnermedia-action-cut

What is unit testing?

Verifies that each “unit” of code
works as expected

Helpful with

• Collaborative coding

• Reproducibility

• Reducing debugging time

ELT
layout

When are unit tests written?

Alternate Approach
Test-driven development (TDD), where tests are developed alongside code from the start

Exploratory
Data Analysis

POC
Development

MVP
Development

Moving to
Production

Unit testing optional Unit testing optional Unit testing encouraged Unit testing required

Unit Testing General concepts and specific techniques

ELT
layout

General Concepts

Clean code The 3 A’s Sample Data PR builds

ELT
layout

Clean Code

Organized methods and classes, clear naming, docstrings and type hinting

Docstring

The 3 A’s

• Arrange -> Act -> Assert

• Arrange: Prepare arguments to pass
into the function being tested

• Act: Call the function being tested

• Assert: Compare actual vs expected

Sample Data
Representative input and edge cases

Why?
• Focus on the tested method
• Minimize execution time
• Maintain small repo size

How?
• Create samples from open-source data

(with appropriate licensing)
• Create synthetic data

Example: Medical Image Redaction

aka.ms/presidio-dicom-blog

https://aka.ms/presidio-dicom-blog

Selected images from open-source dataset for the evaluation of medical
image de-identification and unit testing

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=80969777

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=80969777

PR Builds
Validate that tests pass before
merging changes via Pull Request

How it works

• Build validation policy set in repo

• Tests are run automatically upon
PR update

• PR is blocked if tests fail

ELT
layout

Writing Techniques

Fixtures Parameterization Exceptions Mocking

Fixtures

• Pass the same object into
multiple tests

• Reduce redundancy

• Scope can be modified

Parameterization

Test edge cases & multiple sets of arguments, reduce redundancy in test definition

Sets of argument values

Arguments being parameterized

Exceptions

Verify exceptions are
raised correctly in certain
conditions

ELT
layout

Primary method (method we want to test)

Intermediary methods
(other methods called inside)

Mocking

• Focus on testing primary method

• Predefine intermediary return values
(mock data)

• Check mocker patches are called

ELT
layout

Mocking

Effective code when we mock called methodsOriginal code

pd.DataFrame(
)

pd.DataFrame(
)

Return values specified
in the mock calls

Imported library calls

Yes, do mock:

Custom methods with tests

Calls to external services

No, do not mock:

Custom methods without tests

Basic necessary operations
(e.g., pandas.read_csv(), np.as_array())

pd.DataFrame(
)

pd.DataFrame(
)

Return values specified
in the mock calls

Conclusion Recap and Q&A

Value of unit testing DS code

Production

One essential part of writing
production-level solutions

Quality

Promotes quality code and
reduces downstream headache

Collaboration

Improve collaborative
development experience

Unit testing is not just for software engineers. It’s for data scientists, too!

Covered concepts

Clean code The 3 A’s Sample Data PR builds

Fixtures Parameterization Exceptions Mocking

ELT
layout

Resources

Test practices for data science applications

using Python

https://medium.com/data-science-at-microsoft/tes

ting-practices-for-data-science-applications-using

-python-71c271cd8b5e

02

Code-with engineering playbook

https://microsoft.github.io/code-with-engineering-

playbook/machine-learning/ml-testing/

01

Pytest documentation

https://docs.pytest.org/en/7.2.x/
05

Example repository used in this deck

https://github.com/niwilso/ds-unit-testing
03

Testing Best Practices for ML Libraries

https://towardsdatascience.com/testing-best-pr

actices-for-machine-learning-libraries-41b7d036

2c95

06

Unit testing best practices

https://brightsec.com/blog/unit-testing-best-pra

ctices/

04

https://medium.com/data-science-at-microsoft/testing-practices-for-data-science-applications-using-python-71c271cd8b5e
https://medium.com/data-science-at-microsoft/testing-practices-for-data-science-applications-using-python-71c271cd8b5e
https://medium.com/data-science-at-microsoft/testing-practices-for-data-science-applications-using-python-71c271cd8b5e
https://microsoft.github.io/code-with-engineering-playbook/machine-learning/ml-testing/
https://microsoft.github.io/code-with-engineering-playbook/machine-learning/ml-testing/
https://docs.pytest.org/en/7.2.x/
https://github.com/niwilso/ds-unit-testing
https://towardsdatascience.com/testing-best-practices-for-machine-learning-libraries-41b7d0362c95
https://towardsdatascience.com/testing-best-practices-for-machine-learning-libraries-41b7d0362c95
https://towardsdatascience.com/testing-best-practices-for-machine-learning-libraries-41b7d0362c95
https://brightsec.com/blog/unit-testing-best-practices/
https://brightsec.com/blog/unit-testing-best-practices/

Q&A

/nile-wilson

Contact Info:

https://www.linkedin.com/in/nile-wilson/

Appendix

What to Test

• Unit tests exist to ensure that the
functions we develop work as expected

• Calls to external services should not be
tested in unit tests

• 100% code coverage is not usually
required for a repository

Library to check Pytest coverage:
https://pypi.org/project/pytest-cov/

https://pypi.org/project/pytest-cov/

ELT
layout

Different types of tests

· Integration test: Ensure full solution (which uses the units) works as
expected given a toy dataset

· Smoke tests: Ensure all critical aspects of the solution work as
expected given a toy dataset

ELT
layout

Mock data

· When mocking calls, we
sometimes need to create “mock
data” to use as the return value

· Can be as simple or as complex
as needed

· Can be defined in the test script
(e.g., parameterized input, fixture,
or in # Arrange) or imported from
another file

