
Publishing Jupyter Notebooks
with Quarto

J.J. Allaire — Data Council 2023

“We argue that even though Jupyter
helps users perform complex, technical
work, Jupyter itself solves problems that
are fundamentally human in nature.
Namely, Jupyter helps humans to think
and tell stories with code and data. We
illustrate this by describing three
dimensions of Jupyter: 1) interactive
computing; 2) computational narratives;
and 3) the idea that Jupyter is more than
so�ware.”

Brian Granger and Fernando Perez
Computing in Science & Engineering
March-April 2021, pp. 7-14, vol. 23
DOI Bookmark: 10.1109/MCSE.2021.3059263

https://doi.ieeecomputersociety.org/10.1109/MCSE.2021.3059263

Telling the Whole Story
Sources, assumptions, and constraints
are o�en as important to understand as
our metrics and visualizations

The insights we glean from data are
o�en contextual and have important
qualifications

Narrative becomes a crucial part of
communicating about data

We need tools for storytelling!

https://www.edwardtu�e.com/tu�e/powerpoint

https://www.edwardtufte.com/tufte/powerpoint

Some History

1978 Donald Knuth

1984 Donald Knuth

1988 Stephen Wolfram

2001 Fernando Perez

2003 Carsten Dominik

2004 John Gruber

2005 William Stein

2006 John MacFarlane

2009 Tom Preston-Werner

2011 Fernando Perez

2012 Yihui Xie

2014 Fernando Perez

TeX

Literate Programming

Mathematica Notebooks

IPython

Emacs org-mode

Markdown

Sage Notebook

Pandoc

GitHub Flavored Markdown

iPython Notebook

knitr

Project Jupyter

https://en.wikipedia.org/wiki/TeX
https://en.wikipedia.org/wiki/Literate_programming
https://www.wolfram.com/mathematica/scrapbook/
https://ipython.org/
https://en.wikipedia.org/wiki/Org-mode
https://en.wikipedia.org/wiki/Markdown
https://doc.sagemath.org/html/en/reference/index.html
https://en.wikipedia.org/wiki/Pandoc
https://github.github.com/gfm/
https://ipython.org/ipython-doc/3/notebook/
http://yihui.name/knitr/
https://juypter.org/

Next Up: Quarto

J.J. Allaire—Founder/CEO of RStudio (now). Worked on RStudio IDE, R
Markdown, the R interface to Python (reticulate), and the R interfaces to Spark,
Keras, and TensorFlow.

Spent the last few years focused on a new project (), an open-source
scientific and technical publishing system for creating computational
narratives.

10 years of experience with and (a similar system that
was R-specific) convinced us that the core ideas were sound

Quarto is a ground-up re-write that is multi-language and multi-engine

Posit

Quarto

Pandoc R Markdown

https://posit.co/
https://quarto.org/
https://pandoc.org/
https://rmarkdown.rstudio.com/

What is Quarto?

Computations: 1

Markdown: w/ many enhancements

Output: Documents, presentations, websites, books, blogs

Jupyter

Pandoc

1. and also supported.Knitr ObservableJS

https://jupyter.org/
https://pandoc.org/
https://yihui.name/knitr/
https://observablehq.com/@observablehq/observable-javascript

Core Ideas

Core Ideas

• Computational Narratives Telling stories w/ code and data

Core Ideas

• Computational Narratives Telling stories w/ code and data

• Technical Communications Code, math, diagrams, etc.

Core Ideas

• Computational Narratives Telling stories w/ code and data

• Technical Communications Code, math, diagrams, etc.

• Semantic Authoring Write once, publish everywhere

Core Ideas

• Computational Narratives Telling stories w/ code and data

• Technical Communications Code, math, diagrams, etc.

• Semantic Authoring Write once, publish everywhere

• Many Uses of Notebooks The coin of the realm

Core Ideas

• Computational Narratives Telling stories w/ code and data

• Technical Communications Code, math, diagrams, etc.

• Semantic Authoring Write once, publish everywhere

• Many Uses of Notebooks The coin of the realm

• Under the Hood How to hack and extend the system

Computational Narratives

Tools for Computational Narratives
Core requirements:

Render executable content from Jupyter

Include code, math, diagrams, citations, crossrefs, etc.

Semantic authoring with markdown

Extensible output formats

Tools for Computational Narratives
Core requirements:

Render executable content from Jupyter

Include code, math, diagrams, citations, crossrefs, etc.

Semantic authoring with markdown

Extensible output formats

Variety of tools available: , , , nbconvert Jupyter Book Myst-JS Quarto

https://nbconvert.readthedocs.io/en/latest/
https://jupyterbook.org/en/stable/intro.html
https://myst-tools.org/docs/mystjs
https://quarto.org/

Tools for Computational Narratives
Core requirements:

Render executable content from Jupyter

Include code, math, diagrams, citations, crossrefs, etc.

Semantic authoring with markdown

Extensible output formats

Variety of tools available: , , , nbconvert Jupyter Book Myst-JS Quarto

Will talk about tools for computational narratives through the lens of Quarto, but
these tools share many features and are all worth evaluating.

https://nbconvert.readthedocs.io/en/latest/
https://jupyterbook.org/en/stable/intro.html
https://myst-tools.org/docs/mystjs
https://quarto.org/

How Does Quarto Work?

Quarto renders notebooks into various output formats:

$ quarto render notebook.ipynb

How Does Quarto Work?

Quarto renders notebooks into various output formats:

$ quarto render notebook.ipynb

Start with a Jupyter notebook (executed or not)

How Does Quarto Work?

Quarto renders notebooks into various output formats:

$ quarto render notebook.ipynb

Start with a Jupyter notebook (executed or not)

Add document and cell level output options using YAML

How Does Quarto Work?

Quarto renders notebooks into various output formats:

$ quarto render notebook.ipynb

Start with a Jupyter notebook (executed or not)

Add document and cell level output options using YAML

quarto render to the desired output format

Rendering with Pandoc

Universal document converter

Rendering with Pandoc

Universal document converter

Created in 2006 by John MacFarlane (who is also the author of the
CommonMark spec and CommonMark reference implementations in
JavaScript, C, and Haskell)

Rendering with Pandoc

Universal document converter

Created in 2006 by John MacFarlane (who is also the author of the
CommonMark spec and CommonMark reference implementations in
JavaScript, C, and Haskell)

CommonMark + many extensions for technical writing

Rendering with Pandoc

Universal document converter

Created in 2006 by John MacFarlane (who is also the author of the
CommonMark spec and CommonMark reference implementations in
JavaScript, C, and Haskell)

CommonMark + many extensions for technical writing

Supports dozens of output formats (just about any format you can name)

Rendering with Pandoc

Universal document converter

Created in 2006 by John MacFarlane (who is also the author of the
CommonMark spec and CommonMark reference implementations in
JavaScript, C, and Haskell)

CommonMark + many extensions for technical writing

Supports dozens of output formats (just about any format you can name)

Highly extensible (custom readers, custom writers, AST filters)

Render Notebook to HTML (default options)

Render Notebook to HTML (default options)

Render Notebook to HTML (document level options)

Render Notebook to HTML (document level options)

Render Notebook to HTML (document and cell level options)

Render Notebook to HTML (document and cell level options)

Render Notebook to HTML (document and cell level options)

Production Quality Output

You have no doubt seen this sort of conversion before (e.g. nbconvert)

Quarto goes well beyond simple conversion—our goal is to help you produce
professional, production-quality output!

Office Documents

Technical Manuscripts

Websites / Blogs

Multi-Format Books

Presentations

And beyond…

Render Notebook to MS Word

Render Notebook to MS Word

Render Notebook to PDF

Render Notebook to PDF

Render Notebook to Revealjs

Render Notebook to Revealjs

Render Notebook to Revealjs (show code with line by line highlighting)

Render Notebook to Revealjs (show code with line by line highlighting)

Render Notebook to Revealjs (show code with line by line highlighting)

Quarto Projects
_quarto.yml

project:1
 type: website2

3
website:4
 title: "Acme"5
 navbar:6
 left:7
 - href: index.qmd8
 text: Home9
 - about.qmd10

11
format:12
 html:13
 theme: cosmo14
 css: styles.css15

So far our examples have been
single documents or presentations

Quarto has a project system that
enables you to produce collections
of documents in various formats
(websites, blogs, books, etc.)

_quarto.yml config file defines
the behavior of projects

Quarto Projects
_quarto.yml

project:1
 type: website2

3
website:4
 title: "Acme"5
 navbar:6
 left:7
 - href: index.qmd8
 text: Home9
 - about.qmd10

11
format:12
 html:13
 theme: cosmo14
 css: styles.css15

project:1
 type: website2

3
website:4
 title: "Acme"5
 navbar:6
 left:7
 - href: index.qmd8
 text: Home9
 - about.qmd10

11
format:12
 html:13
 theme: cosmo14
 css: styles.css15

So far our examples have been
single documents or presentations

Quarto has a project system that
enables you to produce collections
of documents in various formats
(websites, blogs, books, etc.)

_quarto.yml config file defines
the behavior of projects

Quarto Projects
_quarto.yml

project:1
 type: website2

3
website:4
 title: "Acme"5
 navbar:6
 left:7
 - href: index.qmd8
 text: Home9
 - about.qmd10

11
format:12
 html:13
 theme: cosmo14
 css: styles.css15

project:1
 type: website2

3
website:4
 title: "Acme"5
 navbar:6
 left:7
 - href: index.qmd8
 text: Home9
 - about.qmd10

11
format:12
 html:13
 theme: cosmo14
 css: styles.css15

project:1
 type: website2

3
website:4
 title: "Acme"5
 navbar:6
 left:7
 - href: index.qmd8
 text: Home9
 - about.qmd10

11
format:12
 html:13
 theme: cosmo14
 css: styles.css15

So far our examples have been
single documents or presentations

Quarto has a project system that
enables you to produce collections
of documents in various formats
(websites, blogs, books, etc.)

_quarto.yml config file defines
the behavior of projects

Quarto Projects
_quarto.yml

project:1
 type: website2

3
website:4
 title: "Acme"5
 navbar:6
 left:7
 - href: index.qmd8
 text: Home9
 - about.qmd10

11
format:12
 html:13
 theme: cosmo14
 css: styles.css15

project:1
 type: website2

3
website:4
 title: "Acme"5
 navbar:6
 left:7
 - href: index.qmd8
 text: Home9
 - about.qmd10

11
format:12
 html:13
 theme: cosmo14
 css: styles.css15

project:1
 type: website2

3
website:4
 title: "Acme"5
 navbar:6
 left:7
 - href: index.qmd8
 text: Home9
 - about.qmd10

11
format:12
 html:13
 theme: cosmo14
 css: styles.css15

project:1
 type: website2

3
website:4
 title: "Acme"5
 navbar:6
 left:7
 - href: index.qmd8
 text: Home9
 - about.qmd10

11
format:12
 html:13
 theme: cosmo14
 css: styles.css15

So far our examples have been
single documents or presentations

Quarto has a project system that
enables you to produce collections
of documents in various formats
(websites, blogs, books, etc.)

_quarto.yml config file defines
the behavior of projects

Website: Fastai Course

_quarto.yml

project:1
 type: website2
 resources:3
 - "www/*"4

5
format:6
 html:7
 theme: cosmo8
 css: styles.css9
 toc: true10

11
website:12
 title: "Practical Deep Learning for Coders"13
 description: "Learn Deep Learning with fastai and PyTorch14
 twitter-card: true15
 open-graph: true16
 reader-mode: true17
 page-navigation: true18
 repo-branch: master19
 repo-url: https://github.com/fastai/course2220
 repo-actions: [issue]21
 navbar:22
 search: true23
 right:24
 - icon: github25
 href: https://github.com/fastai/course2226
 sidebar:27
 style: "floating"28

29
metadata-files:30
 - sidebar.yml31

Website: Fastai Course

_quarto.yml

project:1
 type: website2
 resources:3
 - "www/*"4

5
format:6
 html:7
 theme: cosmo8
 css: styles.css9
 toc: true10

11
website:12
 title: "Practical Deep Learning for Coders"13
 description: "Learn Deep Learning with fastai and PyTorch14
 twitter-card: true15
 open-graph: true16
 reader-mode: true17
 page-navigation: true18
 repo-branch: master19
 repo-url: https://github.com/fastai/course2220
 repo-actions: [issue]21
 navbar:22
 search: true23
 right:24
 - icon: github25
 href: https://github.com/fastai/course2226
 sidebar:27
 style: "floating"28

29
metadata-files:30
 - sidebar.yml31

Blog: Aayush Agrawal

_quarto.yml

project:1
 type: website2

3
website:4
 title: "Aayush Agrawal"5
 description: "Aayush's personal website"6
 repo-url: https://github.com/aayushmnit/aayushmnit.github7
 repo-actions: [edit, issue]8
 repo-branch: main9
 open-graph: true10
 google-analytics: "G-7QN8N70N41"11
 twitter-card:12
 creator: "@aayushmnit"13
 card-style: summary_large_image14
 navbar:15
 collapse-below: lg16
 left:17
 - icon: newspaper18
 href: blog.qmd19
 text: Blog20
 right:21
 - icon: github22
 href: https://github.com/aayushmnit/23
 - icon: rss24
 href: blog.xml25

26
format:27
 html:28
 theme: sandstone29
 mainfont: Roboto30
 css: styles.css31

Blog: Aayush Agrawal

_quarto.yml

project:1
 type: website2

3
website:4
 title: "Aayush Agrawal"5
 description: "Aayush's personal website"6
 repo-url: https://github.com/aayushmnit/aayushmnit.github7
 repo-actions: [edit, issue]8
 repo-branch: main9
 open-graph: true10
 google-analytics: "G-7QN8N70N41"11
 twitter-card:12
 creator: "@aayushmnit"13
 card-style: summary_large_image14
 navbar:15
 collapse-below: lg16
 left:17
 - icon: newspaper18
 href: blog.qmd19
 text: Blog20
 right:21
 - icon: github22
 href: https://github.com/aayushmnit/23
 - icon: rss24
 href: blog.xml25

26
format:27
 html:28
 theme: sandstone29
 mainfont: Roboto30
 css: styles.css31

Book: Geocomputation with Python

_quarto.yml

project:1
 type: book2

3
book:4
 title: "Geocomputation with Python"5
 author: | 6
 Michael Dorman, Anita Graser, 7
 Jakub Nowosad, Robin Lovelace8
 description: | 9
 An introductory resource for working with geographic10
 data in Python11
 cover-image: https://geocompx.org/static/img/book_cover_p12
 site-url: https://py.geocompx.org13
 repo-url: https://github.com/geocompx/geocompy/14
 repo-actions: [edit]15
 sharing: [twitter, facebook, linkedin]16
 chapters:17
 - index.qmd18
 - preface.qmd19
 - 02-spatial-data.qmd20
 - 03-attribute-operations.qmd21
 - 04-spatial-operations.qmd22
 - 05-geometry-operations.qmd23
 - 06-raster-vector.qmd24
 - 07-reproj.qmd25

26
format:27
 html: 28
 theme: flatly29
 template-partials: [toc.html,title-block.html]30
 code-overflow: wrap 31

Book: Geocomputation with Python

_quarto.yml

project:1
 type: book2

3
book:4
 title: "Geocomputation with Python"5
 author: | 6
 Michael Dorman, Anita Graser, 7
 Jakub Nowosad, Robin Lovelace8
 description: | 9
 An introductory resource for working with geographic10
 data in Python11
 cover-image: https://geocompx.org/static/img/book_cover_p12
 site-url: https://py.geocompx.org13
 repo-url: https://github.com/geocompx/geocompy/14
 repo-actions: [edit]15
 sharing: [twitter, facebook, linkedin]16
 chapters:17
 - index.qmd18
 - preface.qmd19
 - 02-spatial-data.qmd20
 - 03-attribute-operations.qmd21
 - 04-spatial-operations.qmd22
 - 05-geometry-operations.qmd23
 - 06-raster-vector.qmd24
 - 07-reproj.qmd25

26
format:27
 html: 28
 theme: flatly29
 template-partials: [toc.html,title-block.html]30
 code-overflow: wrap 31

Books

Inherit features of Quarto websites
(navigation, search, mobile, etc.)

Support cross references across
chapters

Produce multiple book formats from
a single source

HTML

PDF (LaTeX)

MS Word

ePub

Asciidoc

Technical Communication

What is different?
Sophisticated presentation of source
code

Figures, sub-figures, and figure panels

Use of citations and cross references

Content written in specialized
languages and rendered into visual
form (e.g. equations and diagrams)

Specialized regions (e.g. callouts) and
layout (e.g. use of margins)

Source Code Annotation
Code blocks and executable code cells may include annotations, which provide a
way to attach explanations to code (much like footnotes)

```python1
word_index = imdb.get_word_index()                               # <1>2
reverse_word_index = dict(3
    [(value, key) for (key, value) in word_index.items()])       # <2>4
decoded_review = ' '.join(5
    [reverse_word_index.get(i - 3, '?') for i in train_data[0]]) # <3>6
```7

8
1. `word_index` is a dictionary mapping words to an integer index9

10
2. Reverses it, mapping integer indices to words11

12
3. Decodes the review. Indices are offset by 3 because 0, 1, and 213
 are reserved for "padding", "start of sequence" and "unknown".14

15

Source Code Annotation
Code blocks and executable code cells may include annotations, which provide a
way to attach explanations to code (much like footnotes)

```python1
word_index = imdb.get_word_index()                               # <1>2
reverse_word_index = dict(3
    [(value, key) for (key, value) in word_index.items()])       # <2>4
decoded_review = ' '.join(5
    [reverse_word_index.get(i - 3, '?') for i in train_data[0]]) # <3>6
```7

8
1. `word_index` is a dictionary mapping words to an integer index9

10
2. Reverses it, mapping integer indices to words11

12
3. Decodes the review. Indices are offset by 3 because 0, 1, and 213
 are reserved for "padding", "start of sequence" and "unknown".14

15

```python1
word_index = imdb.get_word_index()                               # <1>2
reverse_word_index = dict(3
    [(value, key) for (key, value) in word_index.items()])       # <2>4
decoded_review = ' '.join(5
    [reverse_word_index.get(i - 3, '?') for i in train_data[0]]) # <3>6
```7

8
1. `word_index` is a dictionary mapping words to an integer index9

10
2. Reverses it, mapping integer indices to words11

12
3. Decodes the review. Indices are offset by 3 because 0, 1, and 213
 are reserved for "padding", "start of sequence" and "unknown".14

15

Source Code Annotation
Code blocks and executable code cells may include annotations, which provide a
way to attach explanations to code (much like footnotes)

```python1
word_index = imdb.get_word_index()                               # <1>2
reverse_word_index = dict(3
    [(value, key) for (key, value) in word_index.items()])       # <2>4
decoded_review = ' '.join(5
    [reverse_word_index.get(i - 3, '?') for i in train_data[0]]) # <3>6
```7

8
1. `word_index` is a dictionary mapping words to an integer index9

10
2. Reverses it, mapping integer indices to words11

12
3. Decodes the review. Indices are offset by 3 because 0, 1, and 213
 are reserved for "padding", "start of sequence" and "unknown".14

15

```python1
word_index = imdb.get_word_index()                               # <1>2
reverse_word_index = dict(3
    [(value, key) for (key, value) in word_index.items()])       # <2>4
decoded_review = ' '.join(5
    [reverse_word_index.get(i - 3, '?') for i in train_data[0]]) # <3>6
```7

8
1. `word_index` is a dictionary mapping words to an integer index9

10
2. Reverses it, mapping integer indices to words11

12
3. Decodes the review. Indices are offset by 3 because 0, 1, and 213
 are reserved for "padding", "start of sequence" and "unknown".14

15

```python1
word_index = imdb.get_word_index()                               # <1>2
reverse_word_index = dict(3
    [(value, key) for (key, value) in word_index.items()])       # <2>4
decoded_review = ' '.join(5
    [reverse_word_index.get(i - 3, '?') for i in train_data[0]]) # <3>6
```7

8
1. `word_index` is a dictionary mapping words to an integer index9

10
2. Reverses it, mapping integer indices to words11

12
3. Decodes the review. Indices are offset by 3 because 0, 1, and 213
 are reserved for "padding", "start of sequence" and "unknown".14

15

Source Code Annotation
Code blocks and executable code cells may include annotations, which provide a
way to attach explanations to code (much like footnotes)

```python1
word_index = imdb.get_word_index()                               # <1>2
reverse_word_index = dict(3
    [(value, key) for (key, value) in word_index.items()])       # <2>4
decoded_review = ' '.join(5
    [reverse_word_index.get(i - 3, '?') for i in train_data[0]]) # <3>6
```7

8
1. `word_index` is a dictionary mapping words to an integer index9

10
2. Reverses it, mapping integer indices to words11

12
3. Decodes the review. Indices are offset by 3 because 0, 1, and 213
 are reserved for "padding", "start of sequence" and "unknown".14

15

```python1
word_index = imdb.get_word_index()                               # <1>2
reverse_word_index = dict(3
    [(value, key) for (key, value) in word_index.items()])       # <2>4
decoded_review = ' '.join(5
    [reverse_word_index.get(i - 3, '?') for i in train_data[0]]) # <3>6
```7

8
1. `word_index` is a dictionary mapping words to an integer index9

10
2. Reverses it, mapping integer indices to words11

12
3. Decodes the review. Indices are offset by 3 because 0, 1, and 213
 are reserved for "padding", "start of sequence" and "unknown".14

15

```python1
word_index = imdb.get_word_index()                               # <1>2
reverse_word_index = dict(3
    [(value, key) for (key, value) in word_index.items()])       # <2>4
decoded_review = ' '.join(5
    [reverse_word_index.get(i - 3, '?') for i in train_data[0]]) # <3>6
```7

8
1. `word_index` is a dictionary mapping words to an integer index9

10
2. Reverses it, mapping integer indices to words11

12
3. Decodes the review. Indices are offset by 3 because 0, 1, and 213
 are reserved for "padding", "start of sequence" and "unknown".14

15

```python1
word_index = imdb.get_word_index()                               # <1>2
reverse_word_index = dict(3
    [(value, key) for (key, value) in word_index.items()])       # <2>4
decoded_review = ' '.join(5
    [reverse_word_index.get(i - 3, '?') for i in train_data[0]]) # <3>6
```7

8
1. `word_index` is a dictionary mapping words to an integer index9

10
2. Reverses it, mapping integer indices to words11

12
3. Decodes the review. Indices are offset by 3 because 0, 1, and 213
 are reserved for "padding", "start of sequence" and "unknown".14

15

Diagrams
Native support for embedding and diagrams.Mermaid Graphviz

```{mermaid}
sequenceDiagram
  participant Alice
  participant Bob
  Alice->>John: Hello John, how are you?
  loop Healthcheck
    John->>John: Fight against hypochondria
  end
  Note right of John: Rational thoughts <br/>prevail!
  John-->>Alice: Great!
  John->>Bob: How about you?
  Bob-->>John: Jolly good!
```

```{dot}
graph G {
  layout=neato
  run -- intr;
  intr -- runbl;
  runbl -- run;
  run -- kernel;
  kernel -- zombie;
}
```

https://quarto.org/docs/authoring/diagrams.html#mermaid
https://quarto.org/docs/authoring/diagrams.html#graphviz

Diagrams
Native support for embedding and diagrams.Mermaid Graphviz

```{mermaid}
sequenceDiagram
  participant Alice
  participant Bob
  Alice->>John: Hello John, how are you?
  loop Healthcheck
    John->>John: Fight against hypochondria
  end
  Note right of John: Rational thoughts <br/>prevail!
  John-->>Alice: Great!
  John->>Bob: How about you?
  Bob-->>John: Jolly good!
```

```{dot}
graph G {
  layout=neato
  run -- intr;
  intr -- runbl;
  runbl -- run;
  run -- kernel;
  kernel -- zombie;
}
```

https://quarto.org/docs/authoring/diagrams.html#mermaid
https://quarto.org/docs/authoring/diagrams.html#graphviz

Equations
LaTeX Equations (supported for all output formats)

$$
\Delta C \approx \frac{\partial C}{\partial v_1} \Delta v_1 +
\frac{\partial C}{\partial v_2} \Delta v_2.
$$

$$
\nabla C \equiv \left(\frac{\partial C}{\partial v_1},
\frac{\partial C}{\partial v_2} \right)^T.
$$

Equations
LaTeX Equations (supported for all output formats)

$$
\Delta C \approx \frac{\partial C}{\partial v_1} \Delta v_1 +
\frac{\partial C}{\partial v_2} \Delta v_2.
$$

$$
\nabla C \equiv \left(\frac{\partial C}{\partial v_1},
\frac{\partial C}{\partial v_2} \right)^T.
$$

ΔC ≈
∂C
∂v1

Δv1 +
∂C
∂v2

Δv2.

∇C ≡
∂C
∂v1

,
∂C
∂v2

T
.()

Figures and Cross References

Figures and Cross References

Citations
Pandoc includes robust support for citations in a wide variety of formats
including , , and . More than
supported via CSL.

Markdown Syntax Output

Blah Blah (see ;
also)

Blah Blah (
and passim)

Blah Blah (;
).

BibTeX CSL RIS 10,000 citation output styles

Blah Blah [see @knuth1984, pp. 33-35;
also @wickham2015, chap. 1]

Knuth 1984, 33–35
Wickham 2015, chap. 1

Blah Blah [@knuth1984, pp. 33-35,
38-39 and passim]

Knuth 1984, 33–35, 38–39

Blah Blah [@wickham2015; @knuth1984].
Wickham 2015 Knuth

1984

http://www.bibtex.org/
https://citationstyles.org/
https://en.wikipedia.org/wiki/RIS_(file_format)
https://www.zotero.org/styles
http://localhost:5926/?print-pdf=
http://localhost:5926/?print-pdf=
http://localhost:5926/?print-pdf=
http://localhost:5926/?print-pdf=
http://localhost:5926/?print-pdf=

Callouts

Supported for HTML, PDF, MS Word,
Revealjs, ePub, JATS, Asciidoc,
Docusaurus, and Confluence formats

::: {.callout-note}
Note that there are five types of callouts
:::

Margin Layout

Margin Layout

Margin Layout (Fullscreen)

Margin Layout (Fullscreen)

Semantic Authoring

Literal Authoring

• Writing a dissertation using LaTeX

• A proposal using MS Word

• Adding articles to a Hugo website

• Creating a presentation with Keynote

• Publishing to a Confluence Wiki

Challenges

Challenges

Each of these has their own proprietary format, making it awkward and time
consuming to re-purpose content across mediums.

Challenges

Each of these has their own proprietary format, making it awkward and time
consuming to re-purpose content across mediums.

Format native authoring tools have variable (sometimes non-existent) support
for technical content like code, math, diagrams, figures, crossrefs, etc.

Challenges

Each of these has their own proprietary format, making it awkward and time
consuming to re-purpose content across mediums.

Format native authoring tools have variable (sometimes non-existent) support
for technical content like code, math, diagrams, figures, crossrefs, etc.

Generally there is no mechanism for including live code and its output
(normally done via copy and paste or manually managed files)

Challenges

Each of these has their own proprietary format, making it awkward and time
consuming to re-purpose content across mediums.

Format native authoring tools have variable (sometimes non-existent) support
for technical content like code, math, diagrams, figures, crossrefs, etc.

Generally there is no mechanism for including live code and its output
(normally done via copy and paste or manually managed files)

No straightforward way to automate / reproduce computationally derived
content

Semantic Authoring
semantic.md

---1
title: "My Document"2
---3

4
Code Blocks5

6
This is a *code block*:7

8
```python9
def add(x, y):10
  return x + 111
```12

13
Block Quotes14

15
> This is a block quote. Block quotes are 16
> specified by proceeding lines with `>`17

18

Semantic Authoring
semantic.md

---1
title: "My Document"2
---3

4
Code Blocks5

6
This is a *code block*:7

8
```python9
def add(x, y):10
  return x + 111
```12

13
Block Quotes14

15
> This is a block quote. Block quotes are 16
> specified by proceeding lines with `>`17

18

Compose with semantic structure
(heading, emphasis, code, etc.) that
is output independent

Semantic Authoring
semantic.md

---1
title: "My Document"2
---3

4
Code Blocks5

6
This is a *code block*:7

8
```python9
def add(x, y):10
  return x + 111
```12

13
Block Quotes14

15
> This is a block quote. Block quotes are 16
> specified by proceeding lines with `>`17

18

Compose with semantic structure
(heading, emphasis, code, etc.) that
is output independent

Document is parsed into an AST
(abstract syntax tree) that can be
easily computed on! (key to
supporting arbitrary output formats)

Semantic Authoring
semantic.md

---1
title: "My Document"2
---3

4
Code Blocks5

6
This is a *code block*:7

8
```python9
def add(x, y):10
  return x + 111
```12

13
Block Quotes14

15
> This is a block quote. Block quotes are 16
> specified by proceeding lines with `>`17

18

Compose with semantic structure
(heading, emphasis, code, etc.) that
is output independent

Document is parsed into an AST
(abstract syntax tree) that can be
easily computed on! (key to
supporting arbitrary output formats)

Production quality output can be
created for any format required

Semantic Authoring with Jupyter

Jupyter executes cells and produces a
document with markdown cells and
markdown executable output

Pandoc renders markdown into a
variety of formats

Semantic Authoring with Jupyter

Jupyter executes cells and produces a
document with markdown cells and
markdown executable output

Pandoc renders markdown into a
variety of formats

Markdown is translated into
document AST

Semantic Authoring with Jupyter

Jupyter executes cells and produces a
document with markdown cells and
markdown executable output

Pandoc renders markdown into a
variety of formats

Markdown is translated into
document AST

Filters transform the AST (e.g. to
implement layout, crossrefs, code
folding, etc.)

Semantic Authoring with Jupyter

Jupyter executes cells and produces a
document with markdown cells and
markdown executable output

Pandoc renders markdown into a
variety of formats

Markdown is translated into
document AST

Filters transform the AST (e.g. to
implement layout, crossrefs, code
folding, etc.)

Final output rendered from the AST

Pandoc Formats

Documents

HTML

PDF

MS Word

Open Office

ePub

Presentations

Revealjs

PowerPoint

Beamer

Markdown

CommonMark

GitHub (GFM)

Markua

Pandoc Formats (cont.)

Wikis

MediaWiki

DocuWiki

ZimWiki

Jira Wiki

XWiki

Other

JATS

ConTeXt

reST

Asciidoc

Org-mode

Textile

DocBook

InDesign

GNU Texinfo

FictionBook

Content Management Systems
Because Quarto and Pandoc are based on a semantic AST, we can also publish to
any content management system we need to. For example:

• Hugo (Goldmark Markdown)

• Docusaurus (MDX Markdown)

• Confluence (Confluence XML)

• O’Reilly Atlas (Asciidoc)

Hugo: Goldmark Markdown

Hugo: Goldmark Markdown

Docusaurus: MDX Markdown

Docusaurus: MDX Markdown

Confluence: Confluence XML

Confluence: Confluence XML

O’Reilly Atlas

Books can be rendered to asciidoc, which is fully compatible with the
production requirements of (used for Print, ePub, and Web books)O’Reilly Atlas

https://atlas.oreilly.com/

Jupyter Notebooks

Notebooks: The Coin of the Realm
The importance of having a standard container for code, output, and related
narrative cannot be overestimated!

Authoring tool (ipynb or plain text)

Source of content for embedding in other documents

Publishing format (static or interactive)

Notebook as Authoring Tool

Data science REPL with embedded
narrative

Standard file format that is widely
produced and consumed

A huge variety of notebook authoring
tools are available…

Jupyter Lab

VS Code

PyCharm

Google CoLab

Kaggle

https://jupyterlab.readthedocs.io/en/stable/
https://code.visualstudio.com/docs/datascience/jupyter-notebooks
https://www.jetbrains.com/help/pycharm/jupyter-notebook-support.html
https://colab.research.google.com/
https://www.kaggle.com/docs/notebooks

Plain Text Authoring
 supports 10 different plain text formats for notebooks!Jupytext

Markdown Formats

Jupytext Markdown

R Markdown

MyST Markdown

Pandoc Markdown

Quarto Markdown

Script Formats (.py)

light

nomarkder

percent

hydrogen

Sphinx-gallery

https://jupytext.readthedocs.io/

Example: Quarto .qmd Files
penguins.qmd

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

Editable with any text editor (extensions
for VS Code, Neovim, and Emacs)

Cells always run in the same order

Integrates well with version control

Cache output with Jupyter Cache or
Quarto freezer

Lots of pros and cons visa-vi traditional
.ipynb format/editors, use the right
tool for each job

Example: Quarto .qmd Files
penguins.qmd

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

Editable with any text editor (extensions
for VS Code, Neovim, and Emacs)

Cells always run in the same order

Integrates well with version control

Cache output with Jupyter Cache or
Quarto freezer

Lots of pros and cons visa-vi traditional
.ipynb format/editors, use the right
tool for each job

Example: Quarto .qmd Files
penguins.qmd

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

Editable with any text editor (extensions
for VS Code, Neovim, and Emacs)

Cells always run in the same order

Integrates well with version control

Cache output with Jupyter Cache or
Quarto freezer

Lots of pros and cons visa-vi traditional
.ipynb format/editors, use the right
tool for each job

Example: Quarto .qmd Files
penguins.qmd

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

Editable with any text editor (extensions
for VS Code, Neovim, and Emacs)

Cells always run in the same order

Integrates well with version control

Cache output with Jupyter Cache or
Quarto freezer

Lots of pros and cons visa-vi traditional
.ipynb format/editors, use the right
tool for each job

Example: Quarto .qmd Files
penguins.qmd

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

Editable with any text editor (extensions
for VS Code, Neovim, and Emacs)

Cells always run in the same order

Integrates well with version control

Cache output with Jupyter Cache or
Quarto freezer

Lots of pros and cons visa-vi traditional
.ipynb format/editors, use the right
tool for each job

Example: Quarto .qmd Files
penguins.qmd

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

---1
title: "Palmer Penguins"2
author: Norah Jones3
date: March 12, 2023 4
format: html5
jupyter: python36
---7

8
```{python}9
#| echo: false10

11
import pandas as pd12
df = pd.read_csv("palmer-penguins.csv") 13
df = df[["species", "island", "year", \14
         "bill_length_mm", "bill_depth_mm"]]15
```16

17
Exploring the Data18

19
See @fig-bill-sizes for an exploration of bill sizes.20

21
```{python}22
#| label: fig-bill-sizes23
#| fig-cap: Bill Sizes by Species24

25
import matplotlib.pyplot as plt26
import seaborn as sns27
g = sns.FacetGrid(df, hue="species", height=3)28
g.map(plt.scatter, "bill_length_mm", "bill_depth_mm") \29
  .add_legend()30
```31

Editable with any text editor (extensions
for VS Code, Neovim, and Emacs)

Cells always run in the same order

Integrates well with version control

Cache output with Jupyter Cache or
Quarto freezer

Lots of pros and cons visa-vi traditional
.ipynb format/editors, use the right
tool for each job

Quarto VS Code Extension
Render with integrated preview

Syntax highlighting for markdown and
embedded languages

Completion for embedded languages
(e.g. Python, R, Julia, LaTeX, etc.)

Completion for YAML options

Commands and key-bindings for
running cells and selected line(s)

Live preview for diagrams

Notebooks as a Content Source

This notebook will not be the final document
consumed by readers.

Rather, it includes cells that will be
incorporated by reference into another report
or article.

This is done using the embed shortcode, e.g.:

Links back to the original notebook are
preserved.

{{< embed penguins.ipynb#fig-bill-sizes >}}

Notebook Embedding

Notebook Embedding

Notebook Embedding

Notebooks Now

Collaboration among participants in the open-science community, scientific
publishers, and the developers of Jupyter Book, Myst-JS, and Quarto to create
a standard for including notebooks in scientific publications.

Aim is to define a standard for scholarly articles that include notebooks,
enabling them to be considered as part of peer review and included in
archives.

https://data.agu.org/notebooks-now/

https://data.agu.org/notebooks-now/

Under the Hood

Jupyter Kernels

Quarto executes code cells (whether in .ipynb or .qmd files) using Jupyter

All Jupyter kernels are supported (Python and Julia are the most widely used)

To preserve interactive response times, kernels are kept alive for up to 5
minutes across renders (especially important for Julia)

Jupyter Kernels

Quarto executes code cells (whether in .ipynb or .qmd files) using Jupyter

All Jupyter kernels are supported (Python and Julia are the most widely used)

To preserve interactive response times, kernels are kept alive for up to 5
minutes across renders (especially important for Julia)

Quarto execution is extensible so other engines besides Jupyter are possible
(e.g. Knitr engine for compatibility with R Markdown documents). Other engines
may be added in the future as the landscape evolves.

Cell Execution

Cell Execution

Authoring in .ipynb enables you to control exactly when code execution
occurs (and cache results in the notebook)

Cell Execution

Authoring in .ipynb enables you to control exactly when code execution
occurs (and cache results in the notebook)

Authoring in .qmd will execute cells on every render (but see below for
caching strategies)

Cell Execution

Authoring in .ipynb enables you to control exactly when code execution
occurs (and cache results in the notebook)

Authoring in .qmd will execute cells on every render (but see below for
caching strategies)

 (from the) provides caching of cell
outputs for a document (change to one cell triggers re-rendering of all cells)
Jupyter Cache Executable Book Project

https://jupyter-cache.readthedocs.io/en/latest/
https://executablebooks.org/en/latest/

Cell Execution

Authoring in .ipynb enables you to control exactly when code execution
occurs (and cache results in the notebook)

Authoring in .qmd will execute cells on every render (but see below for
caching strategies)

 (from the) provides caching of cell
outputs for a document (change to one cell triggers re-rendering of all cells)
Jupyter Cache Executable Book Project

Quarto’s feature enables you to permanently save and re-use
computational outputs (which are updated only when input files change)

Freeze

https://jupyter-cache.readthedocs.io/en/latest/
https://executablebooks.org/en/latest/
https://quarto.org/docs/projects/code-execution.html#freeze

Filters

Filters transform the document AST
before final rendering

Can be used to modify, remove, or
generate content

Can include target format specific
logic / output

Example: Use the panflute library
to increase the level of headings in a
document.

Filters

Filters transform the document AST
before final rendering

Can be used to modify, remove, or
generate content

Can include target format specific
logic / output

Example: Use the panflute library
to increase the level of headings in a
document.

Terminal

$ quarto render nb.ipynb --filter headers.py

headers.py
from panflute import *1

2
def increase_header_level(elem, doc):3
 if type(elem) == Header:4
 if elem.level < 6:5
 elem.level += 16

7
def main():8
 return run_filter(increase_header_level)9

10
if __name__ == "__main__":11
 main()12

Filters

Filters transform the document AST
before final rendering

Can be used to modify, remove, or
generate content

Can include target format specific
logic / output

Example: Use the panflute library
to increase the level of headings in a
document.

Terminal

$ quarto render nb.ipynb --filter headers.py

headers.py
from panflute import *1

2
def increase_header_level(elem, doc):3
 if type(elem) == Header:4
 if elem.level < 6:5
 elem.level += 16

7
def main():8
 return run_filter(increase_header_level)9

10
if __name__ == "__main__":11
 main()12

from panflute import *1
2

def increase_header_level(elem, doc):3
 if type(elem) == Header:4
 if elem.level < 6:5
 elem.level += 16

7
def main():8
 return run_filter(increase_header_level)9

10
if __name__ == "__main__":11
 main()12

What Can Filters Do?

Embedded languages (e.g. PlantUML, GraphViz)

Macro substitution (environment variables, config files, etc.)

Cross references and citations

Image conversion and filtering

Advanced formatting (e.g. callouts)

What Can Filters Do?

Embedded languages (e.g. PlantUML, GraphViz)

Macro substitution (environment variables, config files, etc.)

Cross references and citations

Image conversion and filtering

Advanced formatting (e.g. callouts)

Quarto includes dozens of filters that implement its core functionality, but the
system is open so you can add whatever features you require.

Filter Examples
Filter Description

Create treatments for images in your HTML documents.

Shortcode to embed proteins and trajectories with .

Add buttons to share articles on various social media platforms.

Output divs as custom LaTeX environments.

Shortcode to embed QR codes using .

Filter code and stream output included within a document.

Add author-related header block when rendering docx-documents.

lightbox lightbox

molstar Mol*

social-share

latex-environment

qrcode qrcodejs

code-visibility

authors-block

https://github.com/quarto-ext/lightbox
https://biati-digital.github.io/glightbox/
https://github.com/jmbuhr/quarto-molstar
https://molstar.org/
https://github.com/schochastics/quarto-social-share
https://github.com/quarto-ext/latex-environment
https://github.com/jmbuhr/quarto-qrcode
https://davidshimjs.github.io/qrcodejs/
https://github.com/jjallaire/code-visibility
https://github.com/kapsner/authors-block

Writing Filters

• Python library from the creator of Pandoc

• Python library with improved API and more batteries included

•
Pandoc includes an embedded Lua interpreter for fast, zero-
dependency filters

• Write filters in any language via JSON representation over stdin/stdout

pandocfilters

panflute

Lua Filters

JSON Filters

https://github.com/jgm/pandocfilters
http://scorreia.com/software/panflute/
https://pandoc.org/lua-filters.html
https://pandoc.org/filters.html

Extensions
https://quarto.org/docs/extensions/

Filters

Shortcodes (macros)

Custom Formats

Revealjs Plugins

Project Types

Project Templates

https://quarto.org/docs/extensions/

Integration w/ nbdev

Interactively develop Python
packages within Jupyter, including
embedded tests/docs, CI, pypi and
conda publishing

Version 2 of uses Quarto to
produce documentation websites

https://nbdev.fast.ai

nbdev

https://nbdev.fast.ai/
https://nbdev.fast.ai/

Thank You!

Slides:

Resources
Getting Started

User Guide

Extensions

Awesome Quarto

Questions?

https://jjallaire.quarto.pub/data-council-2023/

https://quarto.org/

https://quarto.org/docs/guide/

https://quarto.org/docs/extensions/

https://github.com/mcanouil/awesome-quarto

https://jjallaire.quarto.pub/data-council-2023/
https://quarto.org/
https://quarto.org/docs/guide/
https://quarto.org/docs/extensions/
https://github.com/mcanouil/awesome-quarto

