MotherDuck

DATA WAREHOUSES
ARE GILDED CAGES.

WHAT COMES NEXT ?

ooooooooooooooooooooooooooooooooooo




Agenda

1 My experience of the last 15 years of analytics tech
developments

2 Some luke warm takes. Please no one sue me.

3 We note a shift in hardware

4 A possible different future



End of History for OLAP ?

SNV



2006 2012

2000
Teradata BigQuery
Exadat EMR
Xadata HDInsights
Netezza Druid
SQL Server rul
Snowflake

2010

g (]

2008 2013




The declining value of your average row

Nominal Value

“A Row that denotes

Human cost

Storage System

$500,000 House Purchase 1/2 lifetime of effort The Legal System
Mainframes in New Jersey
$50,000 Broker Stock Purchase Years of savings protected by armed guards
$500 Airline Flight A Paycheck Blue Chip OLTP
$50 Marketing Lead An hour of thinking about a product |OLTP
$5 Retail Purchase line item 1 minute decision OLTP
$0.10 Ad Click A few seconds OLAP / NoSQL
The fifth of a second until you
realize you can ignore it. Input into
$0.001 Ad View P(action) Big Data
$0.000010 Real Time Bid for that Ad view Input into P(View) Big Data.
$0.000001 ?? Telemetry from a free phone game |Input into P(Keep_playing) Big Data.



Data Warehouses made Distributed OLAP
usable

Big Tech: had the resources to produce with open source Big Data. They
could contribute patches, whole teams dedicated to what you, as a mid
size co data engineer, had to learn on the fly.

Smaller data orgs hat to do their best. Needed better reliability and
usability than those system. So the invisible hand kicked into gear.



Data Warehouses are becoming
everything we asked for

They took scale limits away

Easy to use distributed systems. No OOMs. (Athena .. Presto)
Scale up and down elastically (to varying degrees)

Handle unstructured and semistructured data

Data movement behind the scenes for us for locality

Caching as needed, and cache expiry (the hard part)

They have industry standard interfaces: JDBC, ODBC, postgres
wire

Some have facilities for easy streaming ingest

They can also interoperate with your lake, external tables in S3
e Optimize your workloads behind the scenes

How will they grow ?



Are Data Warehouses...
Mainframes ?




DWs as Mainframes

You send text -> they send
back results

Everyone competes for central
resources

moving all your compute to a
walled garden

SaaS ecosystem reinforces
this dynamic, cheaper for
them to integrate once w/
cloud vendor




Let's compare to app developers

Data teams are kind of unique culture. Batch vs transaction,
centralized state.

e App devs often can spin up whole stack locally
e They can run their database in docker

e Even AWS Lambdas have emulators...
e Local testing that's fast

Meanwhile. ..

e Can't test truly locally. can't even verify syntax locally !
e Fully Saas = mishmash of cloud based editors
e Dev DW environments often end up with stale schema



 Career onData Warehouses’




Vendorization of data engineering

2010 data engineer

e Java SWE / SRE-ish
e Understood how the systems worked, kinda
e Creating needed DB abstractions (sometimes reinventing the wheel)

2022 MDS data engineer

e Build v. buy often going to buy
e Glue together SaaS offerings
e Looks a lot like a cloud-ish DBAdmin from 2000s. Vendor jails.

But this is just the way automation goes, right ? Technology gets
better, we move up the abstraction layer, more people can participate.
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SELF SERVICE BI WITH ACCESS TO RAW
DATA IS A LOW INTEREST RATE PHENOMENON



WHY ARE BALLOONING
COSTS SO COMMON NOw ?



Why are ballooning costs so common now ?

Easy cloud scale up = kick the can down the road

UX 1n tools favor accretion, not deprecation

ELT

Linear 1ncrease 1in data = Exponential cost in joins
Self-service

dbt: bias to whole table creation, ease of model
proliferation

Political economy of analytics teams

e Costs not exposed



THE MDS IS TURNING US
ALL INTO DATA
CONSUMERISTS



An Ode To Moore's Law *

(and how 1t relates to analytics)




OLAP is primarily I/0 bound,
Sequential access
Read heavy

Smaller, CPU registers hold words retrieved from
faster, cache memory.

and

costlier L1 cache holds cache lines retrieved

(per byte) from the L2 cache.
storage

devices

L2 cache holds cache lines
retrieved from L3 cache

retrieved from memory.

} L3 cache holds cache lines

Main memory

(DRAM) ' :
Main memory holds disk

blocks retrieved from local
disks.
Local secondary storage
(local disks)

Local disks hold files

retrieved from disks on

remote network servers|
Remote secondary storage

(distributed file systems, Web servers)




What were the original motivations for distributed systems for data ?

e avoid Licencing costs for commercial DBs

e aggregate scan bandwidth over all nodes (If S3, NICs, if HDFS,
disks)

e aggregate compute over all nodes when parallel possible

e cheap commodity hardware

But distribution didn't come for free. Method calls become RPC network
calls, pointers become serialization. Most non trivial plans require
shuffles.



42 Years of Processor Data

Hennessy/Patterson
“A New Golden Age”

1 1

“First Reconfigurable Wave”
Adaptive Silicon, Elixent, Triscend,
Morphics, Chameleon Systems,
Quicksilver Technology, Mathstar

F. Brooks
“No Silver Bullet”
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Hennessy and Patterson, Turing Lecture 2018, overlaid over “42 Years of Processors Data”
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/; “First Wave” added by Les Wilson, Frank Schirrmeister
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2017 by K. Rupp

2000 2010 2020




What *has* 1mproved ?

Parallel execution: /0
more cores w lower power each e memory bandwidth (L1-3 and DRAM)
deeper pipelines, multiple e SSD cost
operations at once e DRAM Speeds
branch prediction e cost of high performance networking. 10Gbit
automatic vectorization common, 100Gbit possible

Caching:
OLAP is primarily I/0 bound,

L1/L2/L3 caches bigger -
* 2 Sequential access

e preloading data into caches

(idx_t i = 0; i < count; i++) {
lentry = ldatal
rentry = pdatal

result_data[i] = OPWRAPPER:: Operation<FUNC, OP, LEFT_TYPE, RIGHT_TYPE, RESULT_TYPE
fun, lentry, rentry, mask, i)

#define
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Historical cost of computer memory and storage i
This data is expressed in US dollars per terabyte (TB). It is not adjusted for inflation.

LNEAR https://jcmit.net/index.htm

100,000 $/TB .\\

10,000 $/TB
T ey Memory
1,000 $/TB
Flash
100 $/TB
Solid state
Disk
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Cache and Memory Read Bandwidth, 8 Cores
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Graviton 3 8¢, NEON Intel Xeon 8370C 8c/16t, AVX-512 AMD Epyc 7763 8c/16t, AVX Graviton 3 8c, SVE

https://chipsandcheese.com/2022/05/29/graviton-3-first-impressions/




AWS then and now

m7g.8xlarge m2.4x1 (2014)
$1.30/hr 1in 2023 $ $1.25/hr in 2023 $

e Graviton3 e Intel Xeon E5-2665
e 32 cores e 8 cores

e L1 64k x 32, e |L1: 32k x 8

e L2 1M x 32, e L2: 256k x 8

e L3 32M (shared) e L3: 20MB (shared)
e 128GB RAM e 68GB RAM

e 20 GB/s core mem e ~7 GB/s core mem
e 300 GB/s mem e 51 MB/s agg mem

e 2GB (15Gb) net e '"high" net



Aggregate Parallel Scalar Read Bandwidth - Apple M1

Apple's M1 I/0

Unified (M1) 60GB/s
M1 Pro 200 Gb/s

M1 Max 400 GB/s

M1 Ultra 800 Gb/s

Bandwidth (GB/S

M1 SSD
2.0 GB/s SSD read O
2.5 GB SSD read = w m ae ER Sw s s :




George Fraser @frasergeorgew - Mar 21

Replying to @frasergeorgew

But my most astonishing finding: the M1 Pro is an absolute beast. The
laptop in front of me is faster than most of the systems | benchmarked!
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Shuffles:

Partitions

Shuffle Write

Shuffle Read

Distributed

Executor:

Executor:

Executor:

~Executor:

Executors

Executor:

Executor:

Executor:

Consider what each of these lines
actually *are* 2

Sender:

1. serialize the data from it's in
memory representation

2. copy it into a network buffer

Receiver:
1. copy from network buffer when
complete
2. deserialize into actual data
structure

https://blog.scottlogic.com/2018/03/22/apache-spark-performance.html
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Broadcast: shared mem advantage

Same block transferred All threads just read
to all nodes via the same block of mem.
network
T1
\ < | T2a
T1 |=< | T2a
T1 |~ | T2b
T1 |~ | T2b
= | T2c
T1 | | T2¢C




The missing middle

N



When do you move to a data warehouse ?

You start with postgres. It handles your traffic as you grow. It's hosted,
so you can add cores. You want to get a handle on your operations. You
make some dashboard queries.

The business grows. You dashboard queries, and some exports you now do,
are hurting prod. So you make a replica.

For many people this is fine. But let's say you outgrow this what is your
next step ?

On GCP, BigQuery. Pricing 1s good.
On AWS, Redshift. Snowflake ?

It seems a big leap in cost, complexity, and fragility to go to a big
warehouse.

It's like there 1is a step missing in the middle.



DuckDB: A playground

N



So:

We have a distant relationship with our Data Warehouse Processing engines.
We can't run them locally. We can't even check syntax without calling
them.

Meanwhile, the original motivations for using distributed systems in the
first place are eroding. Our hot set is much smaller than our full data
footprint. Single machines can have huge core counts, which we are now
able to feed from memory. Our compilers are steadily getting better at
harnessing parallelism.

Our local computers have similar increases in bandwidth, both internally.
Meanwhile, the last mile connection to our local machines are beefy. SSD
is getting cheaper than HDD.

And along comes a database that gives us bleeding edge DB research with a
brew or pip update, that has near zero startup time.

And it can even compile to WASM.



What makes DuckDB fun ?

e Small binary matters

e Fast startup matters: 15 milliseconds

e Native code matters. JVM startup, hotspot overhead
amortises as larger scale

e SQL Syntax that 1is postgres-1like, and functions you can
usually guess

e performant: query engine based on most recent innovations

e 1mproving all the time. very short academic -> production
pipeline

e embed in whatever you want



As tool of convenlence

Jared Lander
@jaredlander

Just used @duckdb take 20 million rows out of Postgres into a parquet file
in 18 seconds. So much faster than anything | have done before. This tool
is getting better and better all the time.

9:27 AM - Feb 22, 2023 - 25.4K View m John Murray
- @MurrayData

Originally in 2015, it took 3 days to run using Python & MariaDB on a 32GB

"box. Today it ran for the 1st time using @ApacheArrow @geopandas &
@duckdb on the Kubernetes cluster node with 256GB. It took 2 hrs 43
mins 25 secs. Sorry can't share detail as commercially sensitive. 2/2

10:47 AM - Mar 7, 2023 - 313 Views



Data Infra Experiments with DuckDB

e Extract networks from twitter to supply leads

e Semantic similarity: HuggingFace model to get embeddings, and then did a cosine
similarity over array type

e "ETL Agents". Summarize at edge.

e App vendor w some analytics. Some clients outgrow pg for BI. Export to parquet, DuckDB
engine against S3

e Researcher wanted to use a real DB to test a lineage method. DuckDB made it available.

Chipping Chipping

away at DW ingest, ELT, aggregation at Bl

ETL sources
Standalone

systems




Add a postgres front-end...

Buena Vista: A Programmable Postgres Proxy Server

Buena Vista is a Python library that provides a socketserver-based implementation of the Postgres wire protocol
(PDF).

| started working on this project in order to address a common issue that people had when they were using
another one of my Python projects, dbt-duckdb: when a long-running Python process is operating on a DuckDB
database, you cannot connect to the DuckDB file using the CLI or with a database query tool like DBeaver to
examine the state of the database, because each DuckDB file may only be open by a single process at a time. The
Buena Vista library makes it possible to work with a DuckDB database from muitiple different processes over the
Postgres wire protocol, and the library makes it simple enough to run an example that illustrates the idea locally:

postgres client

postgres client

d — K
uckdb || "pg ]



14  inline void QuackScalarFun(DataChunk &args, ExpressionState &state, Vector &result) {

MotherDuck 15 auto &name_vector = args.datal0];
@motherduck 16 UnaryExecutor: :Execute<string_t, string_t>(
17 name_vector, result, args.size(),
DuckDB Extension is a powerful way to add functionality to D@8 18 [&] (string_t name) {
JSON support, to Full-text-search, there are already a couple 19 return StringVector::AddString(result, "Quack "+name.GetString()+" <");;
extensions. 20 };
@duckdblabs team has also worked on a template that you c4¥ 21 1}
create your own extension! 2
23 static void LoadInternal(DatabaseInstance &instance) {
24 Connection con(instance);
25 con.BeginTransaction();
" 26
d u C kd b/extenSIon— 27 auto &catalog = Catalog::GetSystemCatalog(*con.context);
28
tem plate 29 CreateScalarFunctionInfo quack_fun_info(
30 ScalarFunction("quack", {LogicalType::VARCHAR}, LogicalType::VARCHAR, QuackSc
¥ 31 quack_fun_info.on_conflict = OnCreateConflict::ALTER_ON_CONFLICT;
Template for DuckDB extensions to help you 32 catalog.CreateFunction(*con.context, &quack_fun_info);
develop, test and deploy a custom extension 33 con. Commit();
34}
A 4 ®3 w18 Y6 35
Contributors Issues Stars Forks
[ —)
github.com

GitHub - duckdb/extension-template: Template for DuckDB extensions to hel...

Template for DuckDB extensions to help you develop, test and deploy a
custom extension - GitHub - duckdb/extension-template: Template for ...



Lance: ML Data format

Lance is a columnar data format with better random access properties than parquet,
making it a better choice for vector search, and inference.

"Compatible with Pandas, DuckDB, Polars, Pyarrow"

One of these is a Database, why ?
DuckDB is a good choice to showcase a db integration.

ﬁ Chang She vy Oome I
', Oct 19,2022 - 4 minread - @ Listen

Peeking Duck: duckdb + lance for computer
vision

SELECT predict(‘resnet’, image) FROM dataset



Extension to query Athena

« Load the extension

N

dacort / duckdb-athena-extension Public

load 'build/debug/extension/duckdb-athena-extension/athena.duckdb_extension';

« Query a single table, also providing where S3 results are written to

<> Code () Issues 5 §) Pullrequests () Actions

select * from athena_scan('table_name', 's3://<bucket>/athena-results/);

/\ Warning: 10,000 results will be returned by default! Use maxrows=-1 to return the enti

- ’
? main - P 1 branCh Q D select x from athena_scan("amazon_reviews_parquet");

Running Athena query, execution id: 152a2@c7-ff32-4al19-bb71-ae@135373cab
State: Queued, sleep 5 secs ...
Total execution time: 1307 millis

160
‘ daCOl’t Update README.md marketplace | customer_id review_id product_id | product_parent | ..

varchar varchar varchar varchar varchar
us 37441986 R2H287L0BUP89U BOOCT780C2 473048287 ~
us 20676035 R1222MJHPSQWXE | BOOALLILFA | 361255549 =
us 45090731 R32ECIRNTB61K8 BOOALLILAG 307223063 -
us 2207141 RLTEU3JZ1IJAA BOO4ALLILDM | 87389551 -

us 15258 R1ZAX1TN66QOU6 | BO@4LLIKVU | 473048287 -

999 rows (40 shown)




Scan postgres faster than psql

‘= README.md

DuckDB postgresscanner extension

The postgresscanner extension allows DuckDB to directly read data from a running Postgres instance. The data can
be queried directly from the underlying Postgres tables, or read into DuckDB tables.

Usage

To make a Postgres database accessible to DuckDB, use the POSTGRES_ATTACH command:

CALL POSTGRES_ATTACH('');

POSTGRES_ATTACH takes a single required string parameter, which is the 1ibpg connection string. For example you
canpass 'dbname=postgresscanner' to select a different database name. In the simplest case, the parameter is

just '' . There are three additional named parameters:

e source_schema the name of a non-standard schema name in Postgres to get tables from. Defaultis public .
e sink_schema the schema name in DuckDB to create views. Default is main .

&  Auvavwrita whathar wa chniild avanarita avietina viawe in tha tarnat ecrhama dafanltic falea



WHERE TRUE
Technologies

Sign In [ Create Account

WTT-01

WTT-01 can help you and your team reduce the time from bioinformatic data output to meaningful insight.

See Demo & Purchase Options

We think WTT-01 can help the full spectrum of bioinformatic practitioners from Bench Scientist to Engineer.

Bench Scientists can eschew complex python and R
scripts and use the lingua franca of data analysis,
SQL.

For example, lets say you had used a FASTA of
contigs, a GFF with gene predictions, and a CSV with
PFAM annotations. With WTT-01, you can quickly
create a FASTA with contigs that have a gene with a
certain PFAM domain.

SELECT id, sequence
FROM read_ fasta('contigs.fasta') fa
JOIN read gff('genes.gff') gff
ON fa.id = gff.reference_ sequence name
JOIN read csv('pfam.csv') pfam

ON gff.attributes['gene_id'][1] = pfam.gene_ id

Bioinformaticians & Data Scientists can move
reduce the complexity of their pipelines. Go from
cobbling together a pipeline in bash to a SQL queries.

For example, a Bioinformatician can assess the read

quality from an NGS Run using analytical SQL queries

Here, we compute the average quality score by base

SRt | O, Pl | g 1] e ot i Y DAt % W o i o7 oo )

to recapitulate and extend common read quality tools.

WITH gc_by base AS (
SELECT name,
qc_score,
ROW_NUMBER() OVER (PARTITION BY name) AS position
FROM (
SELECT name,
UNNEST (

https://www.wheretrue.com/wtt-01

quality score string to_list(quality_ scores)




brew install duckdb
apt/yum install duckdb

pip i1nstall duckdb

duckdb.org -> Installations
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What 1s ?

Serverless DuckDB

Client 1s DuckDB 1n all 1its forms:
python, cli, WASM, JS etc.



Typlcal relationship with DB

I send you SQL. I
walt. You send me
back rows.

Mainframe
relationship.

Server

parse

—>1

bind

—>1

optimize

A

execute

—>

results

SQL

Application

driver

rows




DuckDB In-Process

SQL

[Application

DuckDB

Parse

—

Bind

—

Optimize

>

Execute

results




MotherDuck Architecture:
DuckDB+Extensions

v Client APIs
Overview Client (e.g Jupyter) DuckDB

» Python -
R DuckDB Server Ext Storage

Java

Julia
»C

Control
C++

» Node.js
WASM

» ODBC
CLI

Web Ul

DuckDB
Client Ext




duckdb-0.7.1

D]

.open

-- OAuth

D
D

D]

O O

CREATE
SELECT
db1l
CREATE
ATTACH
SELECT
JOIN

"md:tino"

Loop for credentials

DATABASE db1

name FROM md_databases()

TABLE t1 as select
local.db as L

* from db1l.t1

L.t1 on (id)

"abc'

as

X



MotherDuck Execution

-

Server

Application
DuckDB
Parse Bind |+ Optimize || Execute results
MotherDuck
Extension Bind —| Optimize
Motherduck
[ Bind Execute




| |

CREATE_TABLE_AS (R) I
= >

| HASH_JOIN (L)

remotel I

;
/\

SEMI

foo = #0 —

EC = 0.000000
COST = 0.000000

| T
SEQ_SCAN (L) | PROJECTION (R)

|
COST = 0.000000 |
|
|

SELECT * FROM locall

locall. foo < | | oo |
| locall | coll
R e e |
| foo |
| EC=1 |
| : |
|
remotel remote? : HASH_JOIN (R) |
| we
| coll = coll o
| EC = 0.000000
CREATE OR REPLACE TABLE remoted AS !
|

|
1T
SEQ_SCAN (R) 1 SEQ_SCAN (R)

where locall.foo IN = ______ S H ______ -
(SELECT remotel.coll FROM remotel I ___________ | I s S
EC=1 EC=1

JOIN remote2 ON | |

remotel.coll=remote?2.coll);



Trivilial local result reuse

caons_1 ¢

create table local.cache_1
as (select .... from remote)

select from cache_1 where...
-- 1ms

select a, sum(b) from
cache_1 group by a
-- 1ms



Thank you.

tino@motherduck.com
nick@motherduck.com

|



