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My experience of the last 15 years of analytics tech 

developments

Some luke warm takes. Please no one sue me.

We note a shift in hardware

A possible different future



End of History for OLAP ?
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The declining value of your average row



Data Warehouses made Distributed OLAP 

usable

Big Tech: had the resources to produce with open source Big Data.  They 

could contribute patches, whole teams dedicated to what you, as a mid 

size co data engineer, had to learn on the fly.

Smaller data orgs hat to do their best. Needed better reliability and 

usability than those system. So the invisible hand kicked into gear.



Data Warehouses are becoming

everything we asked for

● They took scale limits away

● Easy to use distributed systems. No OOMs. (Athena .. Presto)

● Scale up and down elastically (to varying degrees)

● Handle unstructured and semistructured data

● Data movement behind the scenes for us for locality

● Caching as needed, and cache expiry (the hard part)

● They have industry standard interfaces: JDBC, ODBC, postgres 

wire

● Some have facilities for easy streaming ingest

● They can also interoperate with your lake, external tables in S3

● Optimize your workloads behind the scenes

How will they grow ?



Are Data Warehouses...

Mainframes ?



DWs as Mainframes

● You send text -> they send 

back results

● Everyone competes for central 

resources

● moving all your compute to a 

walled garden

● SaaS ecosystem reinforces 

this dynamic, cheaper for 

them to integrate once w/ 

cloud vendor



Let's compare to app developers

Data teams are kind of unique culture. Batch vs transaction, 

centralized state.

● App devs  often can spin up whole stack locally

● They can run their database in docker

● Even AWS Lambdas have emulators... 

● Local testing that's fast

Meanwhile...

● Can't test truly locally. can't even verify syntax locally !

● Fully Saas = mishmash of cloud based editors

● Dev DW environments often end up with stale schema



Data WarehousesCareer



Vendorization of data engineering

2010 data engineer

● Java SWE / SRE-ish

● Understood how the systems worked, kinda

● Creating needed DB abstractions (sometimes reinventing the wheel)

2022 MDS data engineer

● Build v. buy often going to buy

● Glue together SaaS offerings

● Looks a lot like a cloud-ish DBAdmin from 2000s. Vendor jails.

But this is just the way automation goes, right ? Technology gets 

better, we move up the abstraction layer, more people can participate.



Bills.





SELF SERVICE BI WITH ACCESS TO RAW 

DATA IS A LOW INTEREST RATE PHENOMENON



WHY ARE BALLOONING 

COSTS SO COMMON NOW ?



Why are ballooning costs so common now ?

● Easy cloud scale up = kick the can down the road

● UX in tools favor accretion, not deprecation

● ELT

● Linear increase in data = Exponential cost in joins

● Self-service

● dbt: bias to whole table creation, ease of model 

proliferation

● Political economy of analytics teams

● Costs not exposed



THE MDS IS TURNING US 

ALL INTO DATA 

CONSUMERISTS



An Ode To Moore's Law *
 (and how it relates to analytics)



OLAP is primarily I/O bound,

Sequential access

Read heavy



What were the original motivations for distributed systems for data ?

● avoid Licencing costs for commercial DBs

● aggregate scan bandwidth over all nodes (If S3, NICs, if HDFS, 

disks) 

● aggregate compute over all nodes when parallel possible

● cheap commodity hardware

But distribution didn't come for free. Method calls become RPC network 

calls, pointers become serialization. Most non trivial plans require 

shuffles.





What *has* improved ?

binary_executor.hpp

Parallel execution:

● more cores w lower power each

● deeper pipelines, multiple 

operations at once

● branch prediction

● automatic vectorization

Caching:

● L1/L2/L3 caches bigger

● preloading data into caches 

I/O

● memory bandwidth (L1-3 and DRAM)

● SSD cost

● DRAM Speeds

● cost of high performance networking. 10Gbit 

common, 100Gbit possible

#define STANDARD_VECTOR_SIZE 2048

OLAP is primarily I/O bound,

Sequential access



2007 2014 2020



https://jcmit.net/index.htm



8 cores L2 

exchanges

DRAM = 600GB/s

https://chipsandcheese.com/2022/05/29/graviton-3-first-impressions/

8 cores from 

DRAM = 152GB/s



AWS then and now

m7g.8xlarge
$1.30/hr in 2023 $

● Graviton3
● 32 cores
● L1 64k x 32, 
● L2 1M x 32,
● L3 32M (shared)
● 128GB RAM
● 20 GB/s core mem
● 300 GB/s mem
● 2GB (15Gb) net

m2.4xl (2014)
$1.25/hr in 2023 $

● Intel Xeon E5-2665
● 8 cores
● L1: 32k x 8
● L2: 256k x 8
● L3: 20MB (shared)
● 68GB RAM
● ~7 GB/s core mem
● 51 MB/s agg mem
● "high" net



Apple's M1 I/O

Unified (M1) 60GB/s BW

M1 Pro 200 Gb/s

M1 Max 400 GB/s

M1 Ultra 800 Gb/s

M1 SSD

2.0 GB/s SSD read

2.5 GB SSD read 





Shuffles: Distributed

https://blog.scottlogic.com/2018/03/22/apache-spark-performance.html

Consider what each of these lines 

actually *are*  ?

Sender: 

1. serialize the data from it's in 

memory representation

2. copy it into a network buffer

Receiver:

1. copy from network buffer when 

complete

2. deserialize into actual data 

structure

NIC



... vs in memory

DuckDB avoids a 

shared hashmap. 

Each producer 

writes out 

pre-partitioned 

subsets of keys, 

so the next step 

can also be 

parallelized.

https://duckdb.org/2022/03/07/aggregate-hashtable.html
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2-500GB/s



Broadcast: shared mem advantage

All threads just read 

the same block of mem. 

T1

T1

T1

T1

T2a

T2b

T2c

T1

T2a

T2b

T2c

⋈

⋈

⋈

⋈

⋈

⋈

Same block transferred 

to all nodes via 

network



The missing middle



When do you move to a data warehouse ?

You start with postgres. It handles your traffic as you grow. It's hosted, 

so you can add cores.  You want to get a handle on your operations. You 

make some dashboard queries.

The business grows. You dashboard queries, and some exports you now do, 

are hurting prod. So you make a replica.

For many people this is fine. But let's say you outgrow this what is your 

next step ? 

On GCP, BigQuery. Pricing is good. 

On AWS, Redshift. Snowflake ? 

It seems a big leap in cost, complexity, and fragility to go to a big 

warehouse. 

It's like there is a step missing in the middle.



DuckDB: A playground



So:

We have a distant relationship with our Data Warehouse Processing engines. 

We can't run them locally. We can't even check syntax without calling 

them.

Meanwhile, the original motivations for using distributed systems in the 

first place are eroding. Our hot set is much smaller than our full data 

footprint. Single machines can have huge core counts, which we are now 

able to feed from memory. Our compilers are steadily getting better at 

harnessing parallelism.

Our local computers have similar increases in bandwidth, both internally. 

Meanwhile, the last mile connection to our local machines are beefy. SSD 

is getting cheaper than HDD. 

And along comes a database that gives us bleeding edge DB research with a 

brew or pip update, that has near zero startup time.

And it can even compile to WASM. 



What makes DuckDB fun ?

● Small binary matters

● Fast startup matters: 15 milliseconds

● Native code matters. JVM startup, hotspot overhead 

amortises as larger scale

● SQL Syntax that is postgres-like, and functions you can 

usually guess

● performant: query engine based on most recent innovations

● improving all the time. very short academic -> production 

pipeline

● embed in whatever you want



As tool of convenience



Data Infra Experiments with DuckDB

● Extract networks from twitter to supply leads

● Semantic similarity: HuggingFace model to get embeddings, and then did a cosine 

similarity over array type

● "ETL Agents". Summarize at edge.

● App vendor w some analytics. Some clients outgrow pg for BI. Export to parquet, DuckDB 

engine against S3

● Researcher wanted to use a real DB to test a lineage method. DuckDB made it available.

Chipping 
away at 
ETL

DW ingest, ELT, aggregation
Chipping 
at BI 
sources

Standalone 
systems



Add a postgres front-end...

postgres client
duckdb "pg"

postgres client





Lance: ML Data format

Lance is a columnar data format with better random access properties than parquet, 

making it a better choice for vector search, and inference. 

"Compatible with Pandas, DuckDB, Polars, Pyarrow"

One of these is a Database, why ? 

DuckDB is a good choice to showcase a db integration.



Extension to query Athena



Scan postgres faster than psql



https://www.wheretrue.com/wtt-01



brew install duckdb

apt/yum install duckdb

pip install duckdb

duckdb.org -> Installations



MotherDuck



What is MotherDuck?

Serverless DuckDB

Client is DuckDB in all its forms:

python, cli, WASM, JS etc.



Application
driver

Typical relationship with DB

Server

parse bind optimize execute results

SQL

rows

I send you SQL. I 

wait. You send me 

back rows.

Mainframe 

relationship.



DuckDB In-Process

Application
DuckDB

Parse Bind Optimize Execute resultsSQL



MotherDuck Architecture:

DuckDB+Extensions

Web UI

WASM

DuckDBClient (e.g Jupyter)

Server Ext StorageDuckDB

Client Ext

DuckDB

Client Ext

Control



duckdb-0.7.1

D .open "md:tino"       

-- OAuth Loop for credentials

D CREATE DATABASE db1

D SELECT name FROM md_databases()

  db1

D CREATE TABLE t1 as select 'abc' as x

D ATTACH local.db as L  

D SELECT * from db1.t1

    JOIN L.t1 on (id)



Application

Motherduck
Server

MotherDuck
Extension

MotherDuck Execution

DuckDB
Parse Bind Optimize Execute

Bind Optimize

Execute

results

Bind



CREATE OR REPLACE TABLE remote4 AS 
  SELECT * FROM local1 
    where local1.foo IN
    (SELECT remote1.col1 FROM remote1
     JOIN remote2 ON
          remote1.col1=remote2.col1);

⋈

⋈local1.foo

remote1 remote2

remote1



create table local.cache_1 

as (select .... from remote)

select from cache_1 where...

-- 1ms

select a, sum(b) from 

cache_1 group by a

-- 1ms

cache_1

Trivial local result reuse



Thank you.

tino@motherduck.com

nick@motherduck.com


