
DATA WAREHOUSES

ARE GILDED CAGES.

WHAT COMES NEXT ?

Tino Tereshko (in lieu of Nick Ursa)

Co-Founder & Head of Produck, MotherDuck

 (v1.1)

Agenda

1

2

3

4

My experience of the last 15 years of analytics tech

developments

Some luke warm takes. Please no one sue me.

We note a shift in hardware

A possible different future

End of History for OLAP ?

20202015201020052000

Teradata
Exadata
Netezza

SQL Server

Google MapReduce
Google GFS

Hadoop
Bigtable
Vertica

Paraccel

Cloudera
Hortonworks

Pig

2000

2003

2006

2008

BigQuery
EMR

HDInsights
Druid

Snowflake

2012

Redshift
Databricks

Presto
2013

Athena

2015

Clickhouse

2016

DuckDB

2019

Hive
Elastic

2010

The declining value of your average row

Data Warehouses made Distributed OLAP

usable

Big Tech: had the resources to produce with open source Big Data. They

could contribute patches, whole teams dedicated to what you, as a mid

size co data engineer, had to learn on the fly.

Smaller data orgs hat to do their best. Needed better reliability and

usability than those system. So the invisible hand kicked into gear.

Data Warehouses are becoming

everything we asked for

● They took scale limits away

● Easy to use distributed systems. No OOMs. (Athena .. Presto)

● Scale up and down elastically (to varying degrees)

● Handle unstructured and semistructured data

● Data movement behind the scenes for us for locality

● Caching as needed, and cache expiry (the hard part)

● They have industry standard interfaces: JDBC, ODBC, postgres

wire

● Some have facilities for easy streaming ingest

● They can also interoperate with your lake, external tables in S3

● Optimize your workloads behind the scenes

How will they grow ?

Are Data Warehouses...

Mainframes ?

DWs as Mainframes

● You send text -> they send

back results

● Everyone competes for central

resources

● moving all your compute to a

walled garden

● SaaS ecosystem reinforces

this dynamic, cheaper for

them to integrate once w/

cloud vendor

Let's compare to app developers

Data teams are kind of unique culture. Batch vs transaction,

centralized state.

● App devs often can spin up whole stack locally

● They can run their database in docker

● Even AWS Lambdas have emulators...

● Local testing that's fast

Meanwhile...

● Can't test truly locally. can't even verify syntax locally !

● Fully Saas = mishmash of cloud based editors

● Dev DW environments often end up with stale schema

Data WarehousesCareer

Vendorization of data engineering

2010 data engineer

● Java SWE / SRE-ish

● Understood how the systems worked, kinda

● Creating needed DB abstractions (sometimes reinventing the wheel)

2022 MDS data engineer

● Build v. buy often going to buy

● Glue together SaaS offerings

● Looks a lot like a cloud-ish DBAdmin from 2000s. Vendor jails.

But this is just the way automation goes, right ? Technology gets

better, we move up the abstraction layer, more people can participate.

Bills.

SELF SERVICE BI WITH ACCESS TO RAW

DATA IS A LOW INTEREST RATE PHENOMENON

WHY ARE BALLOONING

COSTS SO COMMON NOW ?

Why are ballooning costs so common now ?

● Easy cloud scale up = kick the can down the road

● UX in tools favor accretion, not deprecation

● ELT

● Linear increase in data = Exponential cost in joins

● Self-service

● dbt: bias to whole table creation, ease of model

proliferation

● Political economy of analytics teams

● Costs not exposed

THE MDS IS TURNING US

ALL INTO DATA

CONSUMERISTS

An Ode To Moore's Law *
 (and how it relates to analytics)

OLAP is primarily I/O bound,

Sequential access

Read heavy

What were the original motivations for distributed systems for data ?

● avoid Licencing costs for commercial DBs

● aggregate scan bandwidth over all nodes (If S3, NICs, if HDFS,

disks)

● aggregate compute over all nodes when parallel possible

● cheap commodity hardware

But distribution didn't come for free. Method calls become RPC network

calls, pointers become serialization. Most non trivial plans require

shuffles.

What *has* improved ?

binary_executor.hpp

Parallel execution:

● more cores w lower power each

● deeper pipelines, multiple

operations at once

● branch prediction

● automatic vectorization

Caching:

● L1/L2/L3 caches bigger

● preloading data into caches

I/O

● memory bandwidth (L1-3 and DRAM)

● SSD cost

● DRAM Speeds

● cost of high performance networking. 10Gbit

common, 100Gbit possible

#define STANDARD_VECTOR_SIZE 2048

OLAP is primarily I/O bound,

Sequential access

2007 2014 2020

https://jcmit.net/index.htm

8 cores L2

exchanges

DRAM = 600GB/s

https://chipsandcheese.com/2022/05/29/graviton-3-first-impressions/

8 cores from

DRAM = 152GB/s

AWS then and now

m7g.8xlarge
$1.30/hr in 2023 $

● Graviton3
● 32 cores
● L1 64k x 32,
● L2 1M x 32,
● L3 32M (shared)
● 128GB RAM
● 20 GB/s core mem
● 300 GB/s mem
● 2GB (15Gb) net

m2.4xl (2014)
$1.25/hr in 2023 $

● Intel Xeon E5-2665
● 8 cores
● L1: 32k x 8
● L2: 256k x 8
● L3: 20MB (shared)
● 68GB RAM
● ~7 GB/s core mem
● 51 MB/s agg mem
● "high" net

Apple's M1 I/O

Unified (M1) 60GB/s BW

M1 Pro 200 Gb/s

M1 Max 400 GB/s

M1 Ultra 800 Gb/s

M1 SSD

2.0 GB/s SSD read

2.5 GB SSD read

Shuffles: Distributed

https://blog.scottlogic.com/2018/03/22/apache-spark-performance.html

Consider what each of these lines

actually *are* ?

Sender:

1. serialize the data from it's in

memory representation

2. copy it into a network buffer

Receiver:

1. copy from network buffer when

complete

2. deserialize into actual data

structure

NIC

... vs in memory

DuckDB avoids a

shared hashmap.

Each producer

writes out

pre-partitioned

subsets of keys,

so the next step

can also be

parallelized.

https://duckdb.org/2022/03/07/aggregate-hashtable.html

GrpAgg
Part

GrpAgg
Part

GrpAgg
Part

0x18
0x19
0x20

0x21
0x22
0x23

0x24
0x25
0x26

2-500GB/s

Broadcast: shared mem advantage

All threads just read

the same block of mem.

T1

T1

T1

T1

T2a

T2b

T2c

T1

T2a

T2b

T2c

⋈

⋈

⋈

⋈

⋈

⋈

Same block transferred

to all nodes via

network

The missing middle

When do you move to a data warehouse ?

You start with postgres. It handles your traffic as you grow. It's hosted,

so you can add cores. You want to get a handle on your operations. You

make some dashboard queries.

The business grows. You dashboard queries, and some exports you now do,

are hurting prod. So you make a replica.

For many people this is fine. But let's say you outgrow this what is your

next step ?

On GCP, BigQuery. Pricing is good.

On AWS, Redshift. Snowflake ?

It seems a big leap in cost, complexity, and fragility to go to a big

warehouse.

It's like there is a step missing in the middle.

DuckDB: A playground

So:

We have a distant relationship with our Data Warehouse Processing engines.

We can't run them locally. We can't even check syntax without calling

them.

Meanwhile, the original motivations for using distributed systems in the

first place are eroding. Our hot set is much smaller than our full data

footprint. Single machines can have huge core counts, which we are now

able to feed from memory. Our compilers are steadily getting better at

harnessing parallelism.

Our local computers have similar increases in bandwidth, both internally.

Meanwhile, the last mile connection to our local machines are beefy. SSD

is getting cheaper than HDD.

And along comes a database that gives us bleeding edge DB research with a

brew or pip update, that has near zero startup time.

And it can even compile to WASM.

What makes DuckDB fun ?

● Small binary matters

● Fast startup matters: 15 milliseconds

● Native code matters. JVM startup, hotspot overhead

amortises as larger scale

● SQL Syntax that is postgres-like, and functions you can

usually guess

● performant: query engine based on most recent innovations

● improving all the time. very short academic -> production

pipeline

● embed in whatever you want

As tool of convenience

Data Infra Experiments with DuckDB

● Extract networks from twitter to supply leads

● Semantic similarity: HuggingFace model to get embeddings, and then did a cosine

similarity over array type

● "ETL Agents". Summarize at edge.

● App vendor w some analytics. Some clients outgrow pg for BI. Export to parquet, DuckDB

engine against S3

● Researcher wanted to use a real DB to test a lineage method. DuckDB made it available.

Chipping
away at
ETL

DW ingest, ELT, aggregation
Chipping
at BI
sources

Standalone
systems

Add a postgres front-end...

postgres client
duckdb "pg"

postgres client

Lance: ML Data format

Lance is a columnar data format with better random access properties than parquet,

making it a better choice for vector search, and inference.

"Compatible with Pandas, DuckDB, Polars, Pyarrow"

One of these is a Database, why ?

DuckDB is a good choice to showcase a db integration.

Extension to query Athena

Scan postgres faster than psql

https://www.wheretrue.com/wtt-01

brew install duckdb

apt/yum install duckdb

pip install duckdb

duckdb.org -> Installations

MotherDuck

What is MotherDuck?

Serverless DuckDB

Client is DuckDB in all its forms:

python, cli, WASM, JS etc.

Application
driver

Typical relationship with DB

Server

parse bind optimize execute results

SQL

rows

I send you SQL. I

wait. You send me

back rows.

Mainframe

relationship.

DuckDB In-Process

Application
DuckDB

Parse Bind Optimize Execute resultsSQL

MotherDuck Architecture:

DuckDB+Extensions

Web UI

WASM

DuckDBClient (e.g Jupyter)

Server Ext StorageDuckDB

Client Ext

DuckDB

Client Ext

Control

duckdb-0.7.1

D .open "md:tino"

-- OAuth Loop for credentials

D CREATE DATABASE db1

D SELECT name FROM md_databases()

 db1

D CREATE TABLE t1 as select 'abc' as x

D ATTACH local.db as L

D SELECT * from db1.t1

 JOIN L.t1 on (id)

Application

Motherduck
Server

MotherDuck
Extension

MotherDuck Execution

DuckDB
Parse Bind Optimize Execute

Bind Optimize

Execute

results

Bind

CREATE OR REPLACE TABLE remote4 AS
 SELECT * FROM local1
 where local1.foo IN
 (SELECT remote1.col1 FROM remote1
 JOIN remote2 ON
 remote1.col1=remote2.col1);

⋈

⋈local1.foo

remote1 remote2

remote1

create table local.cache_1

as (select from remote)

select from cache_1 where...

-- 1ms

select a, sum(b) from

cache_1 group by a

-- 1ms

cache_1

Trivial local result reuse

Thank you.

tino@motherduck.com

nick@motherduck.com

