
hi, i’m lloyd

Encore!

1987 - Force

1992 - dBASE

1994 - LiveWire

2003 - LTool (perl)

2007 - LTool (python)

2009 - El Tool (php)

2012 - Looker

2020 - Malloy

Data is Rectangular and other
Limiting Misconceptions

Operations within the Rectangle

filtering

projecting

group by / aggregate

windowing

Humans think in rectangular calculations

In SQL Joins, produce a new rectangle

In SQL joins produce
a new rectangle.

FIRST: Joins tables
expand rows to first

produce a new
rectangle

THEN: perform
Rectangular

operations up on the
new rectangle.

orders

order_id order_date shipping_cost user_id

1 2022-01-01 2 1

2 2022-01-01 3 2

3 2022-01-02 1 1

4 2022-01-02 23 3

orders order_items

order_id order_date shipping_cost user_id

1 2022-01-01 2 1

2 2022-01-01 3 2

3 2022-01-02 1 1

4 2022-01-02 23 3

item_id order_id item price

1 1 Chocolate 2

2 1 Twizzler 1

3 2 Chocolate 2

4 2 M and M 1

5 3 Twizzler 1

6 4 Fudge 3

7 4 Skittles 1

total_shipping

total_revenue

Let’s measure two things, from sales…

SELECT

 sum(shipping_cost) AS total_shipping

FROM ‘orders.csv

total_shipping

total_shipping

8

SELECT

 sum(price) AS total_revenue

FROM ‘items.csv’;

total_revenue

11

total_revenue

SELECT

 order_date,

 sum(shipping_cost) AS total_shipping

FROM ‘orders.csv’

GROUP BY 1

ORDER BY 1

order_date total_shipping

2022-01-01 5

2022-01-02 3

total_shipping by date

SELECT

 order_date,

 sum(price) AS total_revenue

FROM ‘orders.csv’ AS orders

JOIN ‘items.cvs’ AS items on

 orders.order_id = items.order_id

GROUP BY 1

ORDER BY 1

total_revenue by date

order_date total_revenue

2022-01-01 6

2022-01-02 5

Here comes the tricky part. I’d like a table that looks like the one

below. It is useful for all kinds of reasons. How does revenue

relate to shipping?

Show me a table that looks like…

order_date total_revenue total_shipping

2022-01-01 6 5

2022-01-02 5 3

How does revenue relate to shipping?

SELECT

 orders.order_date,

 sum(items.price) AS total_revenue,

 sum(orders.shipping_cost) AS total_shipping

FROM ‘orders.csv’ AS orders

JOIN ‘items.cvs’ AS items ON orders.order_id = items.order_id

GROUP BY 1

ORDER BY 1

order_date total_revenue total_shipping

2022-01-01 6 10

2022-01-02 5 5

SELECT

 orders.order_date,

 sum(items.price) AS total_revenue,

 sum(orders.shipping_cost) AS total_shipping

FROM ‘orders.csv’ AS orders

JOIN ‘items.cvs’ AS items ON orders.order_id = items.order_id

GROUP BY 1

ORDER BY 1

order_date total_revenue total_shipping

2022-01-01 6 10

2022-01-02 5 5
WRONG!

SELECT *

FROM ‘orders.csv’ orders

LEFT JOIN ‘items.csv’ AS items ON orders.order_id = items.order_id

order_id order_date shipping_cost user_id item_id order_id item price

1 2022-01-01 2 1 2 1 Twizzler 1

2 2022-01-01 3 2 4 2 M and M 1

3 2022-01-02 1 1 5 3 Twizzler 1

4 2022-01-02 2 3 7 4 Skittles 1

1 2022-01-02 2 1 1 1 Chocolate 2

2 2022-01-02 3 2 3 2 Chocolate 2

4 2022-01-02 2 3 6 4 Fudge 3

order_id order_date shipping_cost user_id item_id order_id item price

1 2022-01-01 2 1 2 1 Twizzler 1

2 2022-01-01 3 2 4 2 M and M 1

3 2022-01-02 1 1 5 3 Twizzler 1

4 2022-01-02 2 3 7 4 Skittles 1

1 2022-01-02 2 1 1 1 Chocolate 2

2 2022-01-02 3 2 3 2 Chocolate 2

4 2022-01-02 2 3 6 4 Fudge 3

SELECT *

FROM ‘orders.csv’ orders

LEFT JOIN ‘items.csv’ AS items ON orders.order_id = items.order_id

Order rows are duplicated by the JOIN so computation is overstated.

order_id order_date shipping_cost user_id item_id order_id item price

1 2022-01-01 2 1 2 1 Twizzler 1

2 2022-01-01 3 2 4 2 M and M 1

3 2022-01-02 1 1 5 3 Twizzler 1

4 2022-01-02 2 3 7 4 Skittles 1

1 2022-01-02 2 1 1 1 Chocolate 2

2 2022-01-02 3 2 3 2 Chocolate 2

4 2022-01-02 2 3 6 4 Fudge 3

SELECT *

FROM ‘orders.csv’ orders

LEFT JOIN ‘items.csv’ AS items ON orders.order_id = items.order_id

Order rows are duplicated by the JOIN so computation is overstated.

order_id order_date shipping_cost user_id item_id order_id item price

1 2022-01-01 2 1 2 1 Twizzler 1

2 2022-01-01 3 2 4 2 M and M 1

3 2022-01-02 1 1 5 3 Twizzler 1

4 2022-01-02 2 3 7 4 Skittles 1

1 2022-01-02 2 1 1 1 Chocolate 2

2 2022-01-02 3 2 3 2 Chocolate 2

4 2022-01-02 2 3 6 4 Fudge 3

SELECT *

FROM ‘orders.csv’ orders

LEFT JOIN ‘items.csv’ AS items ON orders.order_id = items.order_id

Order rows are duplicated by the JOIN so computation is overstated.

Combine Result Rectangles
(Traditional data warehousing)

WITH orders_date AS (
 SELECT
 order_date,
 sum(shipping_cost) AS total_shipping
 FROM ‘orders.csv’
 GROUP BY 1
),

order_date total_shipping

2022-01-01 5

2022-01-02 3

WITH items_date AS (
 SELECT
 order_date,
 sum(price) AS total_revenue
 FROM ‘orders.csv’ AS orders
 JOIN ‘items.csv’ AS items
 ON orders.order_id = items.order_id
 GROUP BY 1
)

order_date total_revenue

2022-01-01 6

2022-01-02 5

SELECT
 orders_date.order_date,
 total_revenue,
 total_shipping
FROM orders_date
JOIN items_date
 ON orders_date.order_date =
 items_date.order_date

order_date total_revenue total_shipping

2022-01-01 6 5

2022-01-02 5 3

SELECT
 orders_date.order_date,
 total_revenue,
 total_shipping
FROM orders_date
JOIN items_date
 ON orders_date.order_date =
 items_date.order_date

order_date total_revenue total_shipping

2022-01-01 6 5

2022-01-02 5 3

WITH items_date AS (
 SELECT
 order_date,
 sum(price) AS total_revenue
 FROM ‘orders.csv’ AS orders
 JOIN ‘items.csv’ AS items
 ON orders.order_id = items.order_id
 GROUP BY 1
)

order_date total_revenue

2022-01-01 6

2022-01-02 5

WITH orders_date AS (
 SELECT
 order_date,
 sum(shipping_cost) AS total_shipping
 FROM ‘orders.csv’
 GROUP BY 1
),

order_date total_shipping

2022-01-01 5

2022-01-02 3

order_date total_revenue total_shipping

2022-01-01 6 5

2022-01-02 5 3

order_date total_revenue total_shipping

2022-01-01 6 5

2022-01-02 5 3

user_id total_revenue total_shipping

1 4 3

2 3 3

3 4 2

SELECT
 orders_date.order_date,
 total_revenue,
 total_shipping
FROM orders_date
JOIN items_date
 ON orders_date.order_date =
 items_date.order_date

WITH items_date AS (
 SELECT
 order_date,
 sum(price) AS total_revenue
 FROM ‘orders.csv’ AS orders
 JOIN ‘items.csv’ AS items
 ON orders.order_id = items.order_id
 GROUP BY 1
)

WITH orders_date AS (
 SELECT
 order_date,
 sum(shipping_cost) AS total_shipping
 FROM ‘orders.csv’
 GROUP BY 1
),

SELECT
 orders_date.order_date,
 total_revenue,
 total_shipping
FROM orders_date
JOIN items_date
 ON orders_date.order_date =
 items_date.order_date

WITH items_date AS (
 SELECT
 order_date,
 sum(price) AS total_revenue
 FROM ‘orders.csv’ AS orders
 JOIN ‘items.csv’ AS items
 ON orders.order_id = items.order_id
 GROUP BY 1
)

WITH orders_date AS (
 SELECT
 order_date,
 sum(shipping_cost) AS total_shipping
 FROM ‘orders.csv’
 GROUP BY 1
),

SELECT
 order_user_id.use_id,
 total_revenue,
 total_shipping
FROM orders_user_id
JOIN orders_user_id
 ON orders_user_id.user_id =
 items_user_id.user_id

WITH items_user_id AS (
 SELECT
 user_id,
 sum(price) AS total_revenue
 FROM ‘orders.csv’ AS orders
 JOIN ‘items.csv’ AS items
 ON orders.order_id = items.order_id
 GROUP BY 1
)

WITH orders_user_id AS (
 SELECT
 user_id,
 sum(shipping_cost) AS total_shipping
 FROM ‘orders.csv’
 GROUP BY 1
),

order_date total_revenue total_shipping

2022-01-01 6 5

2022-01-02 5 3

order_date total_revenue

2022-01-01 6

2022-01-02 5

order_date total_shipping

2022-01-01 5

2022-01-02 3

SELECT
 order_user_id.use_id,
 total_revenue,
 total_shipping
FROM orders_user_id
JOIN orders_user_id
 ON orders_user_id.user_id =
 items_user_id.user_id

WITH items_user_id AS (
 SELECT
 user_id,
 sum(price) AS total_revenue
 FROM ‘orders.csv’ AS orders
 JOIN ‘items.csv’ AS items
 ON orders.order_id = items.order_id
 GROUP BY 1
)

WITH orders_user_id AS (
 SELECT
 user_id,
 sum(shipping_cost) AS total_shipping
 FROM ‘orders.csv’
 GROUP BY 1
),

Traditional data
warehouse star schema

card_id
name
address
phone
email
postal_code
phone

order_id
unit_price
quantity
discount
date
region

purchase_id
receipt
tax
currency
price_sold
credit_card
cardholder
time_id

promotion_id
time_id
promo_type
promo_value
promo_cost

supplier_id
supplier_name
region
address
postal_code
email
phone

product_id
name
category
season
cost
price

Fact Table

Designed at a time when

databases were slow

data was relatively big

Traditional Data Warehousing (Star Schema)

Designed at a time when

databases were slow

data was relatively big

Not real time - reporting only

Traditional Data Warehousing (Star Schema)

Designed at a time when

databases were slow

data was relatively big

Not real time - reporting only

ETL from storage format to reporting format

Traditional Data Warehousing (Star Schema)

Enter Malloy

Malloy makes the promise that join relations won’t
affect aggregate calculations.

Malloy makes the promise that join relations won’t
affect aggregate calculations.

Data is first described in a network. The network of
joined rectangles is a reusable object called a source.

Malloy makes the promise that join relations won’t
affect aggregate calculations.

Data is first described in a network. The network of
joined rectangles is a reusable object called a source.

In a query operation, aggregate calculations are
applied. The aggregate calculations can reference
any ‘locality’ in the join network and will compute
results correctly.

query: table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
}
-> {
 group_by: order_date
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
order_by: 1
}`

Malloy

query: table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
}
-> {
 group_by: order_date
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
 order_by: 1
}

SOURCE

Malloy

query: table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
}
-> {
 group_by: order_date
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
 order_by: 1
}

LOCAL TO ITEMS

Malloy

query: table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
}
-> {
 group_by: order_date
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
 order_by: 1
}

LOCAL TO ORDERS

Malloy

query: table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
}
-> {
 group_by: order_date
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
 order_by: 1
}

Malloy

query: table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
}
-> {
 group_by: order_date
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
 order_by: 1
}

Malloy

order_date total_revenue total_shipping

2022-01-01 6 5

2022-01-02 5 3

query: table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
}
-> {
 group_by: user_id
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
 order_by: 1
}

Malloy

user_id total_revenue total_shipping

1 4 3

2 3 3

3 4 2

SELECT
 order_user_id.use_id,
 total_revenue,
 total_shipping
FROM orders_user_id
JOIN orders_user_id
 ON orders_user_id.user_id =
 items_user_id.user_id

WITH items_user_id as (
 SELECT
 user_id,
 sum(price) AS total_revenue
 FROM ‘orders.csv’ AS orders
 JOIN ‘items.csv’ AS items
 ON orders.order_id = items.order_id
 GROUP BY 1
)

WITH orders_user_id as (
 SELECT
 user_id,
 sum(shipping_cost) AS total_shipping
 FROM ‘orders.csv’
 GROUP BY 1
), query: table(‘duckdb:orders.csv’) + {

 join_many: items is
table(‘duckdb:items.csv’)
 on order_id = items.order_id
}
-> {
 group_by: user_id
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
order_by: 1
}`

Dimensional Freedom
Produce results from anywhere in the join network

SELECT
 base.”order_date” AS “order_date”,
 COALESCE(SUM(items_0.”price”),0) AS “total_revenue”,
 COALESCE((
 SELECT sum(a.val) AS value
 FROM (
 SELECT UNNEST(list(distinct {key:base.”__distinct_key”,
val: base.”shipping_cost”})) a
)
),0) AS “total_shipping”
FROM (SELECT GEN_RANDOM_UUID() AS __distinct_key, * FROM orders.csv
AS x) AS base
LEFT JOIN items.csv AS items_0
 ON base.”order_id”=items_0.”order_id”
GROUP BY 1
ORDER BY 1 ASC NULLS LAST

source: orders_items is table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
 declare:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
}

Malloy’s reusability is a source

source: orders_items is table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
 declare:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
}

Sources are named

source: orders_items is table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
 declare:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
}

Sources describe the join relationships

source: orders_items is table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
 declare:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
}

Sources describe the calculations (aggregate and scalar)

source: orders_items is table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
 declare:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
}

Sources describe the calculations (aggregate and scalar)

source: orders_items is table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
 declare:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
}

query: orders_items -> {
 group_by: order_date
 aggregate: total_revenue, total_shipping
 order_by: 1
}

Using a source makes queries very simple

source: orders_items is table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
 declare:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
}

query: orders_items -> {
 group_by: order_date
 aggregate: total_revenue, total_shipping
 order_by: 1
}

Using a source makes queries very simple

query: orders_items -> {
 group_by: user_id
 aggregate: total_revenue, total_shipping
 order_by: 1
}

source: orders_items is table(‘duckdb:orders.csv’) + {
 join_many: items is table(‘duckdb:items.csv’)
 on order_id = items.order_id
 declare:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
}

query: orders_items -> {
 group_by: order_date
 aggregate: total_revenue, total_shipping
 order_by: 1
}

Using a source makes queries very simple

query: orders_items -> {
 group_by: user_id
 aggregate: total_revenue, total_shipping
 order_by: 1
}

query: orders_items -> {
 aggregate: total_revenue
}

column_name column_type null key default extra

order_id INTEGER YES

order_date DATE YES

shipping_cost INTEGER YES

user_id INTEGER YES

items STRUCT(item_id INTEGER, item
VARCHAR, price INTEGER)[] YES

[
 {
 “order_id”: 1,
 “order_date”: “2022-01-01”,
 “shipping_cost”: 2,
 “user_id”: 1,
 “items”: [
 {
 “item_id”: 1,
 “item”: “Chocolate”,
 “price”: 2
 },
 {
 “item_id”: 2,
 “item”: “Twizzler”,
 “price”: 1
 }
]
 },
 {
 “order_id”: 2,
 “order_date”: “2022-01-01”.

order_date total_revenue total_shipping

2022-01-01 6 5

2022-01-02 5 3

query: table(‘duckdb:orders_items.parquet’)
-> {
 group_by: order_date
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
 order_by: 1
}

query:
table(‘duckdb:orders_items.parquet’)
-> {
 group_by: order_date
 aggregate:
 total_revenue is items.price.sum()
 total_shipping is shipping_cost.sum()
 nest: by_items is {
 group_by: items.item
 aggregate: total_revenue is
 items.price.sum()
 }
 order_by: 1
}

order_date total_revenue total_shipping by_items

2022-01-01 6 5 item total_revenue

Chocolate 4

Twizzler 1

M and M 1

2022-01-02 5 3 item total_revenue

Fudge 3

Skittles 1

Twizzler 1

Demo

http://www.malloydata.dev

