hi, i'm lloyd

Encorel

Netscape =

1987 - Force

1992 - dBASE

1994 - LiveWire

2003 - LTool (perl)

L\

[]Readyforce

\Soker

M)

2007 - LTool (python)

2009 - El Tool (php)

2012 - Looker

2020 - Malloy

Data is Rectangular and other
Limiting Misconceptions

Operations within the Rectangle

filtering group by / aggregate

projecting windowing

Humans think in rectangular calculations

In SQL Joins, produce a new rectangle

FIRST: Joins tables THEN: perform
In SQL joins produce expand rows to first Rectangular
a new rectangle. produce a new operations up on the

rectangle new rectangle.

orders

order_id

1

2
3
4

order_date

2022-01-01
2022-01-01
2022-01-02
2022-01-02

shipping_cost user_id

2 1
3 2
1 1
23 3

orders

order_id

1

2
3
4

order_date

2022-01-01
2022-01-01
2022-01-02
2022-01-02

shipping_cost
2

3

1

23

order_items

user_id item_id order_id
1 1 1
2

1

N oo b wWON
A M lw NN

item

Chocolate
Twizzler
Chocolate
Mand M
Twizzler
Fudge
Skittles

price

Let’'s measure two things, from sales...

total_shipping

total_revenue

total_shipping

SELECT
sum(shipping_cost) AS total_shipping

total_shipping

FROM ‘orders.csv 8

total_revenue

SELECT

sum(price) AS total_revenue

total_revenue

FROM ‘items.csv’; 1

total_shipping by date

SELECT order_date total_shipping
order_date,
sum(shipping_cost) AS total_shipping 2022-01-01 >
FROM ‘orders.csv’ 2022-01-02 3

GROUP BY 1
ORDER BY 1

total_revenue by date

SELECT order_date total_revenue
order_date,
sum(price) AS total_revenue 2022-01-01 6
FROM ‘orders.csv’ AS orders 2022-01-02 5
JOIN ‘items.cvs’ AS items on
orders.order_id = items.order_id
GROUP BY 1

ORDER BY 1

How does revenue relate to shipping?

order_date total_revenue total_shipping
2022-01-01 6 5

2022-01-02) 3

SELECT
orders.order_date,
sum(items.price) AS total_revenue,
sum(orders.shipping_cost) AS total_shipping
FROM ‘orders.csv’ AS orders
JOIN ‘items.cvs’ AS items ON orders.order_id = items.order_id
GROUP BY 1
ORDER BY 1

order_date total_revenue total_shipping
2022-01-01 6 10

2022-01-02) 5

SELECT
orders.order_date,
sum(items.price) AS total_revenue,
sum(orders.shipping_cost) AS total_shipping
FROM ‘orders.csv’ AS orders
JOIN ‘items.cvs’ AS items ON orders.order_id = items.order_id
GROUP BY 1
ORDER BY 1

order_date total_revenue total_shipping

2022-01-01 6 10
WRONG!

2022-01-02) 5

SELECT *

FROM ‘orders.csv’
LEFT JOIN

order_id
1

2

orders

‘items.csv’ AS items ON orders.order_id = items.order_id

order_date
2022-01-01
2022-01-01
2022-01-02
2022-01-02
2022-01-02
2022-01-02

2022-01-02

shipping_cost
2

3

user_id
1

2

item_id
2

4

order_id
1

2

N

item
Twizzler
Mand M
Twizzler
Skittles
Chocolate
Chocolate

Fudge

price

SELECT *

FROM ‘orders.csv’
LEFT JOIN

order_id
1

2

orders

‘items.csv’ AS items ON orders.order_id = items.order_id

order_date
2022-01-01
2022-01-01
2022-01-02
2022-01-02
2022-01-02
2022-01-02

2022-01-02

shipping_cost
2

3

user_id
1

2

item_id
2

4

order_id
1

2

N

item
Twizzler
Mand M
Twizzler
Skittles
Chocolate
Chocolate

Fudge

Order rows are duplicated by the JOIN so computation is overstated.

price

SELECT *

FROM ‘orders.csv’
LEFT JOIN

order_id
1

2

orders

‘items.csv’ AS items ON orders.order_id = items.order_id

order_date
2022-01-01
2022-01-01
2022-01-02
2022-01-02
2022-01-02
2022-01-02

2022-01-02

shipping_cost
2

3

user_id
1

2

item_id
2

4

order_id
1

2

N

item
Twizzler
Mand M
Twizzler
Skittles
Chocolate
Chocolate

Fudge

Order rows are duplicated by the JOIN so computation is overstated.

price

SELECT *

FROM ‘orders.csv’
LEFT JOIN

order_id
1

2

orders

‘items.csv’ AS items ON orders.order_id = items.order_id

order_date
2022-01-01
2022-01-01
2022-01-02
2022-01-02
2022-01-02
2022-01-02

2022-01-02

shipping_cost
2

3

user_id
1

2

item_id
2

4

order_id
1

2

IS

item
Twizzler
Mand M
Twizzler
Skittles
Chocolate
Chocolate

Fudge

Order rows are duplicated by the JOIN so computation is overstated.

price

Combine Result Rectangles

(Traditional data warehousing)

WITH orders_date AS (

SELECT order_date total_shipping
order_date,
sum(shipping_cost) AS total_shipping 2022-01-01 5

FROM ‘orders.csv’
GROUP BY 1 2022-01-02 3
),

WITH items_date AS (

SELECT
order_date, order_date total_revenue
sum(price) AS total_revenue
FROM ‘orders.csv’ AS orders 2022-01-01 6
JOIN ‘items.csv’ AS items
ON orders.order_id = items.order_id 2022-01-02 5

GROUP BY 1

SELECT
orders_date.order_date, order_date total_revenue total_shipping
total_revenue,
total_shipping
FROM orders_date
JOIN items_date
ON orders_date.order_date = 2022-01-02 S 3
items_date.order_date

2022-01-01 6 S

WITH orders_date AS (
SELECT
order_date,
sum(shipping_cost) AS total_shipping
FROM ‘orders.csv’
GROUP BY 1

),

WITH items_date AS (
SELECT
order_date,
sum(price) AS total_revenue
FROM ‘orders.csv’ AS orders
JOIN ‘items.csv’ AS items
ON orders.order_id = items.order_id

GROUP BY 1

)

SELECT
orders_date.order_date, order date
total_revenue, -
total_shipping 2022-01-01

FROM orders_date
JOIN items_date
ON orders_date.order_date = 2022-01-02
items_date.order_date

order_date
2022-01-01

2022-01-02

order_date
2022-01-01

2022-01-02

total_revenue

6

5

total_shipping
5

3

total_revenue
6

5

total_shipping
5

3

order_date total_revenue total_shipping
2022-01-01 6 5

2022-01-02 5 3

order_date
2022-01-01

2022-01-02

user_id
1

2

total_revenue

total_revenue
4

3

total_shipping

total_shipping
3

3

WITH orders_date AS (
SELECT
order_date,
sum(shipping_cost) AS total_shipping
FROM ‘orders.csv’
GROUP BY 1

),

WITH items_date AS (
SELECT
order_date,
sum(price) AS total_revenue
FROM ‘orders.csv’ AS orders
JOIN ‘items.csv’ AS items
ON orders.order_id = items.order_id
GROUP BY 1

)

SELECT
orders_date.order_date,
total_revenue,
total_shipping

FROM orders_date

JOIN items_date
ON orders_date.order_date =

items_date.order_date

WITH orders_date AS (
SELECT
order_date,
sum(shipping_cost) AS total_shipping
FROM ‘orders.csv’
GROUP BY 1

),

WITH items_date AS (
SELECT
order_date,
sum(price) AS total_revenue
FROM ‘orders.csv’ AS orders
JOIN ‘items.csv’ AS items
ON orders.order_id = items.order_id
GROUP BY 1

)

SELECT
orders_date.order_date,
total_revenue,
total_shipping

FROM orders_date

JOIN items_date
ON orders_date.order_date =

items_date.order_date

WITH orders_user_id AS (
SELECT
user_id,
sum(shipping_cost) AS total_shipping
FROM ‘orders.csv’
GROUP BY 1

),

WITH items_user_id AS (
SELECT
user_id,
sum(price) AS total_revenue
FROM ‘orders.csv’ AS orders
JOIN ‘items.csv’ AS items
ON orders.order_id = items.order_id
GROUP BY 1

)

SELECT
order_user_id.use_id,
total_revenue,
total_shipping

FROM orders_user_id

JOIN orders_user_id
ON orders_user_id.user_id =

items_user_id.user_id

WITH orders_user_id AS (
SELECT
user_id,
sum(shipping_cost) AS total_shipping
FROM ‘orders.csv’
GROUP BY 1

),

WITH items_user_id AS (
SELECT
user_id,
sum(price) AS total_revenue
FROM ‘orders.csv’ AS orders
JOIN ‘items.csv’ AS items
ON orders.order_id = items.order_id
GROUP BY 1

)

SELECT
order_user_id.use_id, order_date
total_revenue,
total_shipping
FROM orders_user_id
JOIN orders_user_id
ON orders_user_id.user_id = 2022-01-02
items_user_id.user_id

2022-01-01

order_date
2022-01-01

2022-01-02

order_date
2022-01-01

2022-01-02

total_revenue

total_shipping

5

total_revenue
6

5

total_shipping

Traditional data
order_id
warehouse star schema unit_price

quantity purchase_id

discount receipt

date tax

region currency
price_sold
credit_card
cardholder
time_id

card_id
name
address
phone

email
postal_code
phone

Fact Table

promotion_id
time_id
promo_type
promo_value
promo_cost

supplier_id
supplier_name
region
address
postal_code
email

phone

product_id
name
category
season
cost

price

Traditional Data Warehousing (Star Schema)

Designed at a time when
databases were slow

data was relatively big

Traditional Data Warehousing (Star Schema)

Designed at a time when
databases were slow
data was relatively big

Not real time - reporting only

Traditional Data Warehousing (Star Schema)

Designed at a time when
databases were slow
data was relatively big

Not real time - reporting only

ETL from storage format to reporting format

/

Enter Malloy

Malloy makes the promise that join relations won't
affect aggregate calculations.

Malloy makes the promise that join relations won't
affect aggregate calculations.

Data is first described in a network. The network of
joined rectangles is a reusable object called a source.

Malloy makes the promise that join relations won't
affect aggregate calculations.

Data is first described in a network. The network of
joined rectangles is a reusable object called a source.

In a query operation, aggregate calculations are
applied. The aggregate calculations can reference
any ‘locality’ in the join network and will compute
results correctly.

Malloy

query: table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id

}
-> {
group_by: order_date
aggregate:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()
order_by: 1
.

Malloy

query: table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id

}
-> {
group_by: order_date
aggregate:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()
order_by: 1

}

Malloy

query: table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id

}
-> {
group_by: order_date
aggregate:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()
order_by: 1

}

Malloy

query: table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id

}
-> {
group_by: order_date
aggregate:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()
order_by: 1

}

Malloy

query: table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id

}
-> {
group_by: order_date
aggregate:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()
order_by: 1

}

Malloy

query: table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id

'
-> {
group_by: order_date
aggregate:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()
order_by: 1
'
order_date total_revenue total_shipping
2022-01-01 6 5

2022-01-02 5 3

Malloy

query: table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id

'
-> {
group_by: user_id
aggregate:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()
order_by: 1
'
user_id total_revenue total_shipping
1 4 3
2 3 3

WITH orders_user_id as (
SELECT
user_id,
sum(shipping_cost) AS total_shipping
FROM ‘orders.csv’

GROUP BY 1
) query: table(‘duckdb:orders.csv’) + {
. . join_many: items is
WI;ELEE$ms_user_1d as (table(‘duckdb:items.csv’)
user id on order_id = items.order_id
sum(price) AS total_revenue i> {
FROM ‘orders.csv’ AS orders Foup bv: user id
JOIN ‘items.csv’ AS items g rz_aié' -
ON orders.order_id = items.order_id ggreg) . .
GROUP BY 1 total_revenue is items.price.sum()
) total_shipping is shipping_cost.sum()
order_by: 1
SELECT }

order_user_id.use_id,
total_revenue,
total_shipping
FROM orders_user_id
JOIN orders_user_id
ON orders_user_id.user_id =
items_user_id.user_id

Dimensional Freedom

Produce results from anywhere in the join network

SELECT
base."”order_date” AS “order_date”,
COALESCE(SUM(items_0."price”),0) AS “total_revenue”,
COALESCE((
SELECT sum(a.val) AS value
FROM (
SELECT UNNEST(list(distinct {key:base.”__distinct_key”,
val: base.”shipping_cost”})) a
)
),0) AS “total_shipping”
FROM (SELECT GEN_RANDOM_UUID() AS __distinct_key, * FROM orders.csv
AS x) AS base
LEFT JOIN items.csv AS items_0
ON base.”order_id”"=items_0."order_id"
GROUP BY 1
ORDER BY 1 ASC NULLS LAST

Malloy’s reusability is a

source: orders_items is table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id
declare:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()

Sources are named

source: orders_items is table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id
declare:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()

Sources describe the join relationships

source: orders_items is table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id
declare:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()

Sources describe the calculations (aggregate and scalar)

source: orders_items is table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id
declare:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()

Sources describe the calculations (aggregate and scalar)

source: orders_items is table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id
declare:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()

source: orders_items is table(‘duckdb:orders.csv’) + {
join_many: items is table(‘duckdb:items.csv’)
on order_id = items.order_id
declare:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()

Using a source makes queries very simple

query: orders_items -> {
group_by: order_date
aggregate: total_revenue, total_shipping
order_by: 1

}

JO4ll_lli4dally . i1L€llls 15 (aplc| UUCKUD.l1LCllls.CoSV)
on order_id = items.order_id

declare:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()

Using a source makes queries very simple

query: orders_items -> {
group_by: order_date
aggregate: total_revenue, total_shipping
order_by: 1

}

query: orders_items -> {
group_by: user_id
aggregate: total_revenue, total_shipping
order_by: 1

b

_____ -_—E=rrrYV"N'd /| I IrTYT NN

Using a source makes queries very simple

query: orders_items -> {
group_by: order_date
aggregate: total_revenue, total_shipping
order_by: 1

}

query: orders_items -> {
group_by: user_id
aggregate: total_revenue, total_shipping
order_by: 1

b

query: orders_items -> {
aggregate: total_revenue

}

“order_id”": 1,
“order_date”: “2022-061-01",
“shipping_cost”: 2,
“user_id": 1,

“items”: [
{
“item_id": 1,
“item”: “Chocolate”,
“price”: 2
}l
{
“item_id": 2,
“item”: “Twizzler”,
“price”: 1
}
]
}l
{

“order_id”": 2,

“order_date”: “2022-01-01".

column_name
order_id
order_date
shipping_cost

user_id

items

column_type
INTEGER
DATE
INTEGER
INTEGER

STRUCT(item_id INTEGER, item
VARCHAR, price INTEGER)(]

null

YES

YES

YES

YES

YES

ke

query: table(‘duckdb:orders_items.parquet’) order date | total revenue | total_shipping

group_by: order_date 2022-01-01 6 5
aggregate:
total_revenue is items.price.sum() 2022-01-02 5 3
total_shipping is shipping_cost.sum()
order_by: 1

query:
table(‘duckdb:orders_items.parquet’)
-> {
group_by: order_date
aggregate:
total_revenue is items.price.sum()
total_shipping is shipping_cost.sum()
nest: by_items is {
group_by: items.item
aggregate: total_revenue is
items.price.sum()
}

order_by: 1
}

order_date total_revenue total_shipping by_items

2022-01-01

2022-01-02

6

5

item
Chocolate
Twizzler
M and M
item
Fudge
Skittles

Twizzler

total_revenue
4

1
1
total_revenue
3
1
1

WITH _ stage® AS (
SELECT
group_set,
CASE WHEN group_set IN (0,1) THEN
base."order_date"
END as "order_date_ 0",
CASE WHEN group_set=0 THEN
COALESCE(SUM(base.items[items_0.__row_id]."price"),0)
END as "total_revenue_ 0",
CASE WHEN group_set=0 THEN
COALESCE((
SELECT sum(a.val) as value
FROM (
SELECT UNNEST(list(distinct {key:base."__distinct_key",
val: base."shipping_cost"})) a
)
).0)
END as "total_shipping__ 0",
CASE WHEN group_set=1 THEN
base.items[items_0.__row_id]."item"
END as "item__1",
CASE WHEN group_set=1 THEN
COALESCE(SUM(base.items[items_0.__row_id]."price"),0)
END as "total_revenue_ 1"
FROM (SELECT GEN_RANDOM_UUID() as __distinct_key, * FROM
orders_items.parquet as x) as base
LEFT JOIN (select UNNEST(generate_series(1,
100000, --
-- (SELECT genres_length FROM movies limit 1),
1)) as __row_id) as items_©® ON items_O.__row_id <=
array_length(base."items")
CROSS JOIN (SELECT UNNEST(GENERATE_SERIES(O,1,1)) as group_set)
as group_set
GROUP BY 1,2,5
)
SELECT
"order_date__ 0" as "order_date",
MAX(CASE WHEN group_set=0 THEN total revenue__0 END) as
"total_revenue",
MAX(CASE WHEN group_set=0 THEN total_shipping__© END) as
"total_shipping",
COALESCE(LIST({
“"item": "item__1",
"total_revenue": "total revenue__1"} ORDER BY
"total _revenue__1" desc NULLS LAST) FILTER (WHERE group_set=1),[]) as
"by_items"
FROM __stage®
GROUP BY 1
ORDER BY 1 ASC NULLS LAST

Demo

http://www.malloydata.dev

