Scalable and Sustainable
Feature Engineering with
Hamilton

Elijah ben lzzy
CTO/Co-founder @ DAGWorks, Inc.



TL;DR
| want to convince you that...

1. Maintaining feature engineering code is difficult
2. Hamilton can help you:
a. build sustainable code

b. build scalable code
3. Hamilton can model your ML workflow end to end

4. Hamilton is easy to get started with/easy to use!



» DAGWORKS

At DAGWorks we're making ML pipelines easy to manage.
Nobody should be afraid to inherit data science code.

>>> I'm not selling you anything in this talk! <<<



Hamilton is Open Source!!

> pip install sf-hamilton
Get started in <15 minutes!

Try it out

https://www.tryhamilton.dev/

Documentation

https://hamilton.readthedocs.io/


https://www.tryhamilton.dev
https://hamilton.readthedocs.io/

* Try Hamilton  Get Started Reference Documentation (% DAGWorks Inc. [ GitHub (% 0

B

https://www.tryhamilton.dev/

H a m i Ito n Try Hamilton right here in your browser

1 # Declare and link your transformations as functions....

. 2 1import pandas as pd
Wrangle Pandas codebases into shape. 3

4~ def a(input: pd.Series) -> pd.Series:
return input % 7

5

6

7~ def b(a: pd.Series) -> pd.Series:
© Learn (5 mins) ) Github 890+ 8 r((eturs o %2 ) 2

9

10 - def c(a: pd.Series, b: pd.Series) -> pd.Series:

Write always unit testable code 1 i T
. N . 12
Add runtime data validation easily 13~ def d(c: pd.Series) -> pd.Series:
L 14 return c ** 3|
Produce readable and maintainable
code 1 # And run them!
2 1import functions m
Visualize lineage (click the run button 3 from hamilton import driver
4 dr = driver.Driver({}, functions)
to see) 5 result = dr.execute(
o 6 D", "B, Heb. g,
Run anywhere python runs: in airflow, 7 inputs={'input': pd.Series([1, 2, 3, 4, 51D}
. . 8
upyter, fastapi, etc... .
Jupyt P 9 print(result) )
7 10 dr.display_all_functions("graph.dot", {})

[ Skip the CS degree to use it


https://www.tryhamilton.dev

The Agenda

A motivating story of DS pain
The solution: Hamilton
Hamilton for feature engineering
L Sustainable feature management
L, Scalable feature pipelines
Hamilton for end-to-end ML workflows
OS progress + next steps



The Agenda

A motivating story of DS pain
The solution: Hamilton
Hamilton for feature engineering
L Sustainable feature management
L Scalable feature pipelines
Hamilton for end-to-end ML workflows
OS progress + next steps



A Problem From my Last Job...

Forecasting the business (demand, signups, churn)

Datq, ©.g. Featurized Fit TS Predict Dataframe
Business —_— _
Agtuale Dataframe Models Future with Forecast



https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536

Amazon.com bestseller ® New York Times bestseller

°
so m e B u s I n es < Wall Street Journal bestseller

Approach What GOt
- 0(1000+) operat YOu Here

- Configurations K

- Multiple layers o WOn’t Get
A world-class team
You There

How Successful People Become
Even More Successful!

DISCOVER .

THE 20 WORKPLACE

HABITS YOU NEED
T0 BREAK /)

-N__
[ e

MARSHALL GOLDSMITH

WITH MARK REITER




Some Business-Critical Tech Debt

Problems with the code?

Unit testing: difficult

Documentation: unnatural, unenforced

Modularity: non-existent

Data catalogue: /ots of grepping

Debugging: run the whole pipeline

Data validation: run the whole pipeline, not really done

Iy W Ry Wiy Ny N

Perfect solution to forecasting problem + time = spaghetti code




Some Business-Critical Tech Debt

Q: What happens when you have all of those problems, and...

[ You want to expand your models to new regions?
[ You have to add complex scenarios on management’'s whim?
[ You have a data bug and very little time to solve it?

A: It wasn’t fun.

+ This is not a unique experience to my prior role, time-series
forecasting, or even pandas




- | DON'T ALWAYS WRITE
COMPLEX-DATA PIPELINES

BUT WIIEII l II(I %
ITS AN IIIIIIITEllIElBlE
MESS OF SPAGHETTI CODE

—




The Agenda

A motivating story of DS pain
The solution: Hamilton
Hamilton for feature engineering
L Sustainable feature management
L Scalable feature pipelines
Hamilton for end-to-end ML workflows
OS progress + next steps



Hamilton: the “A-ha” Moment

Idea: What if every column corresponded to exactly one python fn?

Idea 2: What if the way that function was written tells you everything you
needed to know?

In Hamilton, the artifact (column) is determined by the name of the function.
The dependencies are determined by the parameters.



Old Way vs Hamilton Way:

Instead of*

df['c'] df['a'] + df['b']
df['d'] = transform(df['c'])

You declare
def c(a: pd.Series, b: pd.Series) -> pd.Series:

return a + b
def d(c: pd.Series) -> pd.Series:

new column = transform logic(c)
return new_column

*Hamilton supports *all* python objects, not just dfs/series!

15



Old Way vs Hamilton Way:

Instead of

Outputs == Function Name

You declare

|df|'c'| =|df['a'] + df['b"]
|df[’d’]| = |transform(df['c']

Inputs == Function Arguments

def _c_{a pd.Series, El pd.Series) -> pd.Series:

return a + b

def EE pd.Series) -> pd.Series:

new column = transform logic(c)
return new_column

16



Full Hello Worid

) # feature logic.py
Functions def c(a: pd.Series, b: pd.Series)

return a + b

def d(c: pd.Series) -> pd.Series:

-> pd.Series:

new column = transform logic(c)

return new_column

Driver says what/when to execute

# run.py
from hamilton import driver
import feature logic

dr = driver.Driver({'a':

'b': ...}, feature logic)

df result = dr.execute(['c', 'd']
print(dr_result)

17



Hamilton TL:DR:

1. For each transform (=), you write a function(s)

2. Functions declare a DAG

3. Hamilton handles DAG execution

# feature logic.py

def c(a: pd.Series, b: pd.Series) -> pd.Series:

return a + b
def d(c: pd.Series) -> pd.Series:

new column = transform logic(c)
return new column

# run.py
from hamilton import driver

import feature logic

dr = driver.Driver({'a': ..., 'b': ...},
feature logic)
df result = dr.execute(['c', 'd'])

print (df result)

18



Hamilton: Extensions

Q: Doesn’t Hamilton make your code more verbose?

A: Yes, but that's not always a bad thing. When it is, we have decorators!

oo dodo o

@tag # attach metadata

@parameterize # curry + repeat a function

Gextract columns # one dataframe -> multiple series
Gcheck output # data validation

dconfig.when # conditional transforms

dsubdag # recursively utilize groups of nodes

@... # new ones all the time



To Summarize...

Hamilton forces you to write transforms in python functions.
These python functions provide everything you need:

Unit testing: simple — plain python functions!
Documentation: use the docstring

Modularity: Small pieces -> by definition

Data catalogue: Code = central feature definition store
Debugging: Execute functions individually + breakpoints
Trustworthy data: Validation included out of the box

I Ry Wy Ry iy N

Decorators — powerful, higher-order operations
Driver — decouple transform definition from execution



Initial Use Case

Running in production for 3+ years
Initial use-case manages 4000+ feature definitions
Data science teams @ it

Enabled 4x faster monthly model + feature update
Easy to onboard new team members

Code reviews are simple

Finally have unit tests

Fewer bugs/quicker resolutions

Better features + models

Iy By By My WO W

21



Initial Use

Jul 14, 2019 - Aug 3, 2022 Contributions: Commits ~

Contributions to master, excluding merge commits and bot accounts

October 2020 July October 2021 April July October

elijahbenizzy vytlacil
304 commits 39,474 ++ - 249 commits 159, 4

a A N

October July April October July April 2022

e skrawcz #3 @ shellyjang
176 commits 15,8 - 90 commits 1

October April October




The Agenda

A motivating story of DS pain
The solution: Hamilton
Hamilton for feature engineering
L Sustainable feature management
L Scalable feature pipelines
Hamilton for end-to-end ML workflows
OS progress + next steps



Hamilton + Feature Engineering: Overview

Load e innstfgrm Fit Use
Data Model(s) Model(s)
Features

featurization training inference

Note:

O Works for any python object type (not just dataframes!)
O Embeddable anywhere python runs — orchestration systems (airflow,
kubeflow, metaflow, flytekit, prefect, dagster, ..) + web services!

24



Modeling Feature Engineering

Code that needs to be written: Data EE EE
. Loaders
1. Functions to load data . .
2. Transform/feature functions

3. Driver to materialize data

Feature ' ' ' ' ‘

Execute only what's needed... Functions

Drivers - -

25



Modeling Feature Engineering

Code that needs to be written: Data EE EE
. Loaders
1. Functions to load data ‘ .
2. Transform/feature functions

3. Driver to materialize data

Feature ’ ' ' ' ‘

Execute only what's needed... Functions

Drivers - -

26



Feature Engineering Challenges

Sustainable code

d  Highly coupled code
O Difficulty debugging/understanding flows
4 Messy collaboration on complex pipelines
[ Validating your data

Scaling the data

4 Data is too big to fit in memory
d Cannot easily parallelize computation

;

Hamilton solves this!

Hamilton has
integrations for this!

27



The Agenda

A motivating story of DS pain
The solution: Hamilton
Hamilton for feature engineering
L Sustainable feature management
L Scalable feature pipelines
Hamilton for end-to-end ML workflows
OS progress + next steps



Decoupling Code
From infrastructure

d Driver handles execution
[ Functions handle business logic

From itself

d Code organized into functions
[ Functions organized into modules
[ Functions do not know about Hamilton

——
!
orversepit
ot

23



Ease of Debugging
Knocking bugs

[ Rerun just the broken paths

[ Python functions — unit tests + natural debugging
[ Runtime data quality checks

[ Quickly narrow search space of data bugs

Understanding/visualizing

d  Visualize dataflow/execution path
d Clearly track dependencies




Natural Collaboration

lint allfiles (#67 3 month:

Centralized feature definition store o i

lint allfles (#677) 3 month
demand_manual_by_dormant_clients: pd.Series,

recovered_clients_choose_aut

Renames module denand_nanual due to it.. 3 g 4 000

renamed and rerouted demand_from_churned_clie. B 6 aram demand_manual_by_dormant_

[ Forces alignment on naming
A Documentation is included/natural T

d  Minimize conflicts when collaborating T——il

lint allfiles (#67 months age

new_signups_ _autoship_delayed_tf: pd.Serie

manual_to_autoship_always_manual_t

Change management BE=

ip_tf

d Feature versions in git L IR
4 All change € git histor
[ PRs are easy to read — trace changes back to functions

+ No_demand_to_date_choose_autoship_tf

31



Handling Data Validation
Garbage in/garbage out

[d How can you build reliable pipelines if the data is bad?

Solution

d Runtime data validation decorator!

@check output(
=np.float64, # data type
=(-1.0, 1.0), # range
=False, # no nans
="warn”) # warn, don’t fail

def some data we care about() -> pd.Series:
return ...

32



Basic Checks
A few custom-built checks for a quick-start:

Range

Nan-checks (any or percentage)
Valid categories

Null outputs

Plenty more...

Iy By Wy Wy N

For pandas + primitives

Highly pluggable!

KK



Pandera Integration

But wait, there’'s more! Pandera + Hamilton = happy, powerful checks

import pandera as pa
import pandas as pd
from hamilton import function_modifiers

@function_modifiers.check_output(schema=pa.DataFrameSchema(
{
‘columnl': pa.Column(int),
‘column2': pa.Column(float, pa.Check(lambda s: s < -1.2)),
# you can provide a list of validators
'column3': pa.Column(str, [
pa.Check(lambda s: s.str.startswith('value')),
pa.Check(lambda s: s.str.split('_"', expand=True).shape[l] == 2)
1),
)
index=pa.Index(int),
strict=True,
))
def dataframe_with_schema(...) -> pd.DataFrame:




Data Check Extensibility

Implement base-class to write your own...
@check output custom(MyDataValidationClass(...))
Goal — add integrations for

- Any type of dataframe/datatype
- Multiple validation frameworks (great expectations, deequ,

whylogs...)
Sky’s the limit!

@check_output_custom(AllPrimeValidator(...))

def prime_number_generator(number_of_primes_to_generate: int) -> pd.Series:
pass

35



Summing up Sustainability with some Code...

# client features.py

@tag( ='client recs', ='False')

@check output ( =np.floaté4, =(-5.0, 5.0), =False)
def client height normalized (height zero mean: pd.Series,

height std dev: pd.Series) -> pd.Series:

return height zero mean / height std dev

36



Summing up Sustainability with some Code...

# client features.py

@tag( = , = )

@check output ( =np.floaté4, =(-5.0, 5.0), =False)
def client height normalized (height zero mean: pd.Series,

height std dev: pd.Series) -> pd.Series:

return height zero mean / height std dev

The feature client_height_normalized is owned by the client
recommendations team, contains no PII, is of type float, depends on 2
upstream features, has no Nan values and produces values in [-5.0, 5.0].
VCS shows its change over time. Grep the codebase for downstream deps.

37



Knowing nothing else about this code besides what you have, how would you translate it
into english?

# client_features.py
@tag(owner='client_recs', pii='False')
@check_output(data_type=np.float64, range=(-5.0, 5.0), allow_nans=False)
def client_height_normalized(height_zero_mean: pd.Series,
height_std_dev: pd.Series) -> pd.Series:
ero mean unit variance value of height"""
return height_zero_mean / height_std_dev

This is a Python code that defines a function called “client_height_normalized’. The
purpose of this function is to return the zero mean unit variance value of height, based on
two input variables: “height_zero_mean™ and “height_std_dev", which are both pandas

Series objects.

Before the function definition, there are two function decorators that are applied to the
“client_height_normalized" function. These decorators modify the behavior of the

function in some way.

The first decorator, *@tag(owner="client_recs', pii='False')", adds metadata to the

function, indicating that it is owned by a client record system and that it does not handle

personally identifiable information (PII).

The second decorator, “@check_output(data_type=np.float64, range=(-5.0, 5.0),
allow_nans=False)", performs input/output validation for the function. It checks that the
output of the function is a NumPy float64 data type, falls within the range of -5.0 and 5.0,

and does not allow NaN (not-a-number) values.

In the function definition, “height_zero_mean" is divided by “height_std_dev" to
calculate the zero mean unit variance value of height. The resulting value is returned as a

pandas Series object.

38



The Agenda

A motivating story of DS pain
The solution: Hamilton
Hamilton for feature engineering
L Sustainable feature management
L, Scalable feature pipelines
Hamilton for end-to-end ML workflows
OS progress + next steps



Scaling Compute/Data

Approach: delegate E

[ Runin parallel
4 Single machine — multiprocessing — cluster

Pandas on Spark (ex-koalas)

[ Scale horizontally per dataset

Switching only requires making a driver-side change*

*pandas on spark requires changing of data loaders as well... 0



Scaling with Ray

# run.py
from hamilton import driver
import data loaders
import date features
import spend features
config = {...} # config, e.g. data location
dr = driver.Driver (config,

data loaders,

date features,

spend features)
features wanted = [...] # choose subset wanted
feature df = dr.execute (features wanted)
save (feature df, 'prod.features')

41



Scaling with Ray

# run on ray.py

from hamilton import base, driver
from hamilton.experimental import h_ ray

ray.init()
config = {...}
rga = h ray.RayGraphAdapter (

=base.PandasDataFrameResult())
dr = driver.Driver (config,

data loaders, date_ features, spend features,

=rga)
features wanted = [...] # choose subset wanted
feature df = dr.execute(features wanted,
=date features)

save (feature df, 'prod.features')
ray.shutdown ()

42



Scaling with Dask

# run on dask.py

from hamilton import base, driver
from hamilton.experimental import h_dask

client = Client(Cluster(...)) # dask cluster/client
config = {...}
dga = h dask.DaskGraphAdapter (client,
=base.PandasDataFrameResult())
dr = driver.Driver (config,
data loaders, date_ features, spend features,
=dga)
features wanted = [...] # choose subset wanted
feature df = dr.execute(features wanted,
=date features)
save (feature df, 'prod.features')
client.shutdown ()

43



Scaling with Pandas-on-Spark

# run on pandas on_ spark.py

import pyspark.pandas as ps
from hamilton import base, driver
from hamilton.experimental import h_spark

spark = SparkSession.builder.getOrCreate ()
ps.set option(...)
config = {...}
skga = h dask.SparkKoalasGraphAdapter (spark, ='COLUMN NAME',
=base.PandasDataFrameResult ())
dr = driver.Driver (config,
spark data loaders, date features,spend features,
=skga)
features wanted = [...] # choose subset wanted
feature df = dr.execute(features wanted,
=date features)
save (feature df, 'prod.features')
spark.stop ()

44



Hamilton + Ray/Dask: How Does it Work?

| | I .
# FUNCTIONS —— —

def c(a: pd.Series, b: pd.Series) -> pd.Series:

return a + b

def d(c: pd.Series) -> pd.Series:
new_column = _transform logic(c)
return new_column
from hamilton import base, driver
from hamilton.experimental import h_ray
ray.init() \

config = {...}
rga = h ray.RayGraphAdapter (

=base.PandasDataFrameResult())
dr = driver.Driver (config,

data loaders,

date features,

spend features,

=rga)
features wanted = [...] # choose subset wanted
feature df = dr.execute (features wanted,
=date_features)

save (feature df, 'prod.features')
ray.shutdown ()




Hamilton + Ray/Dask: How Does it Work?

# FUNCTIONS

def c(a: pd.Series, b: pd.Series) -> pd.Series:
return a + b
def d(c: pd.Series) -> pd.Series:

new_column = _transform logic(c)
return new_column

# DRIVER

from hamilton import base, driver
from hamilton.experimental import h_ray

ray.init()
config = {...}
rga = h ray.RayGraphAdapter (

=base.PandasDataFrameResult())
dr = driver.Driver (config,

data loaders,

date features,

spend features,

=rga)
features wanted = [...] # choose subset wanted
feature df = dr.execute (features wanted,
=date_features)

save (feature df, 'prod.features')
ray.shutdown ()

I#DAG“ “‘
® 000

# Delegate to Ray/Dask

ray.remote (
node.callable) . remote (**kwargs)

dask.delayed (node.callable) (**kwargs)

46




Hamilton + Spark: How Does it Work?

# FUNCTIONS

def c(a: pd.Series, b: pd.Series) -> pd.Series:
return a + b
def d(c: pd.Series) -> pd.Series:

new_column = _transform logic(c)
return new_column

# DRIVER

from hamilton import base, driver
from hamilton.experimental import h_ray

ray.init()
config = {...}
rga = h ray.RayGraphAdapter (

=base.PandasDataFrameResult())
dr = driver.Driver (config,

data loaders,

date features,

spend features,

=rga)
features wanted = [...] # choose subset wanted
feature df = dr.execute (features wanted,
=date_features)

save (feature df, 'prod.features')
ray.shutdown ()

| # DAG ‘l’ ‘l’ ‘l’ "’ '.)
9 000

# With Spark

Change these to load
Spark “Pandas”
equivalent object
instead.

Spark will take care
of the rest.

47




Hamilton + Ray/Dask/Pandas on Spark: Caveats

Serialization

[ Uses serialization methodology of delegated frameworks
Memory:

4 Defaults should work — fine tuning at fn level not yet supported
Python dependencies:

4 You need to manage them
Looking to graduate these APIs from experimental status

® & Contributions wanted here to extend support in Hamilton! ¢ €

48



The Agenda

A motivating story of DS pain
The solution: Hamilton
Hamilton for Feature Engineering
L Sustainable feature management
L Scalable feature pipelines
Hamilton for end-to-end ML workflows
OS progress + next steps



End-to-End ML Pipelines

What does an ML pipeline look like? Fancy ETL:

Load data from a feature store
Transform features

Train model

Run model Inference

Evaluate model performance
Save metrics

Save artifacts

Save training data

N IR I iy Iy B W WOy

EEESSESR

50



End-to-End ML Pipelines

Centralize logic, abstract integrations

NI Iy I N W WO
e e e

E
T] Transform features

T] Train model

[T] Run model Inference

: Evaluate model performance
L] Save metrics

L] Save artifacts

L] Save training data

Load data from a feature store

Express as functions

Decouple from logic

51



End-to-End ML Pipelines

Decouple from logic

d  Swap out
d Model store
1 Metrics store
d Feature source/store
O Execute same code online/offline
d  Map ops 1
4 Join -> data load using DAG config
d aggregation -> data load/hardcoded

52



End-to-End ML Pipelines

Gain Visibility
d Lineage
4 Trace fn params for managing dependencies

d  Trace data from source -> transforms -> sinks

4 Tag metadata-> understand properties of dependencies
d Catalogue

[ Browse features == browse through code
d Documentation attached to artifact name

53



4 ) age_std_dev_raw

Standard deviation of age.
ity e o e s A T

@check_output(range=(0.0, 40.0), data_type=np.float64)

dsta_quaittysimpie feature_Jogic.is_summer T def age_std_dev(age: pd.Series) -> np.float64:
‘““Standard deviation of age i3

return age.std()

leo|
X

@ cata_quaty.imple festure Jogk.da.of week sncoded_base

- D
@ oota_quaity.simple feature_Jogic.dey_of_week_encoded_dask
(Sl age_std_dev_range_validator Jl age_std_dev_data_type_validator
@ ata_quailty.simple.festure_logic.seasons_encoded_base age_std_dev

data_quailty.simple.dats

data_quaity simplefesture_Jogi.age.zero_meen T
@ csta_quaitysimpie.festuse.logic.sessons_encoded_dssk

data_quallty.simple feature_jogic sge_mean I

data_quslity.simple.feature_logic.day.of_the week 2 T

data_quaiy.simple feature.logic.day. of_the week 3 T

@ osta_quaiity.simple feature_logic.day_of_week_encoded_spark data_quaiity.simple feature_logic.day.of_the_week & T

dats_quailty.simpie feature_jogic.day of_the_week 5

data_qualty simple feature_logic.age_zero_mean_unit varisnce T
data_qusity.simpe.feature_ogic.day_of_the_week § T
data_quabty.simpée.feature.logic has_children T

data_guallty.simple feature Jogic.seasons 1 T

deta ey sknpia Seatira Jogic han pet. T I T (T

data_quaity.simple festure logic.seasons 2

@ cata_quaity.simple festure.logic-sessons_encoded_spark

data_quaiity.simple feature_logic seasons 3 T

data_quality.simple feature_logic.seasons 4 T

dsta_qualltysimple festure Jogic.age_std_dev T

By node No grouping
By function Group nodes by the function in which they were defined

By namespace Group nodes by their (useful for

By module Group nodes by module



Our Vision

Unifying layer for ML ETLs

Compile to orchestration frameworks

® dagster sewrecro0  PEGEM 5) METAFLOW
Integrate with doto quality vendors/OS options / \

& UpTrain whylogs

Tr|V|c1IIy load from/to a variety of sources/destinations

@+ DuckDB

SQL support for full ETL

55



The Agenda

A motivating story of DS pain
The solution: Hamilton
Hamilton for feature engineering
L Sustainable feature management
L Scalable feature engineering
Hamilton to model end-to-end ML workflows
OS progress + next steps



OS Progress
STITCH FIX

- Y BRITISH
d Some exciting users OHCYCLING

[ Growing set of core contributors
4 Full company dedicated to building it!

Early stages, but thriving community

2R LN
==

Government

Looking for

d Contributors
d  Bug hunters
d User feedback

57



I guess I'd be really curious to hear about your workflow withjwithout it. Not sure if you can share code or not, but I'd
love to know what it would take to do your workflow with it, what it would take without it, and what the value of it would
be to your day-to-day.

If we consider an example in which we are extracting a large number (dozens) of features from a dataset and then passing
those features into a node which requires them all as input (e.g. to fit a modelfmake a prediction), we have a couple of

friction points:

L]

as parameters;

2. We have to create a new feature extraction node and update the processing node definition for each new feature we add

eg.

d Schema for artifact metadata e e e]
d Adapter for SQL S
d  <Your idea here!>

r
return helper:

extract_feature_2:pd.S
# Dozen

Execution -

return ml_model.do_
xtract_feature_!

ract_feature_1000:pd. Series

Compilation/dataflow specification
Streaming/generator support R
First-class pyspark integration

I'm curious to try out Hamilton on a multi-step pandas transform. I'm stuck though because the input CSV has spaces in the

L) I column names and | can't find any documentation for dealing with that. | figured there might be a decorator that helps with
<You r I eO ere. ) this but | can't see one.

For example, my input column is named "Lot Frontage" and | want the output to be named "lot_frontage".

Iy Ry My

© @ mattharrison added the (§fiage) label 12 days ago




Give Hamilton a Try! We'd Love Your Feedback.

www.tryhamilton.dev

>pip install sf-hamilton
¥ on aithub (nttps://github.com/dagworks-inc/hamilton)
V¥ create & vote on issues on github

> join us on on Slack

ZhttDs://ioin.slock.com/t/hamilton—opensource/shored invite/zt—]bis72c1$x—chTqH7c17QX1iquSbbdcq)

59


http://www.tryhamilton.dev
https://github.com/stitchfix/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Thank you.

Questions?

Yell at me online https://twitter.com/elijahbenizzy

Connect with me https://www.linkedin.com/in/elijahbenizzy/

Code with me https://github.com/dagworks-inc/hamilton

Use sparingly :) elijah@dagworks.io






