
Scalable and Sustainable
Feature Engineering with

Hamilton

Elijah ben Izzy
CTO/Co-founder @ DAGWorks, Inc.

I want to convince you that…

1. Maintaining feature engineering code is difficult
2. Hamilton can help you:

a. build sustainable code
b. build scalable code

3. Hamilton can model your ML workflow end to end
4. Hamilton is easy to get started with/easy to use!

TL;DR

At DAGWorks we’re making ML pipelines easy to manage.
Nobody should be afraid to inherit data science code.

>>> I’m not selling you anything in this talk! <<<

Hamilton is Open Source!!

> pip install sf-hamilton

Get started in <15 minutes!

Try it out

https://www.tryhamilton.dev/

Documentation

https://hamilton.readthedocs.io/

4

https://www.tryhamilton.dev
https://hamilton.readthedocs.io/

https://www.tryhamilton.dev/

https://www.tryhamilton.dev

A motivating story of DS pain
The solution: Hamilton
Hamilton for feature engineering

↳ Sustainable feature management
↳ Scalable feature pipelines

Hamilton for end-to-end ML workflows
OS progress + next steps

The Agenda

A motivating story of DS pain
The solution: Hamilton
Hamilton for feature engineering

↳ Sustainable feature management
↳ Scalable feature pipelines

Hamilton for end-to-end ML workflows
OS progress + next steps

The Agenda

8Data Con 2021

A Problem From my Last Job…

Forecasting the business (demand, signups, churn)

https://lucid.app/documents/edit/b038fee7-5804-4742-b4a0-ed0929311f6d/1?callback=close&name=slides&callback_type=back&v=28289&s=717.8858267716536

9Data Con 2021

Some Business-Critical Tech Debt

Approach
- O(1000+) operations on monolithic, central dataframe
- Configurations buried within business logic
- Multiple layers of scripts to execute, store, and visualize data

A world-class team of data scientists to boot

10Data Con 2021

Some Business-Critical Tech Debt

Problems with the code?
❏ Unit testing: difficult
❏ Documentation: unnatural, unenforced
❏ Modularity: non-existent
❏ Data catalogue: lots of grepping
❏ Debugging: run the whole pipeline
❏ Data validation: run the whole pipeline, not really done

Perfect solution to forecasting problem + time = spaghetti code

11Data Con 2021

Some Business-Critical Tech Debt

Q: What happens when you have all of those problems, and…
❏ You want to expand your models to new regions?
❏ You have to add complex scenarios on management’s whim?
❏ You have a data bug and very little time to solve it?

A: It wasn’t fun.
+ This is not a unique experience to my prior role, time-series

forecasting, or even pandas

A motivating story of DS pain
The solution: Hamilton
Hamilton for feature engineering

↳ Sustainable feature management
↳ Scalable feature pipelines

Hamilton for end-to-end ML workflows
OS progress + next steps

The Agenda

Idea: What if every column corresponded to exactly one python fn?

Idea 2: What if the way that function was written tells you everything you
needed to know?

In Hamilton, the artifact (column) is determined by the name of the function.
The dependencies are determined by the parameters.

Hamilton: the “A-ha” Moment

Old Way vs Hamilton Way:

Instead of*

You declare

15

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

*Hamilton supports *all* python objects, not just dfs/series!

Instead of

You declare
Inputs == Function Arguments

Old Way vs Hamilton Way:

16

df['c'] = df['a'] + df['b']
df['d'] = transform(df['c'])

def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

Outputs == Function Name

Full Hello World

17

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...}, feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Functions

Driver says what/when to execute

Hamilton TL;DR:

1. For each transform (=), you write a function(s)
2. Functions declare a DAG
3. Hamilton handles DAG execution

18

c

d

a b

feature_logic.py
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Replaces c = a + b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Replaces d = transform(c)"""
 new_column = _transform_logic(c)
 return new_column

run.py
from hamilton import driver
import feature_logic
dr = driver.Driver({'a': ..., 'b': ...},
 feature_logic)
df_result = dr.execute(['c', 'd'])
print(df_result)

Q: Doesn’t Hamilton make your code more verbose?
A: Yes, but that’s not always a bad thing. When it is, we have decorators!
❏ @tag # attach metadata
❏ @parameterize # curry + repeat a function
❏ @extract_columns # one dataframe -> multiple series
❏ @check_output # data validation
❏ @config.when # conditional transforms
❏ @subdag # recursively utilize groups of nodes
❏ @... # new ones all the time

Hamilton: Extensions

Hamilton forces you to write transforms in python functions.
These python functions provide everything you need:
❏ Unit testing: simple – plain python functions!
❏ Documentation: use the docstring
❏ Modularity: Small pieces -> by definition
❏ Data catalogue: Code = central feature definition store
❏ Debugging: Execute functions individually + breakpoints
❏ Trustworthy data: Validation included out of the box
Decorators → powerful, higher-order operations
Driver → decouple transform definition from execution

To Summarize…

Initial Use Case

Running in production for 3+ years

Initial use-case manages 4000+ feature definitions

Data science teams ❤ it

❏ Enabled 4x faster monthly model + feature update
❏ Easy to onboard new team members
❏ Code reviews are simple
❏ Finally have unit tests
❏ Fewer bugs/quicker resolutions
❏ Better features + models

21

Initial Use Case

22

A motivating story of DS pain
The solution: Hamilton
Hamilton for feature engineering

↳ Sustainable feature management
↳ Scalable feature pipelines

Hamilton for end-to-end ML workflows
OS progress + next steps

The Agenda

Hamilton + Feature Engineering: Overview

 featurization training inference

Note:

❏ Works for any python object type (not just dataframes!)
❏ Embeddable anywhere python runs – orchestration systems (airflow,

kubeflow, metaflow, flytekit, prefect, dagster, …) + web services!

24

Load
Data

Transform
into

Features

Fit
Model(s)

Use
Model(s)

Code that needs to be written:

1. Functions to load data
2. Transform/feature functions
3. Driver to materialize data

Execute only what’s needed...

Modeling Feature Engineering

25

Data
Loaders

Feature
Functions

Drivers

Modeling Feature Engineering

26

Data
Loaders

Drivers

Feature
Functions

Code that needs to be written:

1. Functions to load data
2. Transform/feature functions
3. Driver to materialize data

Execute only what’s needed...

Feature Engineering Challenges

}

Sustainable code

❏ Highly coupled code
❏ Difficulty debugging/understanding flows
❏ Messy collaboration on complex pipelines
❏ Validating your data

Scaling the data

❏ Data is too big to fit in memory
❏ Cannot easily parallelize computation

27

Hamilton solves this!}
Hamilton has
integrations for this!

A motivating story of DS pain
The solution: Hamilton
Hamilton for feature engineering

↳ Sustainable feature management
↳ Scalable feature pipelines

Hamilton for end-to-end ML workflows
OS progress + next steps

The Agenda

From infrastructure

❏ Driver handles execution
❏ Functions handle business logic

From itself

❏ Code organized into functions
❏ Functions organized into modules
❏ Functions do not know about Hamilton

Decoupling Code

29

Module spend_features.py

Module marketing_features.py

Module customer_features.py

Driver script 1

Driver script 2

Driver script 3

Ease of Debugging

30

Knocking bugs

❏ Rerun just the broken paths
❏ Python functions → unit tests + natural debugging
❏ Runtime data quality checks
❏ Quickly narrow search space of data bugs

Understanding/visualizing

❏ Visualize dataflow/execution path
❏ Clearly track dependencies

Natural Collaboration

31

Centralized feature definition store

❏ Forces alignment on naming
❏ Documentation is included/natural
❏ Minimize conflicts when collaborating

Change management

❏ Feature versions in git
❏ All change ∈ git history
❏ PRs are easy to read – trace changes back to functions

Handling Data Validation

32

Garbage in/garbage out

❏ How can you build reliable pipelines if the data is bad?

Solution

❏ Runtime data validation decorator!

@check_output(
 data_type=np.float64, # data type
 range=(-1.0, 1.0), # range
 allow_nans=False, # no nans
 importance=”warn”) # warn, don’t fail
def some_data_we_care_about() -> pd.Series:
 return ...

Basic Checks

33

A few custom-built checks for a quick-start:

❏ Range
❏ Nan-checks (any or percentage)
❏ Valid categories
❏ Null outputs
❏ Plenty more...

For pandas + primitives

Highly pluggable!

Pandera Integration

34

But wait, there’s more! Pandera + Hamilton = happy, powerful checks

Data Check Extensibility

35

Implement base-class to write your own…

@check_output_custom(MyDataValidationClass(...))

Goal – add integrations for

- Any type of dataframe/datatype
- Multiple validation frameworks (great expectations, deequ,

whylogs…)

Sky’s the limit!

Summing up Sustainability with some Code…

36

client_features.py
@tag(owner='client_recs', pii='False')
@check_output(data_type=np.float64, range=(-5.0, 5.0), allow_nans=False)
def client_height_normalized(height_zero_mean: pd.Series,
 height_std_dev: pd.Series) -> pd.Series:
 """Zero mean unit variance value of height"""
 return height_zero_mean / height_std_dev

Summing up Sustainability with some Code…

37

client_features.py
@tag(owner='client_recs', pii='False')
@check_output(data_type=np.float64, range=(-5.0, 5.0), allow_nans=False)
def client_height_normalized(height_zero_mean: pd.Series,
 height_std_dev: pd.Series) -> pd.Series:
 """Zero mean unit variance value of height"""
 return height_zero_mean / height_std_dev

The feature client_height_normalized is owned by the client
recommendations team, contains no PII, is of type float, depends on 2

upstream features, has no Nan values and produces values in [-5.0, 5.0].
VCS shows its change over time. Grep the codebase for downstream deps.

38

A motivating story of DS pain
The solution: Hamilton
Hamilton for feature engineering

↳ Sustainable feature management
↳ Scalable feature pipelines

Hamilton for end-to-end ML workflows
OS progress + next steps

The Agenda

Scaling Compute/Data

40

Approach: delegate

Ray/Dask

❏ Run in parallel
❏ Single machine → multiprocessing → cluster

Pandas on Spark (ex-koalas)

❏ Scale horizontally per dataset

Switching only requires making a driver-side change*

*pandas on spark requires changing of data loaders as well…

Scaling with Ray

41

run.py
from hamilton import driver
import data_loaders
import date_features
import spend_features
config = {...} # config, e.g. data_location
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted)
save(feature_df, 'prod.features')

Scaling with Ray

42

run_on_ray.py
…
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders, date_features, spend_features,
 adapter=rga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

Scaling with Dask

43

run_on_dask.py
…
from hamilton import base, driver
from hamilton.experimental import h_dask
…
client = Client(Cluster(...)) # dask cluster/client
config = {...}
dga = h_dask.DaskGraphAdapter(client,
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders, date_features, spend_features,
 adapter=dga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
client.shutdown()

Scaling with Pandas-on-Spark

44

run_on_pandas_on_spark.py
…
import pyspark.pandas as ps
from hamilton import base, driver
from hamilton.experimental import h_spark
…
spark = SparkSession.builder.getOrCreate()
ps.set_option(...)
config = {...}
skga = h_dask.SparkKoalasGraphAdapter(spark, spine='COLUMN_NAME',
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 spark_data_loaders, date_features,spend_features,
 adapter=skga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
spark.stop()

Hamilton + Ray/Dask: How Does it Work?

45

FUNCTIONS
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

DRIVER
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features,
 adapter=rga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

DAG

Hamilton + Ray/Dask: How Does it Work?

46

FUNCTIONS
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

DRIVER
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features,
 adapter=rga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

Delegate to Ray/Dask
…
ray.remote(
 node.callable).remote(**kwargs)
—---—---—---—---—---
dask.delayed(node.callable)(**kwargs)

DAG

Hamilton + Spark: How Does it Work?

47

FUNCTIONS
def c(a: pd.Series, b: pd.Series) -> pd.Series:
 """Sums a with b"""
 return a + b

def d(c: pd.Series) -> pd.Series:
 """Transforms C to ..."""
 new_column = _transform_logic(c)
 return new_column

DRIVER
from hamilton import base, driver
from hamilton.experimental import h_ray
…
ray.init()
config = {...}
rga = h_ray.RayGraphAdapter(
 result_builder=base.PandasDataFrameResult())
dr = driver.Driver(config,
 data_loaders,
 date_features,
 spend_features,
 adapter=rga)
features_wanted = [...] # choose subset wanted
feature_df = dr.execute(features_wanted,
 inputs=date_features)
save(feature_df, 'prod.features')
ray.shutdown()

With Spark
…

Change these to load
Spark “Pandas”
equivalent object
instead.

Spark will take care
of the rest.

DAG

Hamilton + Ray/Dask/Pandas on Spark: Caveats

Serialization

❏ Uses serialization methodology of delegated frameworks

Memory:

❏ Defaults should work – fine tuning at fn level not yet supported

Python dependencies:

❏ You need to manage them

Looking to graduate these APIs from experimental status

🔶🔶 Contributions wanted here to extend support in Hamilton! 🔶🔶
48

A motivating story of DS pain
The solution: Hamilton
Hamilton for Feature Engineering

↳ Sustainable feature management
↳ Scalable feature pipelines

Hamilton for end-to-end ML workflows
OS progress + next steps

The Agenda

End-to-End ML Pipelines

What does an ML pipeline look like? Fancy ETL:

❏ [E] Load data from a feature store
❏ [T] Transform features
❏ [T] Train model
❏ [T] Run model Inference
❏ [T] Evaluate model performance
❏ [L] Save metrics
❏ [L] Save artifacts
❏ [L] Save training data

50

End-to-End ML Pipelines

Centralize logic, abstract integrations

❏ [E] Load data from a feature store
❏ [T] Transform features
❏ [T] Train model
❏ [T] Run model Inference
❏ [T] Evaluate model performance
❏ [L] Save metrics
❏ [L] Save artifacts
❏ [L] Save training data

51

Express as functions}
} Decouple from logic

End-to-End ML Pipelines

Decouple from logic

❏ Swap out
❏ Model store
❏ Metrics store
❏ Feature source/store

❏ Execute same code online/offline
❏ Map ops 1:1
❏ Join -> data load using DAG config
❏ aggregation -> data load/hardcoded

52

End-to-End ML Pipelines

Gain Visibility

❏ Lineage
❏ Trace fn params for managing dependencies
❏ Trace data from source -> transforms -> sinks
❏ Tag metadata-> understand properties of dependencies

❏ Catalogue
❏ Browse features == browse through code
❏ Documentation attached to artifact name

53

54

Our Vision

Unifying layer for ML ETLs

Compile to orchestration frameworks

Integrate with data quality vendors/OS options

Trivially load from/to a variety of sources/destinations

SQL support for full ETL
55

A motivating story of DS pain
The solution: Hamilton
Hamilton for feature engineering

↳ Sustainable feature management
↳ Scalable feature engineering

Hamilton to model end-to-end ML workflows
OS progress + next steps

The Agenda

OS Progress

Early stages, but thriving community

❏ Some exciting users
❏ Growing set of core contributors
❏ Full company dedicated to building it!

Looking for

❏ Contributors
❏ Bug hunters
❏ User feedback

57

In Progress

Expressive APIs

❏ Schema for artifact metadata
❏ Adapter for SQL
❏ <Your idea here!>

Execution

❏ Compilation/dataflow specification
❏ Streaming/generator support
❏ First-class pyspark integration
❏ <Your idea here!>

58

Give Hamilton a Try! We’d Love Your Feedback.

www.tryhamilton.dev

> pip install sf-hamilton

⭐ on github (https://github.com/dagworks-inc/hamilton)

☑ create & vote on issues on github

📣 join us on on Slack
(https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg)

59

http://www.tryhamilton.dev
https://github.com/stitchfix/hamilton
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg
https://join.slack.com/t/hamilton-opensource/shared_invite/zt-1bjs72asx-wcUTgH7q7QX1igiQ5bbdcg

Thank you.
Questions?

Yell at me online https://twitter.com/elijahbenizzy

Connect with me https://www.linkedin.com/in/elijahbenizzy/

Code with me https://github.com/dagworks-inc/hamilton

Use sparingly :) elijah@dagworks.io

