
Building your own 
Kubernetes and Docker 

Erik Bernhardsson



I’m Erik Bernhardsson

● Founder of Modal Labs
● Built the music recommendation system at Spotify
● I tweet sometimes: @bernhardsson
● I blog very occasionally: https://erikbern.com



All just wanted to make data teams more productive!

● How to productionize jobs
● How to scale things out
● Scheduling things
● How to use GPUs and other 

hardware



What do I mean by eng productivity

A set of nested for-loops of writing code



Frontend

● Write code in one 
window

● Look at the website in 
another window



Backend

1. Write code
2. Does it compile?
3. Does it pass unit tests?
4. Ship it



Data has super long feedback loops



Let’s put infrastructure into the feedback loop

If we get most of this to happen in the cloud instead:

● Moves a lot of stuff from an outer loop into an inner loop
● If env is always the same, it reduces a whole set of things that can break
● We have infinite compute power and storage
● Never have to think about drivers and GPUs



What are containers?

● Represent all dependencies as a 
Linux root filesystem

● Have a bunch of stuff for resource 
management (and to a limited 
extent, security)



Cracking open a Docker container

$ docker pull python

$ docker run -d python 
sleep infinity

$ docker export 
b0aa33209370 > python.tar

$ tar tvf python.tar



How to launch a container on a remote host

1. Pull down an image: a few sec to a few minutes
2. Start the image: a couple of seconds



The average container image has a lot of junk

Eg the python container from Dockerhub:

● 870MB large
● 29,772 files

○ /usr/share/locale: 1,553 files
○ /usr/share/doc: 3,210 files
○ /usr/share/perl: 1,389 files
○ /usr/share/man: 3,050 files



What do we actually need to run something?

$ python3 -c 'import sklearn'

● 3,043 calls to stat
● 1,073 calls to openat

Lots of file system operations!

But only a small number of unique files 
are accessed.



It would be nice to avoid Docker

runc is a nice utility:

● Point it at a root file system
● It runs a container!
● Not absurdly complex (~50k lines of Go)



Basic container runner that avoids docker pull:

After building the image: 
docker save to a network 
drive

When running the container: 
runc with a root filesystem 
over the network



This is still pretty slow though!

● Python does thousands of file system 
operations sequentially

● NFS latency is a few milliseconds!

This adds up to like 10 seconds!

If we want to do this in seconds, we have a 
fraction of a millisecond for each file system 
operation.

Rough latency numbers:

● S3: 10-20ms
● NFS: 1-2ms
● EBS: 0.5-1ms
● SSD: 100-200 µs



Can we cache things locally?

● SSD latency: ~100 µs (0.1ms)
● Same image: almost the same files are read every time
● Different image: still almost the same files every time!



Unrelated images have a lot of overlap!

smy20011/dreambooth

huggingface/transformers-pytorch-gpu

pytorch/pytorch

18,240
unique files

78,287
unique files

25,438
unique files

2,228

10,695

6,415

8,716



How to cache efficiently: content-addressing



How do we make this work with containers?

Build our own file system:

● Not super hard with FUSE!
● You can even do it in Python
● A lot easier if the file system is read-only



FUSE operations we need to implement

open

read

release

readdir

readdirplus



Handle the indirection when reading files

Keep an index in memory that maps file system paths to

1. The hash of the content
2. A struct stat



When reading a file

1. Look up its hash in the index
2. See if it exists on local disk

a. If not, fetch it, return its content, and store the file on local disk
b. If it does exist, just return it



Ok but how do we get the images into this?

We already build the containers in the cloud so that’s a good starting point!

Super janky idea:

● Build images using Docker
● Then docker save to a temporary directory
● Then checksum of every file

○ Upload any file to NFS that we didn’t have already
● Then build an index of path → (checksum, struct stat)
● Store the index on NFS too

Only problem: this is super slow



Much better idea

● Building an image is basically just 
running containers

● Use OverlayFS to make the image 
writable

● This lets us build content indexes 
very easily

● “Only” need to implement a 
Dockerfile parser



What about scheduling?

What did we build so far:

● Run custom images very fast
● Build custom images very fast
● Maintain a pool of worker instances
● Allocate jobs to workers



Let’s run our own resource pool

● Launch & terminate instances on AWS & GCP
● We can launch an instance in about 40s
● “Overprovision” so we always have a bit of spare capacity
● We benefit from multi-tenancy
● Every worker reports available CPU & memory every 2s



Turning this into a function-as-a-service platform

● Main trick: reuse the 
same container for 
multiple function calls

● Autoscale on-
demand, scale down 
to zero quickly

● Super useful for 
GPUs

● Need fast cold start



What does this let us do?



What are some use cases?

● Lots of Stable Diffusion and Dreambooth
● Also computational biotech, web scraping, data pipelines, and many other 

things



Was it dumb to build this in-house?

Maybe? But

● Docker is too slow & limited for 
what we needed

● It would have taken too much 
work getting Kubernetes to do 
this

● AWS Lambda is too expensive 
and limited



Thanks!
Questions?

erik@modal.com
@bernhardsson

mailto:erik@modal.com

