Building A Fun-Sized MLOps Stack From Scratch

Head of MLOps

Powered By:

{eature{orm

Goals

- What are the main problems MLOps tries to solve.
- What are the most common tools being used & their drawbacks.
- What are some OSS projects & tools that have been developed in the past 2-3 years and how do they solve some of the pain points of the prior tools.
- What is the realistic roadmap for companies that are forever "not-Google" scale but want to continue improving their data and ML maturity.

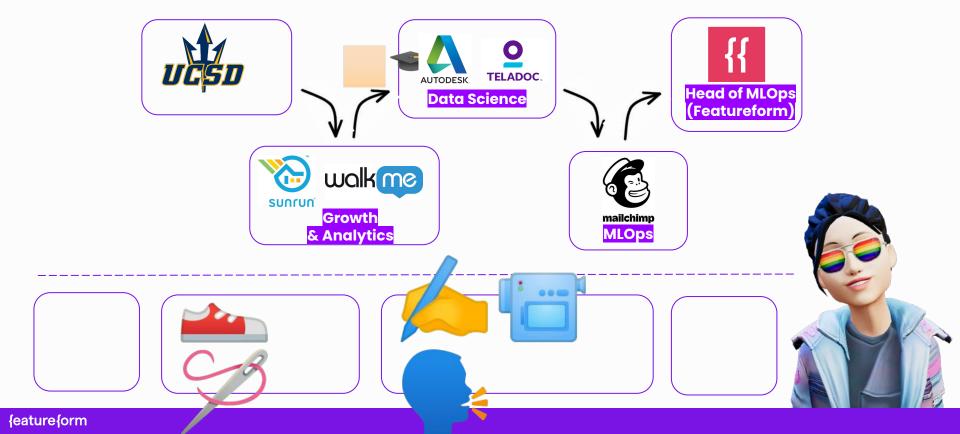
How?

By

- Describing the original promises of MLOps (& the current shortfalls).
- Understanding the "Jobs-To-Be-Done" of Data Scientists (& how the current ecosystem supports them).
- Describe the pain-points of the Solo Data Scientist, the SMB Data Science Team, & the areas of opportunity for Enterprises.
- Propose stacks that can be easily implemented in a relatively short period (sometimes even a day!).

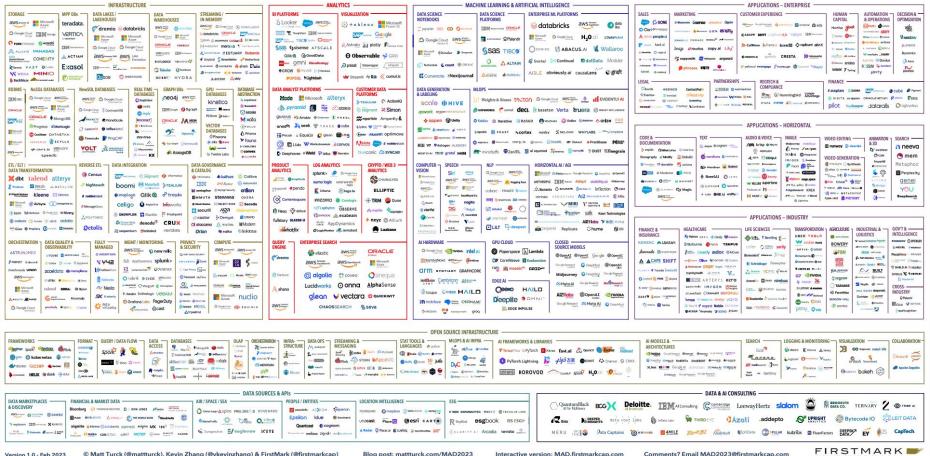
Who Am I?

Mikiko Bazeley (But Call Me Mickey 🐭)

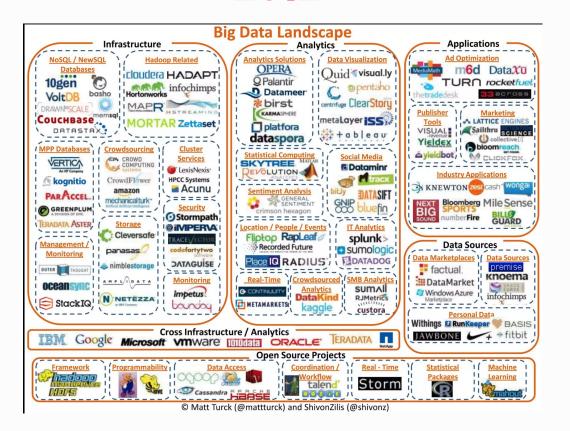


What's The Current Landscape Look Like?

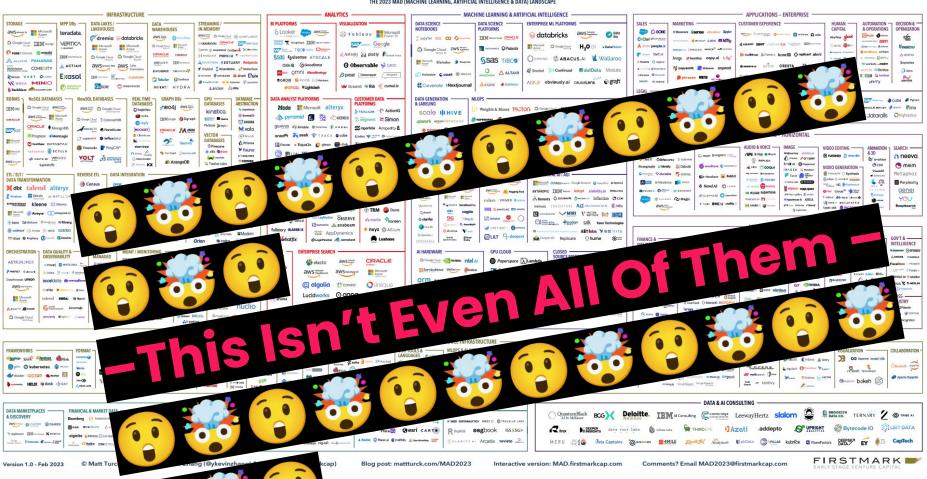
THE 2023 MAD (MACHINE LEARNING, ARTIFICIAL INTELLIGENCE & DATA) LANDSCAPE



2012



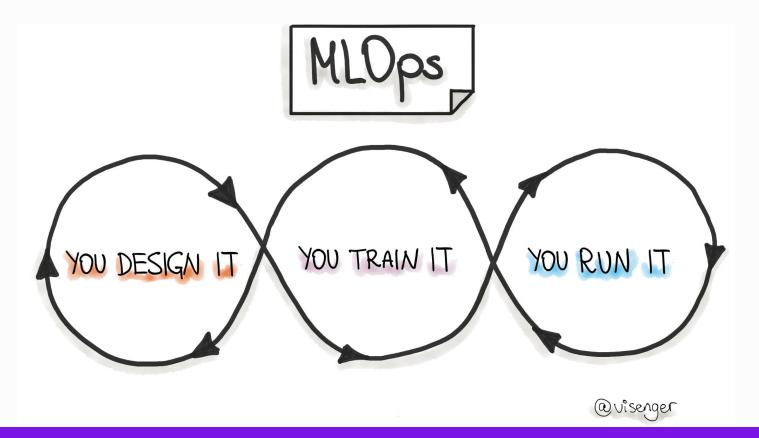
THE 2023 MAD (MACHINE LEARNING, ARTIFICIAL INTELLIGENCE & DATA) LANDSCAPE



{eature{orm

What Was The Original Promise of MLOps?

Design => Train => Run



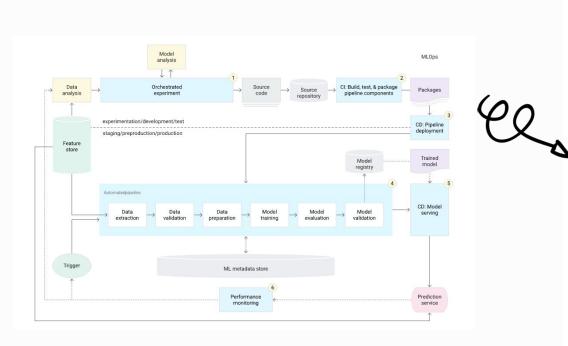
The Three Dimensions: Velocity, Throughput, Risk

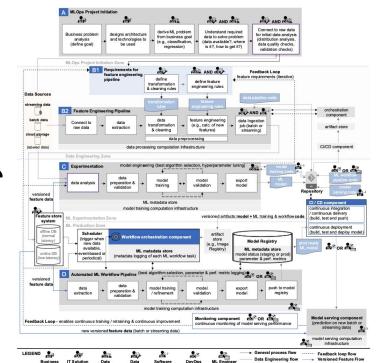
Source: "Humanitec --Key DevOps metrics to improve your engineering setup"

We Failed The OG Users of MLOps:

Data Scientists

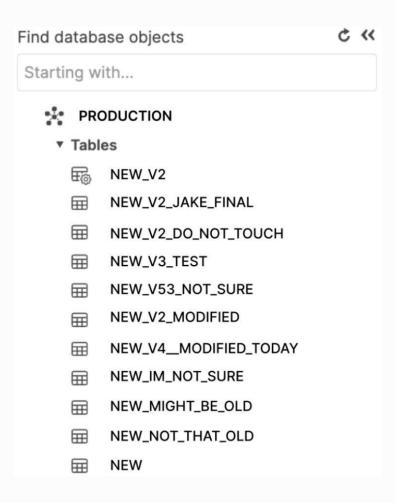
Trying To Mimic The Heavyweights



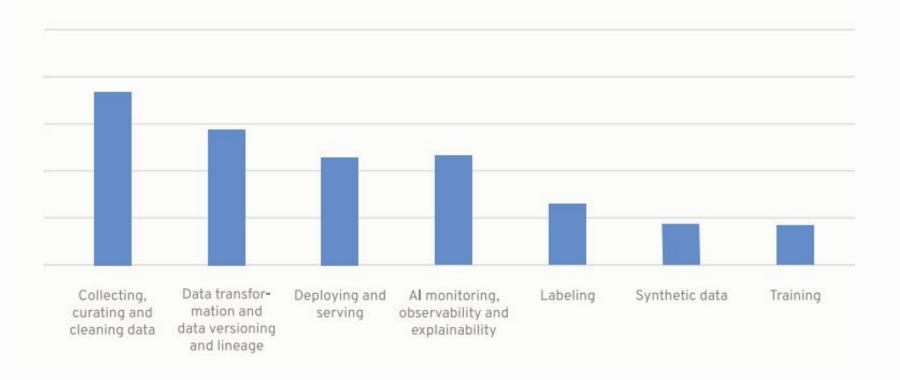


→ Model / Code flow

Figure 4. End-to-end MLOps architecture and workflow with functional components and roles



Where have you faced the biggest challenges in productionizing models?



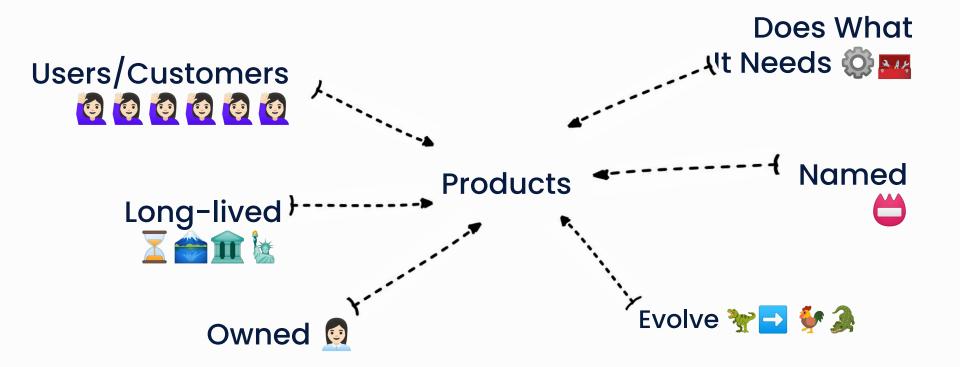
{eature{orm

What We Should Be Doing

Treating The ML Platform As

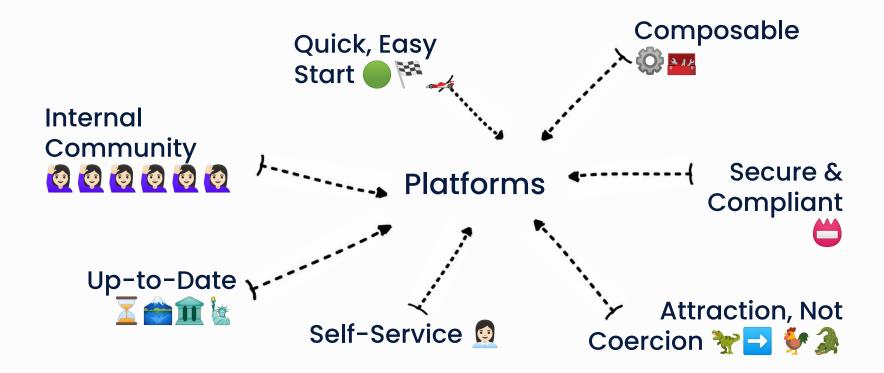
A Product

Characteristics of a Product



{eature{orm

Applied to Platforms

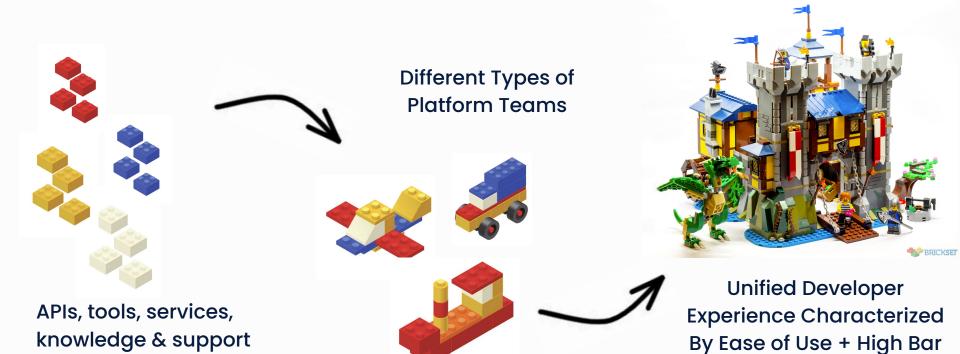


Measuring Data Science DevExp

What We Should Care About	What We Should Measure (Examples)
Product (Activation, Engagement, Adoption)	Weekly Active Users, Engagement, Adoption Rate, etc
User Satisfaction	NPS, WAU Retention, Sessions Per User, # Tickets, etc
Platform Performance (Reliability, Availability, Scalability)	SLOs, Latency, # Incidents, etc

{eature{orm

Empire State of Mind



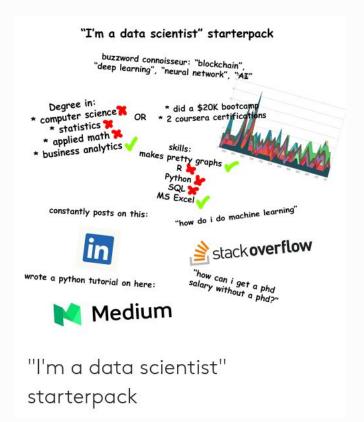
<mark>{eature{orm</mark>

Prioritizing Enablement,

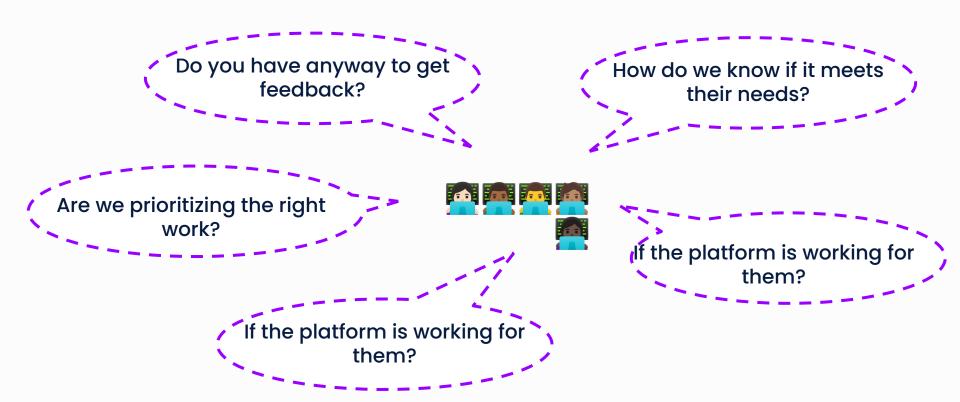
The Last Mile of True

Platform Adoption

The Stereotypes & Tropes

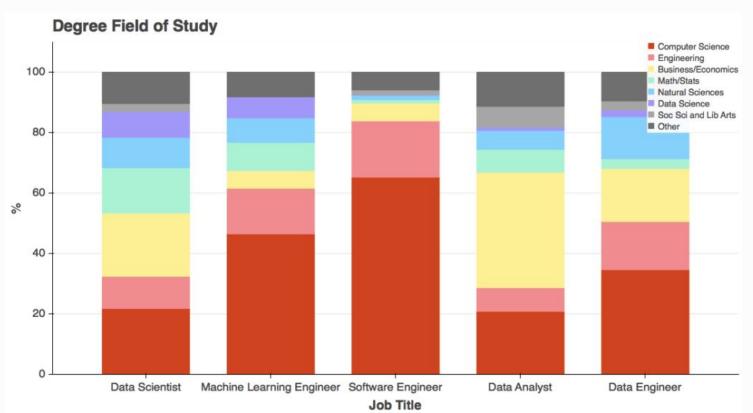


Being User Centric



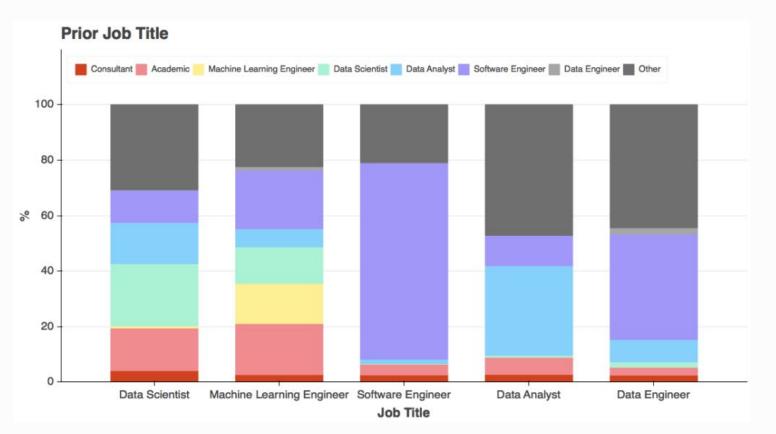
{eature{orm

Do You Know Who Your Customer Is?



Indeed: Where Do
Data Scientists
Come From?

Do You Know Who Your Customer Is?



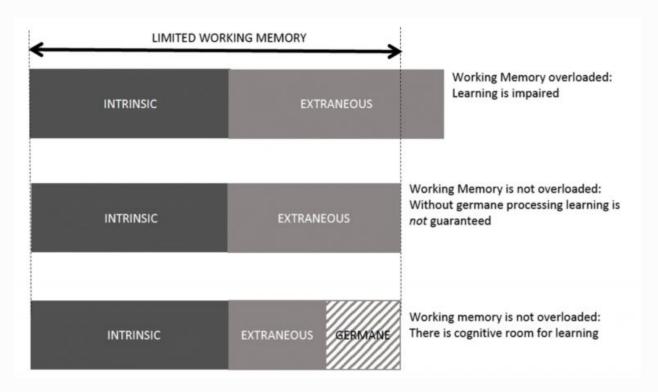
Indeed: Where
Do Data
Scientists Come
From?

Seamless Iteration

& Making Every Data Scientist

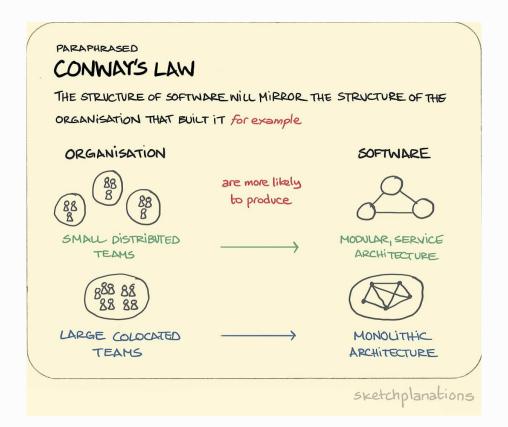
A 10X Data Scientist

1. Solving Cognitive Overload

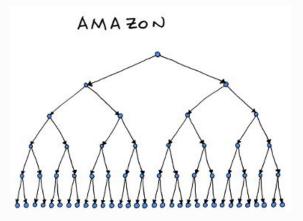


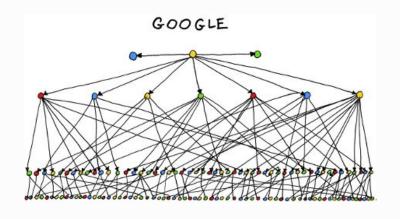
Tom Geraghty: "Platform as a Product"

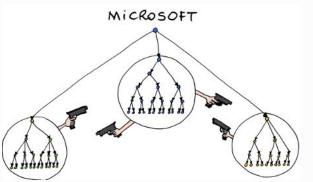
2. Cut Friction & Increase Flow

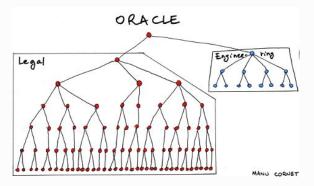


Source: Sketchplanations -- Conway's Law









Manu Cornet: Conway's Law

So Many Tools & Services Out There, And Yet...

... Raise Your Hand 🖐

If Your Platform Is Basically

S3 +Spark + Redis

(And Bash Scripts)

And While Those Are Great Tools...

... There Are Certain Classes of Problems They Don't Solve

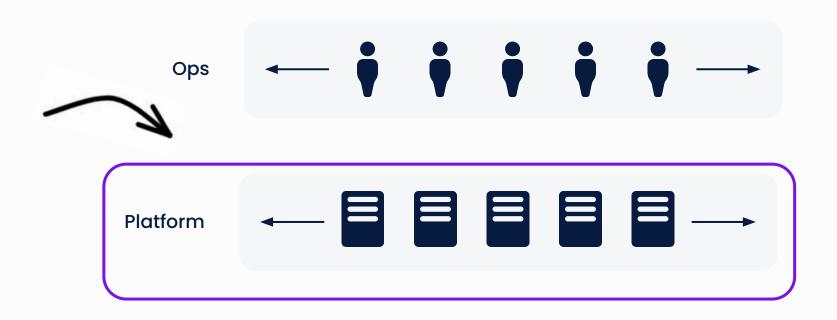
MLOps problems fall into two categories

Specifically,

Problems Around

Science "Jobs-To-Be-Done"

MLOps problems fall into two categories



{eature{orm

Let's Describe The

Data Science

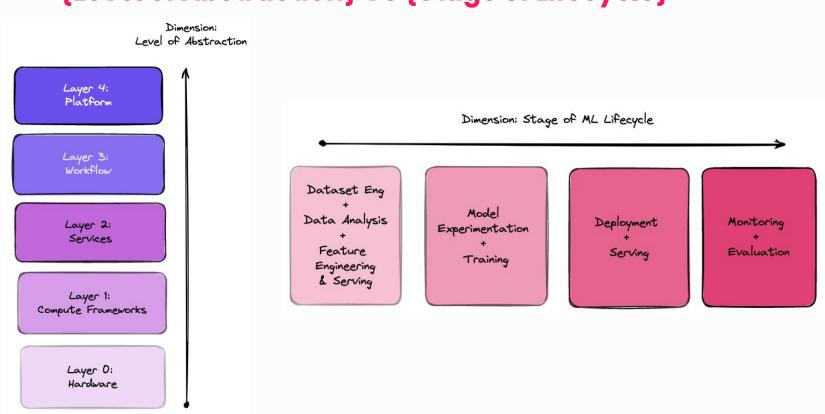
&

Propose A Framework

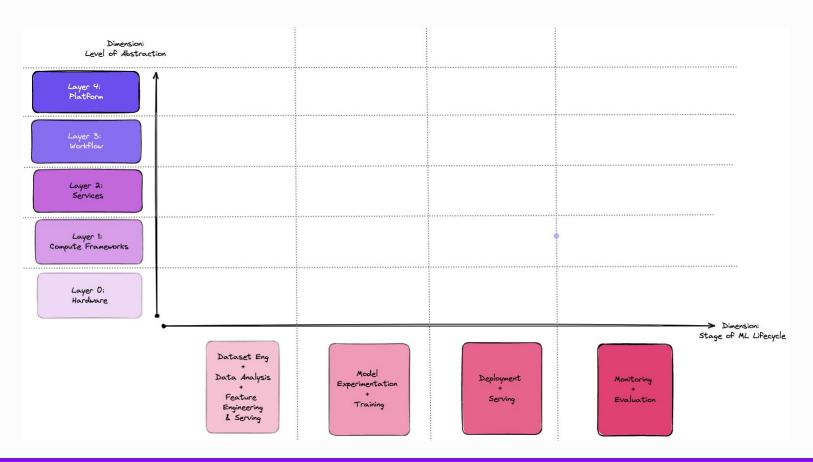
For How We Can Effectively Map Tools

To Create An Effective Stack

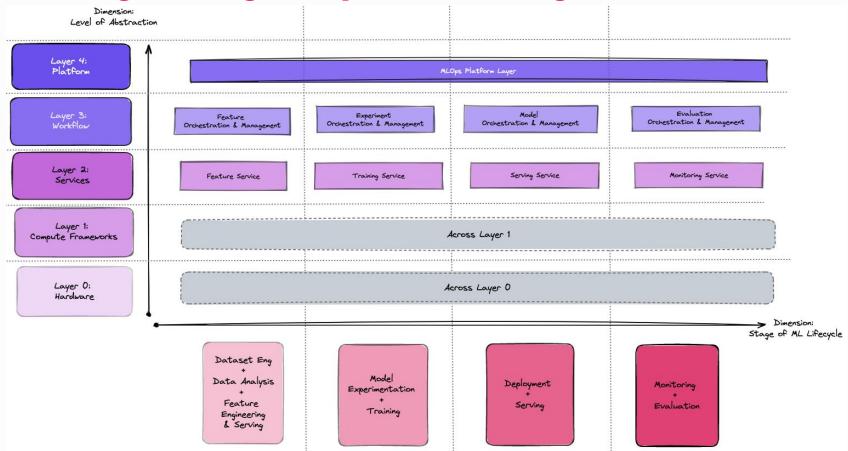
DS Jobs To Be Done By: {Level of Abstraction} VS {Stage of Lifecycle}



{Level of Abstraction} VS {Stage of Lifecycle}



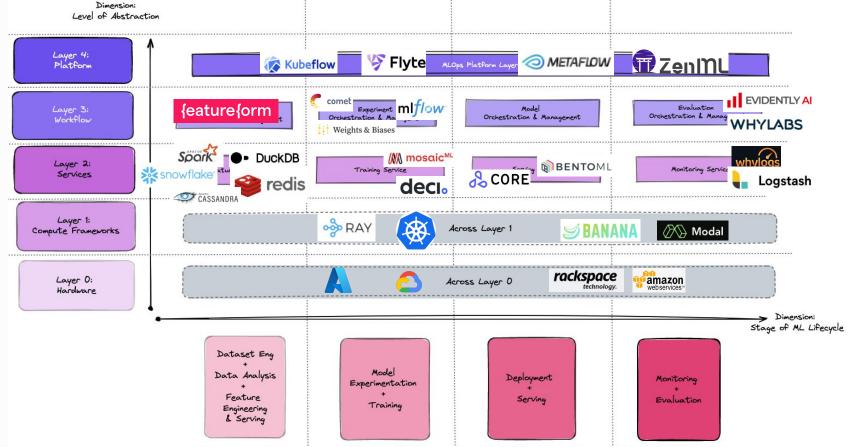
Choosing The Right Layer For the Right Job To be Done



Who Is Doing What*

*(As can be determined by their docs)

Choosing The Right Layer For the Right Job To be Done



Let's Apply The Framework For:

- The Solo Data Scientist
- **The SMB Data Science Team**
- **The Enterprise DS Org**

The Needs of

"The Solo Data Scientist"

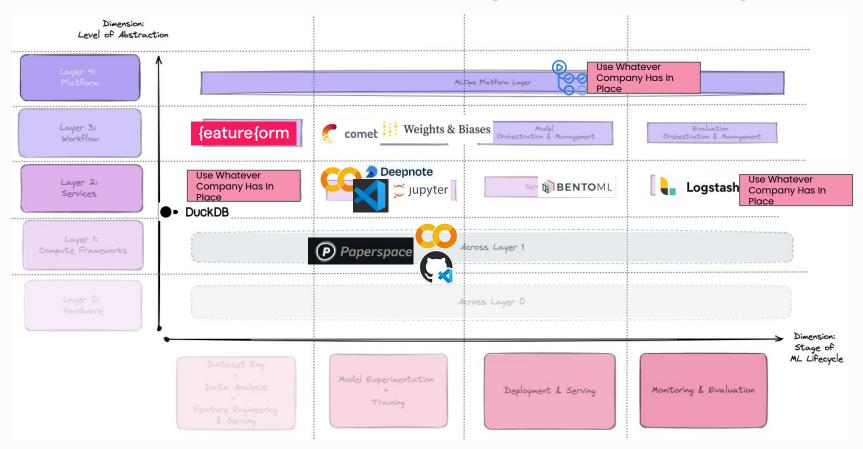
User Story: The Solo Data Scientist

I need to	Pain-Point
Keep track of data, model, & code artifacts, including changes & experimentation runs.	Versioning & Documentation
Quickly iterate between features, algorithms, & hyperparameter tuning.	Experimentation Tracking
Train models on a "large enough" amount of data with access to GPUs.	Serverless GPU
Do everything with the least amount of overhead possible with the least amount of steps.	Compatibility With Existing Product Stack

{eature{orm 53

Stack 1: The Duke Nukem Stack

Stack 1: The Duke Nukem Stack (Solo Data Scientist)



The Needs of

"The SMB Data Science Team"

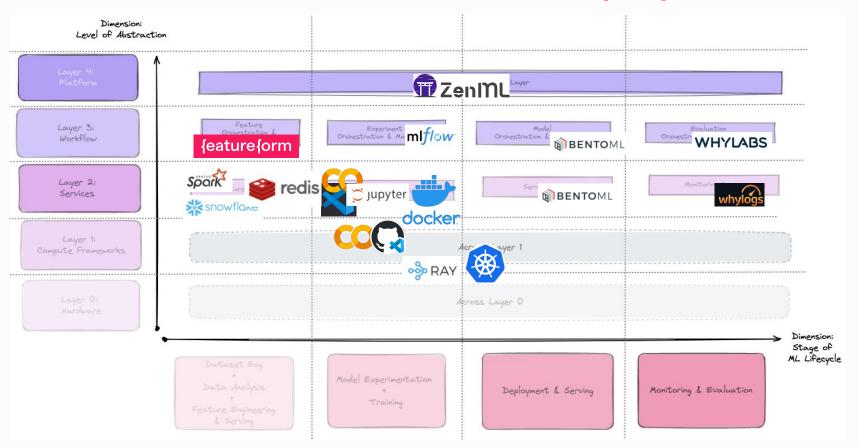
User Story: The DS Team

We need to	Pain-Point
Collaborate with other members of the DS team (and potentially even external partners) on projects, with visibility into progress or health of data science assets.	Collaboration
Share & distribute knowledge asynchronously, while getting ahead of human bottlenecks & the accumulation of tribal knowledge.	Documentation & Discoverability
Ensure we're not "reinventing the wheel" across the organization & repeating work.	Reuse & Resource Sharing
Be notified when model pipelines and prediction services aren't working as expected with insight into failure conditions.	Fine-grained Monitoring & Evaluation

{eature{orm 57

Stack 2: **The Serious Business** Stack

Stack 2: The Serious Business Stack (SMB)



The Needs of

"The Enterprise Org"

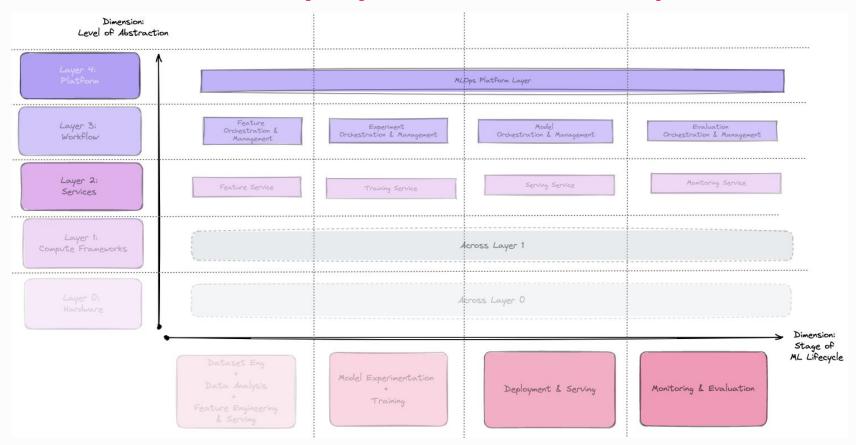
User Story: The Organization

We need to	Pain-Point
Span and unify multiple infrastructure providers (including multi-cloud and on-prem), model deployment patterns, and model serving architectures as seamlessly as possible.	Heterogeneous Infrastructure
Handle a wide variety of regulation around data & models, log compliance related information & data, & streamline communication & visibility.	Governance, Access Control, Audit Logs
Interface with non-DS teams (including other engineering teams, as well as non-eng teams like legal & marketing).	Cross-Functional Workflows

{eature{orm

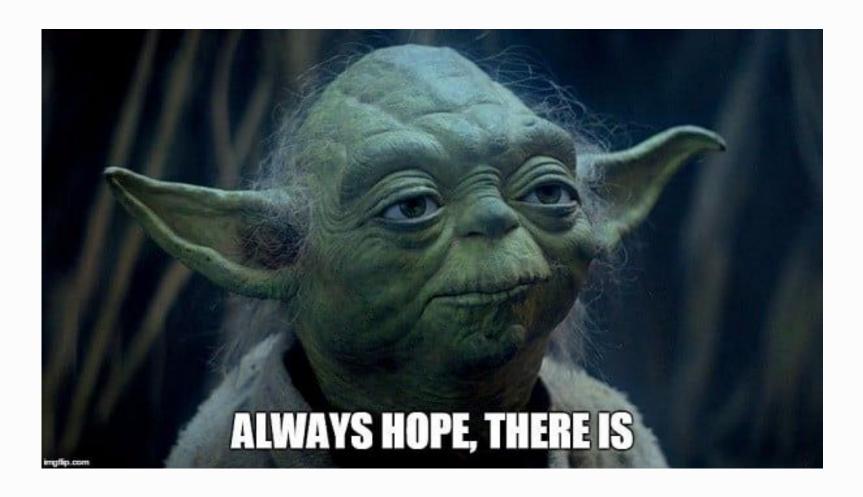
Stack 3: The Olly Olly Oxen Free Stack

Stack 3: The Olly Olly Oxen Free Stack (Enterprise)



There Will Be No "Modern MLOps" Stack

But Wait! There's Hope!



In Closing

Takeaways

- Describing the original promises of MLOps (& the current shortfalls).
- Understanding the "Jobs-To-Be-Done" of Data Scientists (& how the current ecosystem supports them).
- Describe the pain-points of the Solo Data Scientist, the SMB Data Science Team, & the areas of opportunity for Enterprises.
- Propose stacks that can be easily implemented in a relatively short period (sometimes even a day!).

<mark>{eature{orm</mark> 68

Feel Free To Chat With Me During Office Hours

Repository

bit.ly/3Yz2G95

Docs

bit.ly/423SE2W

LinkedIn

Mikiko Bazeley Head of MLOps

