
Cubing and Metrics in
SQL, oh my!
Julian Hyde (Google)
Data Council, Austin TX, 2023-03-29

SQL vs BI
BI tools implement their own languages on top of SQL. Why not SQL?

Possible reasons:
● Semantic Model
● Control presentation / visualization
● Governance
● Pre-join tables
● Define reusable calculations
● Ask complex questions in a concise way

Processing BI in SQL
Why we should do it

● Move processing, not data
● Cloud SQL scale
● Remove data lag
● SQL is open

Why it’s hard

● Different paradigm
● More complex data model
● Can’t break SQL

Pasta machine vs Pizza delivery

Relational algebra (bottom-up) Multidimensional (top-down)

Products

Suppliers

⨝

⨝

Σ

⨝

σ

Sales

Products

Suppliers

⨝

⨝

Σ

σ

Sales

π

(Supplier:
‘ACE’,
Date: ‘1994-01’,
Product: all)

(Supplier:
‘ACE’,
Date: ‘1995-01’,
Product: all)

Supplier

Product

Date

Bottom-up vs Top-down query

Some multidimensional queries
● Give the total sales for each product in each quarter of 1995. (Note that quarter is a function of date).
● For supplier “Ace” and for each product, give the fractional increase in the sales in January 1995 relative

to the sales in January 1994.
● For each product give its market share in its category today minus its market share in its category in

October 1994.
● Select top 5 suppliers for each product category for last year, based on total sales.
● For each product category, select total sales this month of the product that had highest sales in that

category last month.
● Select suppliers that currently sell the highest selling product of last month.
● Select suppliers for which the total sale of every product increased in each of last 5 years.
● Select suppliers for which the total sale of every product category increased in each of last 5 years.

From [Agrawal1997]. Assumes a database with dimensions {supplier, date, product} and measure {sales}.)

Some multidimensional queries
● Give the total sales for each product in each quarter of 1995. (Note that quarter is a function of date).
● For supplier “Ace” and for each product, give the fractional increase in the sales in January 1995 relative to

the sales in January 1994.
● For each product give its market share in its category today minus its market share in its category in

October 1994.
● Select top 5 suppliers for each product category for last year, based on total sales.
● For each product category, select total sales this month of the product that had highest sales in that

category last month.
● Select suppliers that currently sell the highest selling product of last month.
● Select suppliers for which the total sale of every product increased in each of last 5 years
● Select suppliers for which the total sale of every product category increased in each of last 5 years.

From [Agrawal1997]. Assumes a database with dimensions {supplier, date, product} and measure {sales}.)

Query:

● For supplier “Ace” and for each product, give the fractional increase in the sales in January 1995 relative
to the sales in January 1994.

SQL MDX

SELECT p.prodId,
s95.sales,
(s95.sales - s94.sales) / s95.sales

FROM (
SELECT p.prodId, SUM(s.sales) AS sales
FROM Sales AS s
JOIN Suppliers AS u USING (suppId)
JOIN Products AS p USING (prodId)

WHERE u.name = ‘ACE’
AND FLOOR(s.date TO MONTH) = ‘1995-01-01’
GROUP BY p.prodId) AS s95

LEFT JOIN (
SELECT p.prodId, SUM(s.sales) AS sales
FROM Sales AS s
JOIN Suppliers AS u USING (suppId)
JOIN Products AS p USING (prodId)

WHERE u.name = ‘ACE’
AND FLOOR(s.date TO MONTH) = ‘1994-01-01’
GROUP BY p.prodId) AS s94

USING (prodId)

WITH MEMBER [Measures].[Sales Last Year] =
([Measures].[Sales],
ParallelPeriod([Date], 1, [Date].[Year]))

MEMBER [Measures].[Sales Growth] =
([Measures].[Sales]

- [Measures].[Sales Last Year])
/ [Measures].[Sales Last Year]

SELECT [Measures].[Sales Growth] ON COLUMNS,
[Product].Members ON ROWS

FROM [Sales]
WHERE [Supplier].[ACE]

Query:

● For supplier “Ace” and for each product, give the fractional increase in the sales in January 1995 relative
to the sales in January 1994.

SQL SQL with measures

SELECT p.prodId,
s95.sales,
(s95.sales - s94.sales) / s95.sales

FROM (
SELECT p.prodId, SUM(s.sales) AS sales
FROM Sales AS s
JOIN Suppliers AS u USING (suppId)
JOIN Products AS p USING (prodId)

WHERE u.name = ‘ACE’
AND FLOOR(s.date TO MONTH) = ‘1995-01-01’
GROUP BY p.prodId) AS s95

LEFT JOIN (
SELECT p.prodId, SUM(s.sales) AS sales
FROM Sales AS s
JOIN Suppliers AS u USING (suppId)
JOIN Products AS p USING (prodId)

WHERE u.name = ‘ACE’
AND FLOOR(s.date TO MONTH) = ‘1994-01-01’
GROUP BY p.prodId) AS s94

USING (prodId)

SELECT p.prodId,
SUM(s.sales) AS MEASURE sumSales,
sumSales AT (SET FLOOR(s.date TO MONTH)

= ‘1994-01-01’)
AS MEASURE sumSalesLastYear

FROM Sales AS s
JOIN Suppliers AS u USING (suppId)
JOIN Products AS p USING (prodId))

WHERE u.name = ‘ACE’
AND FLOOR(s.date TO MONTH) = ‘1995-01-01’
GROUP BY p.prodId

Self-joins, correlated subqueries, window aggregates, measures
Window aggregate functions were introduced to save on
self-joins.

Some DBs rewrite scalar subqueries and self-joins to
window aggregates [Zuzarte2003].

Window aggregates are more concise, easier to optimize,
and often more efficient.

However, window aggregates can only see data that is from
the same table, and is allowed by the WHERE clause.
Measures overcome that limitation.

SELECT *
FROM Employees AS e
WHERE sal > (
SELECT AVG(sal)
FROM Employees
WHERE deptno = e.deptno)

SELECT *
FROM Employees AS e
WHERE sal > AVG(sal)
OVER (PARTITION BY deptno)

A measure is… ?

… a column with an aggregate function. SUM(sales)

A measure is… ?

… a column with an aggregate function. SUM(sales)

… a column that, when used as an
expression, knows how to aggregate itself.

(SUM(sales) - SUM(cost))
/ SUM(sales)

A measure is… ?

… a column with an aggregate function. SUM(sales)

… a column that, when used as an
expression, knows how to aggregate itself.

(SUM(sales) - SUM(cost))
/ SUM(sales)

… a column that, when used as expression,
can evaluate itself in any context.

(SELECT SUM(forecastSales)
FROM SalesForecast AS s
WHERE predicate(s))

ExchService$ClosingRate(
‘USD’, ‘EUR’, sales.date)

A measure is…

… a column with an aggregate function. SUM(sales)

… a column that, when used as an
expression, knows how to aggregate itself.

(SUM(sales) - SUM(cost))
/ SUM(sales)

… a column that, when used as expression,
can evaluate itself in any context.

Its value depends on, and only on, the
predicate placed on its dimensions.

(SELECT SUM(forecastSales)
FROM SalesForecast AS s
WHERE predicate(s))

ExchService$ClosingRate(
‘USD’, ‘EUR’, sales.date)

SELECT MOD(deptno, 2) = 0 AS evenDeptno, avgSal2
FROM

WHERE deptno < 30

SELECT deptno, AVG(avgSal) AS avgSal2
FROM

GROUP BY deptno

Table model
Tables are SQL’s fundamental
model.

The model is closed – queries
consume and produce tables.

Tables are opaque – you can’t
deduce the type, structure or
private data of a table.

SELECT deptno, job,
AVG(sal) AS avgSal

FROM Employees
GROUP BY deptno, job

Employees2

Employees3

SELECT e.deptno, e.job, d.dname, e.avgSal / e.deptAvgSal
FROM

AS e
JOIN Departments AS d USING (deptno)
WHERE d.dname <> ‘MARKETING’
GROUP BY deptno, job

We propose to allow any table and
query to have measure columns.

The model is closed – queries
consume and produce tables-with-
measures.

Tables-with-measures are semi-
opaque – you can’t deduce the type,
structure or private data, but you can
evaluate the measure in any
context that can be expressed as a
predicate on the measure’s
dimensions.

SELECT *,
avgSal AS MEASURE avgSal,
avgSal AT (CLEAR deptno) AS MEASURE deptAvgSal

FROM

Table model with measures

SELECT *,
AVG(sal) AS MEASURE avgSal

FROM Employees

AnalyticEmployees

AnalyticEmployees2

Model + Query + Engine = Data system

Query

language

Data

model
Engine

Syntax
expression AS MEASURE – defines a measure in the SELECT clause

AGGREGATE(measure) – evaluates a measure in a GROUP BY query

expression AT (contextModifier…) – evaluates expression in a modified context

contextModifier ::=
CLEAR dimension

| SET dimension = [CURRENT] expression
| VISIBLE
| ALL

aggFunction(aggFunction(expression) PER dimension) – multi-level aggregation

Plan of attack
1. Add measures to the table model, and allow queries to use them

◆ Measures are defined only via the Table API

2. Define measures using SQL expressions (AS MEASURE)
◆ You can still define them using the Table API

3. Context-sensitive expressions (AT)

Semantics
0. We have a measure M, value type V,
in a table T.

CREATE VIEW AnalyticEmployees AS
SELECT *, AVG(sal) AS MEASURE avgSal
FROM Employees

1. System defines a row type R with the
non-measure columns.

CREATE TYPE R AS
ROW (deptno: INTEGER, job: VARCHAR)

2. System defines an auxiliary function
for M. (Function is typically a scalar
subquery that references the measure’s
underlying table.)

CREATE FUNCTION computeAvgSal(
rowPredicate: FUNCTION<R, BOOLEAN>) =

(SELECT AVG(e.sal)
FROM Employees AS e
WHERE APPLY(rowPredicate, e))

Semantics (continued)
3. We have a query that uses M. SELECT deptno,

avgSal
/ avgSal AT (CLEAR deptno)

FROM AnalyticEmployees AS e
GROUP BY deptno

4. Substitute measure references with
calls to the auxiliary function with the
appropriate predicate

SELECT deptno,
computeAvgSal(r (r.deptno = e.deptno))

/ computeAvgSal(r TRUE))
FROM AnalyticEmployees AS e
GROUP BY deptno

5. Planner inlines computeAvgSal and
scalar subqueries

SELECT deptno, AVG(sal) / MIN(avgSal)
FROM (
SELECT deptno, sal,

AVG(sal) OVER () AS avgSal
FROM Employees)

GROUP BY deptno

Calculating at the right grain
Example Formula Grain

Computing the revenue from
units and unit price

units * pricePerUnit AS revenue Row

Sum of revenue (additive) SUM(revenue)
AS MEASURE sumRevenue

Top

Profit margin (non-additive) (SUM(revenue) - SUM(cost))
/ SUM(revenue)

AS MEASURE profitMargin

Top

Inventory (semi-additive) SUM(LAST_VALUE(unitsInStock)
PER inventoryDate)

AS MEASURE sumInventory

Intermediate

Daily average (weighted
average)

AVG(sumRevenue PER orderDate)
AS MEASURE dailyAvgRevenue

Intermediate

Subtotals & visible
SELECT deptno, job,

SUM(sal), sumSal
FROM (

SELECT *,
SUM(sal) AS MEASURE sumSal

FROM Employees)
WHERE job <> ‘ANALYST’
GROUP BY ROLLUP(deptno, job)
ORDER BY 1,2

deptno job SUM(sal) sumSal

10 CLERK 1,300 1,300

10 MANAGER 2,450 2,450

10 PRESIDENT 5,000 5,000

10 8,750 8,750

20 CLERK 1,900 1,900

20 MANAGER 2,975 2,975

20 4,875 10,875

30 CLERK 950 950

30 MANAGER 2,850 2,850

30 SALES 5,600 5,600

30 9,400 9,400

20,750 29,025

Measures by default sum ALL rows;
Aggregate functions sum only VISIBLE rows

Visible
Expression Example Which rows?

Aggregate function SUM(sal) Visible only

Measure sumSal All

AGGREGATE applied to measure AGGREGATE(sumSal) Visible only

Measure with VISIBLE sumSal AT (VISIBLE) Visible only

Measure with ALL sumSal AT (ALL) All

Semantic models versus databases
In my opinion, a semantic model…

● … is the place to share data and calculations
● … needs a really good query language

○ (So you don’t have to change the model every time
someone has a new question)

● … doesn’t become a database just because it
speaks SQL

● … should do other things too
○ (Access control, governance, presentation defaults,

guide data exploration, transform data, tune data, …)

Shouldn’t the semantic model
be outside the database?

(I don’t want to be tied to one
DBMS vendor.)

I have a great semantic model
already. Why do I need a
query language? My users
don’t want to write SQL.

What even is a
semantic model?

Summary
Concise queries without self-joins

Top-down evaluation

Reusable calculations

Doesn’t break SQL

References
Papers

● [Agrawal1997] “Modeling multidimensional databases” (Agrawal, Gupta, and Sarawagi, 1997)
● [Zuzarte2003] “WinMagic: Subquery Elimination Using Window Aggregation” (Zuzarte, Pirahash, Ma,

Cheng, Liu, and Wong, 2003)

Issues

● [CALCITE-4488] WITHIN DISTINCT clause for aggregate functions (experimental)
● [CALCITE-4496] Measure columns ("SELECT ... AS MEASURE")
● [CALCITE-5105] Add MEASURE type and AGGREGATE aggregate function
● [CALCITE-5155] Custom time frames
● [CALCITE-xxxx] PER
● [CALCITE-xxxx] AT

Thank you!
Any questions?
@julianhyde
@ApacheCalcite
https://calcite.apache.org

Slides and recording will be posted at @ApacheCalcite.

