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e Principal Engineer @ Uber.Inc ~ ® Staff Engineer @ Uber.Inc
e Real-time Data Platform e Mobility & Platforms
e Committer: Apache Pinot
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Metric Unification & Standardization
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uMetric

uMetric is a unified metric
platform at Uber that
manages the full life cycle
of a metric: definition,
discovery, computation,
verification, and serving
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Elasticsearch-Oriented

Realtime Architecture
Since 2014

e Operable by small team
e Support idempotency insert
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Scale

1.5PB

Dataset Size

1.3M/s

Write per Sec



Elasticsearch-Oriented

Arch Optimization
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Elasticsearch-Oriented

Arch Optimization
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Elasticsearch-Oriented

Arch Optimization
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Rollup
Large table to smaller

Elasticsearch-Oriented precomputed datasets
Arch Optimization Cache

With TTL. Suitable for non
————— realtime use cases.
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Elasticsearch-Oriented
Arch Optimization
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Challenges on Elasticsearch Stack

Reliability Scalability Engineering Cost
e Cluster constantly in high load - - - PR
e  Frequent SLA breach ° Rap|dly growing use cases ° Bl',llld optimization systems
e Frequent minor data-loss e Linearly scale cluster / data e High oncall load
e Lack effective mitigation node has low ROI, and
e |ssue cannot be root-caused

cause derivative issues



Migration toward Pinot

Feature Gaps Safe Migration Performance Tuning
o Upsert e Perf/ DQ/ Reliability e Multi-cluster by tier
e Backfill comparison between Pinot e Dedicated machine spec
e Spark connector and ES per cluster
e Nested col support e Drain traffic by table / metric e Fine-tuning per query, with
/ user / retention / etc. indexes and algorithm

optimization



After Migration

Reliability Scalability Engineering Cost
e Significantly improved e Unblocked new user e Deprecated 6 customized
overall reliability onboarding system
e Fine-grained table-level e Scale table up on demand e Reduced oncall load

failover



Pinot @ Uber



Real-time Analytics at Uber

1.
2.
3.

Real-time and actionable insights
Time-sensitive decisions
User engagement growth

Uber
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Apache Pinot: Fast, Distributed OLAP

Started by Linkedin for
Metrics System

Highly available T @
Horizontally scalable
Low latency/High throughput "
Immutable data =
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High Level Architecture
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High Level Architecture
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High Level Architecture
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High Level Architecture
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High Level Architecture
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EVA: Building a World-class RTA platform for Uber

Hee | @ e
L —'—’ - — . <—'— presto. ——
e . K P .

Self-served Ingestion

Data Sources and Data Modelling Storage Query Visualization
Tier 0 platform, 99.99% uptime Self service Onboarding (via uWorc)
Built on top of Apache Pinot SQL API (via Presto / Neutrino)
Seconds data freshness <100ms @P99 query latency

https://www.uber.com/blog/operating-apache-pinot/




Uber
Upserts

e First real-time OLAP to support upsert e Released in Pinot 0.6.0
e Challenge: data stored as immutable segments e Partial upsert
e Data partitioning to share nothing

SELECT current status UBEREATS
count (*)
FROM  uberEatsOrders San Francisco - Live Dashboard
WHERE regionid 1366
AND MinutesS inceEpoch Order Stats (View Today's Stats)
BETWEEN 25432140 AND 25433580 Completed Today* Live Now Created Last 15 Min Created Last 30 min

GROUP BY current status
TOP 10000

3399 208 92 196

https://www.youtube.com/watch?v=CnSnLKQLuXc&t=1s



Complex-type (Array, Map) support in Pinot dber

e Released in Pinot 0.8.0

v object {2} v array [2]
rsvp_id : 1869661474 v 0 {4}
v group {2} rsvp_id : 1869661474
v group_topics [2] group.group_topics.urlkey : paddling
v 0 {2} group.group_topics.topic_name : Paddling
urlkey : paddling T group.group_id : 28088353
topic_name : Paddling v 1 {4}
v 1: 42} rsvp_id : 1869661474
urlkey : hiking group.group_topics.urlkey : hiking
topic_name : Hiking group.group_topics.topic_name : Hiking
group_id : 28088353 group.group_id : 28088353

https://docs.pinot.apache.org/basics/data-import/complex-type



https://docs.pinot.apache.org/basics/data-import/complex-type

Uber
Spark/Flink connectors with Pinot

e Spark Connector seviee S o ——
o Pinot -> Hive dispersal
o Perfimprovement via GRPC ceaame || i ] satonngesdon || SEA |
e Flink Connector
- Streaming/batch unification for L

(Realtime ( Offline
—|

Table Table

Pinot ingestion
o Backfill large Pinot Upsert tables ol




Next Uber

e Leverage StarTree index to replace custom rollup pipelines
e Better cluster isolation and tiering for ease of deployment
e Upsert table compaction/ TTL



Uber

Q&A

Apache®, Apache Kafka®, Apache Flink®, Apache Pinot®, Apache Hadoop®
and their logo are either registered trademarks or trademarks of the Apache
Software Foundation in the United States and/or other countries. No
endorsement by The Apache Software Foundation is implied by the use of
these marks.


http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
https://www.apache.org/
https://www.apache.org/

How upsert works Uber
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