Building high performance recommender systems with feature stores

Data Council 2022

Danny Chiao

Software Engineer Engineering Lead Tecton / Feast (former lead at Google)

Agenda

- Background
 - Recommender systems intro
 - What is a feature store?
- Recommender systems challenges
- Optimizing performance
- Correctness in operational recommender systems
- Feast x RecSys

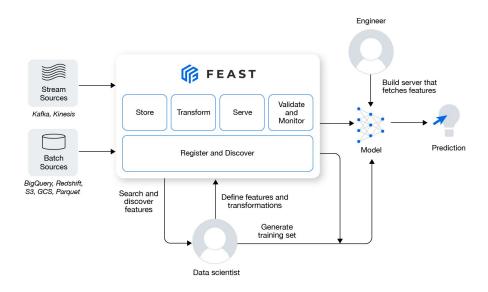
Background

Recommender systems

- Use cases: e-commerce, media streaming, social, ride-hailing, biomedical, etc
- Who: data scientists, data engineers, platform engineers
- Trend: Batch predictions → online predictions
- In practice, consists usually of two steps: candidate generation + reranking
- Long tail of operational challenges

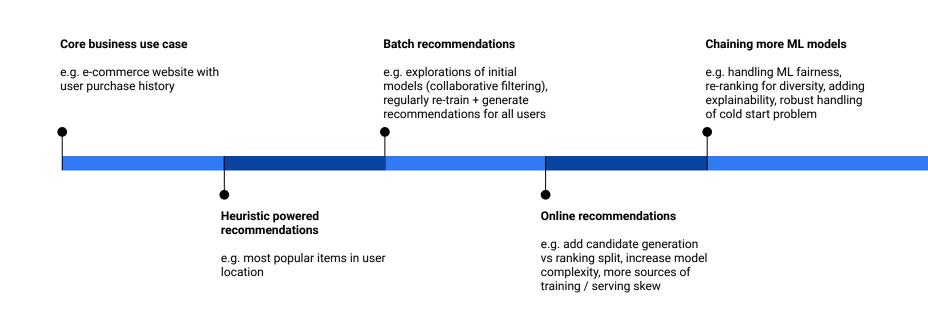
What is a feature store?

- Manages ingestion and storage of streaming and batch data
- Allows for standardized definitions of features and transformations
- Generates point-in-time correct features
- Ensures model performance by tracking, validating, and monitoring features



Recommender system challenges

A typical journey of building a recommender system



Challenges with recommender systems

Type of challenge	Examples		
Operational	Low latency batch retrieval of featuresFeature freshness		
Feature engineering	 Access to request data at training time Supporting time-travel in model training 		
Data quality	 Mitigating training / serving skew or data drift Bad data pushes from stream sources 		
Organizational	 Data scientist vs engineers Multiple business objectives to optimize A/B tests to measure business metrics lift 		
Miscellaneous	Cold startPrivacy / GDPR		

Operational challenges

Among other requirements, an online recommender system often:

- Needs fresh features (write heavy)
 - **Why?** e.g. user session activity
 - Different events update different features
- Needs low latency access to features for many entities (read heavy)
 - Why? e.g. for a given user, need to rank 100s to 1000s of items
 - Typically, the faster the recommendation, the more likely users accept them.
 - The less time spent on data, the more time the model can spend inferring.

Optimizing for the above can introduce significant data quality issues too.

Low-latency access to fresh features

Achieving lower latency

Generally, there is a need to have features available at low latency in serving via an online store. There are many challenges in building such a store though:

- 1. Balancing requirements (read vs write, cost, etc)
- 2. Complex + slow type conversions across different sources
- 3. Optimizing for batch retrieval

Consideration

- 1. Balancing requirements
 - a. update features independently (e.g. from streams)
 - reading features for a specific model quickly
 - c. enable feature re-use across models
 - d. cost management

Example strategies

- → Store features from an event together in both online store & offline store
- → Store features for an entity for a specific model together (pruning unused columns)

user_id

country

ts_country ts_age

age

User Features

last_viewed_item_category

ts_last_5_viewed_item_category

User Metadata Features		
user_id		
country		
age		
timestamp		

User Session Features user_id last_viewed_item_category last_transaction_amt timestamp

User Historical Features		
user_id		
28d_avg_transaction_amt		
28d_top_item_category		
timestamp		

Embedding features		
user_	id	
user_	embedding	
timest	amp	

Consideration

- 1. Balancing requirements
 - a. update features independently (e.g. from streams)
 - reading features for a specific model quickly
 - c. enable feature re-use across models
 - d. cost management

Transaction Features		
txn_id		
amt_usd		
timestamp		
location		

- → Feature versioning
- → TTL entities (warning: multiple models)

Consideration

- 2. Managing type conversions for online store
 - a. Data source types and Pandas / Python

types (in data scientist notebook)

	ow ン
АКК	

Pandas dtype	Python type	NumPy type string_, unicode_, mixed types		
object	str or mixed			
int64	int	int_, int8, int16, int32, int64, uint8, uint16, uint32, uint64		
float64	float	float_, float16, float32, float64		
bool	bool	bool_		
datetime64	NA	datetime64[ns]		
timedelta[ns]	NA	NA		
category	NA	NA		

::]gsheet ▼	×			
▦	table123	: * SHARE COPY E DELETE			
so	HEMA D	ETAILS PREVIEW			
Row	string_field_0	string_field_1			
1	INT64	12345			
2	NUMERIC	52000000000			
3	BIGNUMERIC	5.2e+37			
4	FLOAT65	5.4321			
5	BOOLEAN	false			
6	STRING	555			
7	BYTES	coupler_io			
8	DATE	2021-05-01			
9	DATE	2021-05-01-3.00			
10	TIME	5:59:12.0422			
11	DATETIME	2021-05-01 21:32:45			
12	TIMESTAMP	2021-05-27 8:05:01-3:00			
13	GEOGRAPHY	51.500989020415034, -0.12471081312336843			
14	ARRAY	name, 123, 2021-01-01			
15	STRUCT	555,'name'			

Consideration

- 3. Optimizing for batch retrieval
 - Multiple types of entities in same
 request (e.g. user ids + item ids)
 - b. Large batch sizes (i.e. number of entities →
 to score in the sample request) →
 - c. Online store specific optimizations.

Example strategies

- → De-duplication of requested entities
 - Co-locating entities
- → Caching
- → E.g. Redis pipelines & mget vs hmget vs hgetall
- → E.g. Different ways of bulk loading data into online store

Co-locating entities

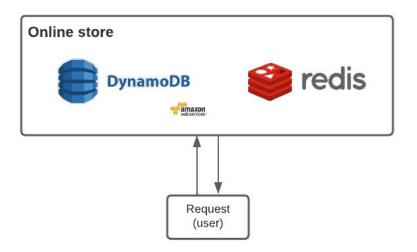
Example: fetch features for all stores in a region

Also: Redis hmget vs hgetall

	Store features				
geohash	store_id	feature_1		feature_N	

Caching

Caching (e.g. popular entities hit Redis)



Handling bad data

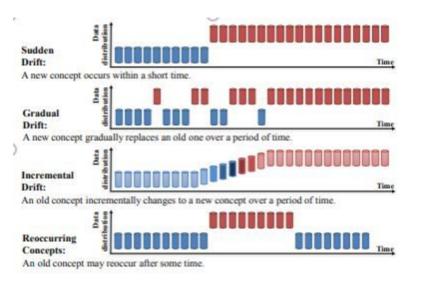
Many sources of bad data:

- E.g. upstream systems change, resulting in schema or feature distribution shifts (e.g. engineers change normalization logic)
- E.g. faulty feature transformation logic or messy data that has not been properly cleaned
- E.g. streams can publish bad data (or fail to publish data), leading to poor quality or missing data.

Feature stores may:

- Implement data quality monitoring
 - e.g. see Feast DQM and versioned
 datasets via SavedDatasets
 - e.g. Great Expectations integration
 - can easily go wrong with false alerts
- Distinguish between missing data & empty feature values in response.
- Fallback to old / default values or impute values for missing / faulty data.

Why using Great Expectations isn't enough

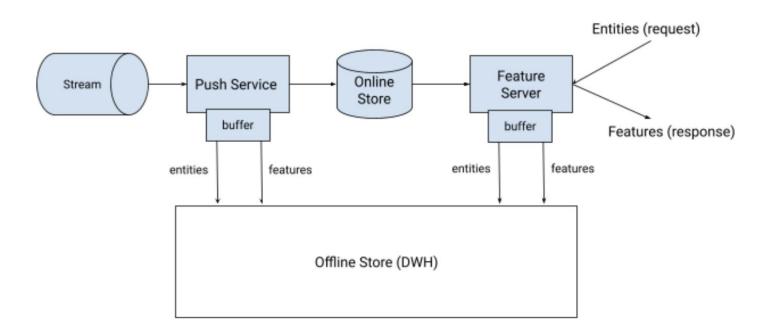


Source: https://arxiv.org/pdf/2004.05785.pdf

```
DELTA = 0.1 # controlling allowed window in fraction of the value on
@ge_profiler
def stats_profiler(ds: PandasDataset) -> ExpectationSuite:
    # simple checks on data consistency
    ds.expect_column_values_to_be_between(
        "avg_speed",
        min value=0,
        max_value=60,
        mostly=0.99 # allow some outliers
    ds.expect column values to be between(
        "total miles travelled",
        min_value=0,
        max_value=500,
        mostly=0.99 # allow some outliers
```

Source: Feast 0.19 data quality monitoring tutorial (first milestone in RFC)

Handling bad data



Why a transformation library isn't enough

- Data scientist vs engineers
 - Data scientists do their SQL transformations in DWH and Python transformations in notebooks
 - Engineers work in a different environment (e.g. Java / Go servers)
- What about Spark / Flink / Beam?
 - Some transformations need access to request data or need to execute at inference time
- Optimizing for fast model training iterations != optimizing for fast serving
 - E.g. Pandas is much slower with small number of rows (e.g. at serving time)
- Assumption that data is neatly organized by timestamp + available in the same fashion
 - E.g. request data that's available in memory isn't regularly snapshotted at inference time

Data pipeline delays

Consider a naive approach:

- At training time, generate features from offline store (data warehouse) using event timestamps
- At serving time, use an online store to serve features that loads data from batch periodically

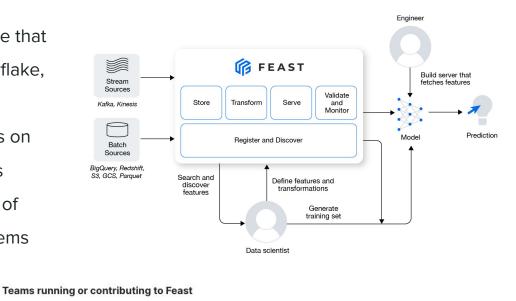
BUT: what if there's a delay in data pipelines to populate offline / online stores?

- A watermark + materialization (e.g. processing time) timestamps matters
 - e.g. incremental processing of offline data
 - e.g. reject items later than X (materialize from last end time X until now)
 - e.g. monitor delay (e.g. most recent event_timestamp in data source or data source
 created_timestamp vs event_timestamp.)
- Stream based ingestion into online store

Feast x RecSys

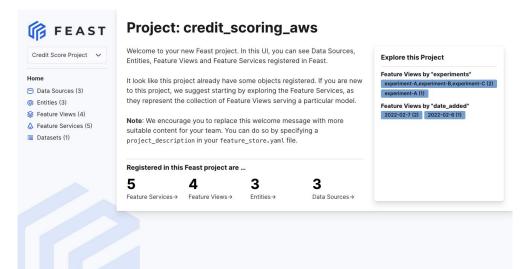
Feast

- Feast is an open-source feature store that connects to GCP, AWS, Azure, Snowflake, Hive, Redis, Spark, etc
- Active community with 3k+ members on Slack and bi-weekly community calls
- Goal: to simplify & reduce overhead of managing features / data in ML systems



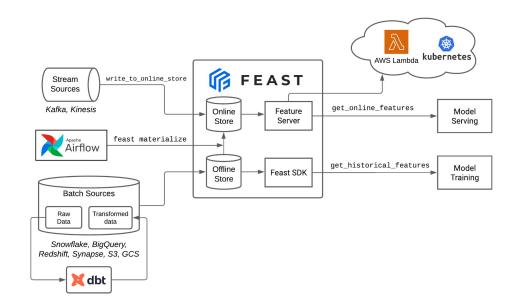
Feast

- Building a framework for managing:
 - Multiple data sources
 - Multiple types of entities
 - Sources of training / serving skew
- Enforcing best practices on storage within offline / online stores & batch / stream sources
- Encouraging best practices for reducing error across teams (e.g. feature reuse, feast plan)
- Reducing effort to author features (e.g. abstracting away point-in-time joins)
- Pluggable (e.g. custom offline / online stores)



Deploying feature stores

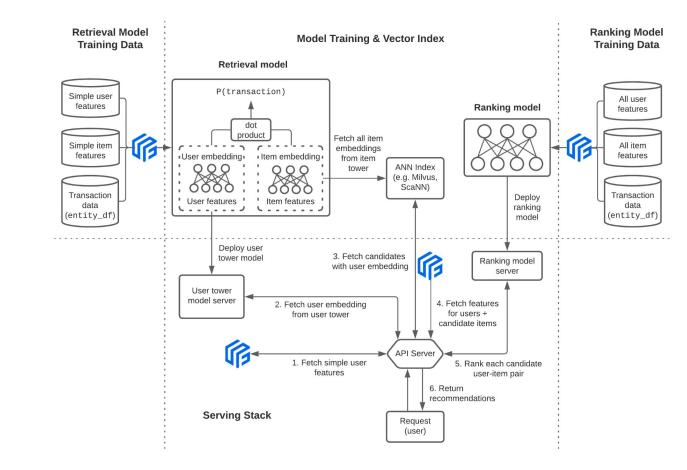
- Airflow for scheduled materialization of online features
 - Stream processors push data to online store directly
- Deployment of a feature server
 - Serverless (e.g. Using Feast's <u>Lambda</u> integration)
 - Kubernetes (e.g. Feast Serving)
- Versioning models with feature service



For batch recommender systems

Example: predict suggested items for users to purchase with matrix factorization

- V0: use only user ids and item ids with purchase patterns
 - User id + item id -> user embeddings + item ids -> dot product for purchase
 - Store embeddings in Feast + do lookups
- V1: Mitigate cold start problems
 - Use content-based model or other heuristic (e.g. bandit algorithms)
 - Use Feast to fetch other user features & item features as part of model to generate embeddings
- Key challenges solved by Feast
 - Collaboration + sharing of features / pipelines.
 - Future: Feast batch transformations
 - Lineage: knowing which models depend on which features
 - Future: Data drift (when to retrain model, or when other upstream signals are changing)



For online recommender systems

For online recommender systems

Example: predict videos to watch, predict next piece of clothing to buy given previous purchases, generate search results given a query

- Need access to data only available at request time (e.g. current time vs time of video, session data, etc)
 - Feast: OnDemandFeatureView
- Freshness of features can matter (e.g. data in session)
 - Feast: regular feature materialization & push based stream ingestion. Also: DQM for drift detection
- Low latency is important. Often, this means we have a candidate generation model + a ranking model.
 - Feast: simplifies fetching and monitoring features (+ versioning models with features)
- Environment difference between training environment (notebook) and serving environment (API server)
 - Feast: OnDemandFeatureView enables python logic from training to be re-used at serving
 - Feast: manages differences in type systems across data sources vs online stores vs feature schemas

Sample features

- Binning
- Feature crossing
 - (instead of e.g. using BQML's crossing functionality which can't be done at serving time)
- Time related features (e.g. time since last event, how recently a video was published)
- Batch features
 - User / item metadata
 - User / item history:

```
last_X_purchased_items
```

```
session_fv = RequestFeatureView(
   name="request_data",
   request_data_source=RequestDataSource(
       name="request_data",
        schema={
            "video_category_one_hot": ValueType.INT64_LIST,
            "last_purchase_time": ValueType.UNIX_TIMESTAMP,
            "current_time": ValueType.UNIX_TIMESTAMP,
@on_demand_feature_view(
    inputs={"request_data": session_fv, "user_features": user_fv},
    features=[Feature(name="time_since_purchased", dtype=ValueType.INT64)]
def time_since_last_purchased(inputs: pd.DataFrame) -> ValueType.STRING:
   from datetime import datetime
   from keras.utils.np_utils import to_categorical
   df = pd.DataFrame()
   df["time_since_purchase"] = inputs["current_time"] - inputs["last_purchase_time"]
  df["user_age_decade"] = inputs["user_age"].apply(lambda x : np.floor(x / 10))
  df["user_age_x_item"] = df.apply(lambda x:
np.outer(to_categorical(x['user_age_decade'], num_classes=10, dtype='int32'),
x["video_cat_one_hot"]), axis=1)
  return df
```

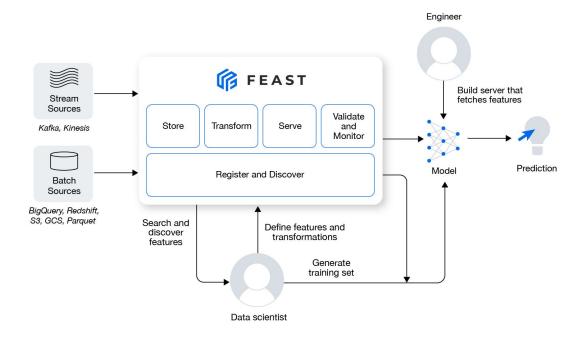
Takeaways

- Recommender systems can quickly balloon in complexity
 - E.g. low latency (read vs write), batch reads, correctness / bad data, type conversions
- Feature stores can enforce best practices / abstract some of this complexity away for both batch + online recommender systems
 - E.g. difference between offline / online store
 - E.g. lineage via feature repository + Web UI
- Consistent + performant on demand transformations are key to online recommender systems

Questions?

Useful resources

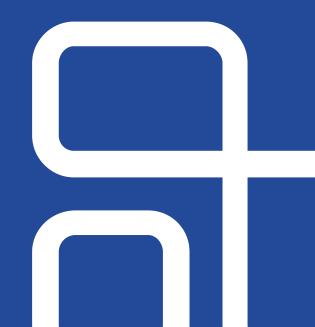
- <u>https://feast.dev/</u>
- <u>https://github.com/feast-dev/feast</u>
- <u>https://slack.feast.dev/</u>



Scaling AI/ML Workloads with Ray Ecosystem

Jules S. Damji, @2twitme

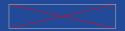
Lead Developer Advocate, Ray Team @ Anyscale Data Council, Austin, TX March 23, 2022





Overview

- Why & What Ray & Ray Ecosystem
- Ray Architecture & Components
- Ray Core APIs
- Ray Native ML Libraries
 - Ray Tune, XGBoost-Ray
- Demo
 - Scaling ML workloads
- Q&A



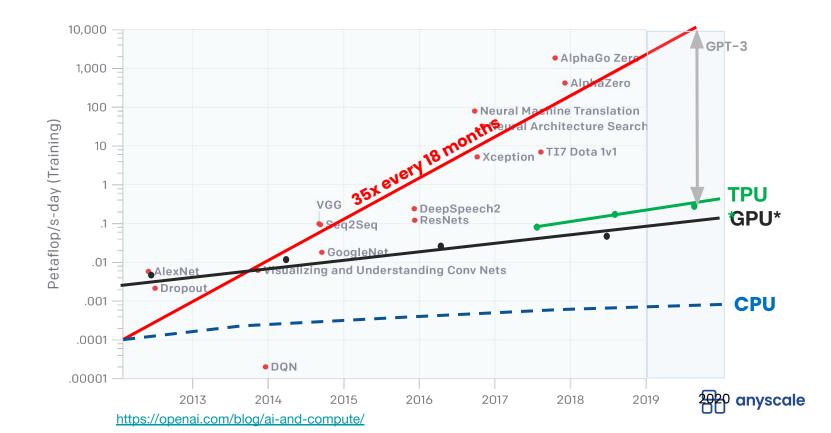
Why Ray?

- Machine learning is pervasive in every domain
- Distributed machine learning is becoming a necessity
- Distributed systems is notoriously hard

Why Ray?

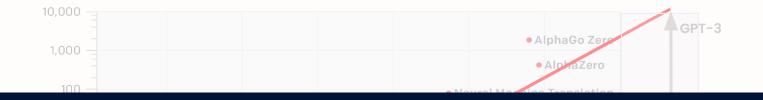
- Machine learning is pervasive in every domain
- Distributed machine learning is becoming a necessity
- Distributed systems is notoriously hard

Specialized hardware is also not enough



🗞 RAY

Specialized hardware is also not enough



No way out but to distribute!

💑 RAY

Why Ray?

- Machine learning is pervasive in every domain
- Distributed machine learning is becoming a necessity
- Distributed systems and programming are notoriously hard

Existing solutions have may tradeoffs

Generality

💑 RAY

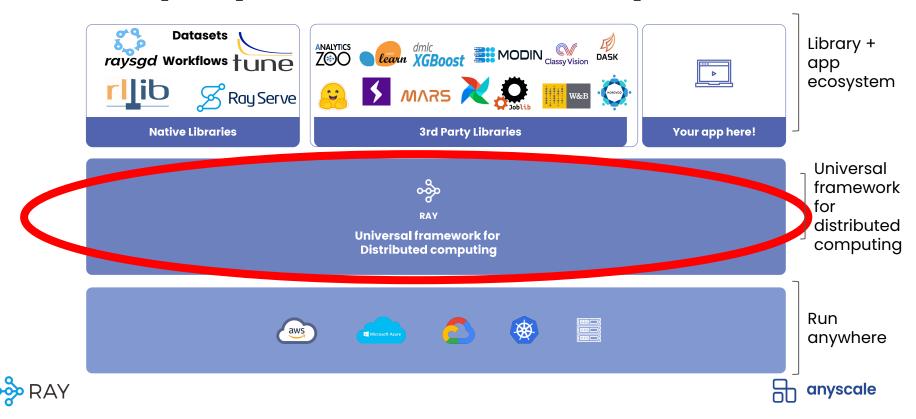
Why Ray?

- Machine learning is pervasive in every domain
- Distributed machine learning is becoming a necessity
- Distributed systems are notoriously hard

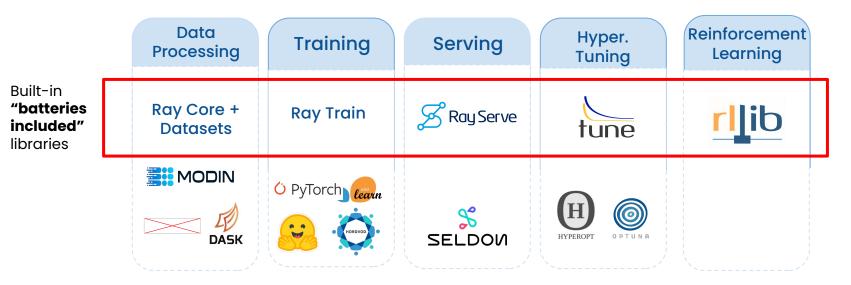
Ray's vision:

Make distributed computing accessible to every developer

The Ray Layered Cake and Ecosystem



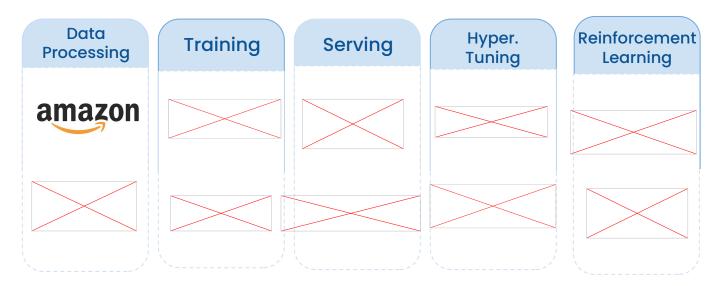
Rich ecosystem for scaling ML workloads



Only use the libraries you need!

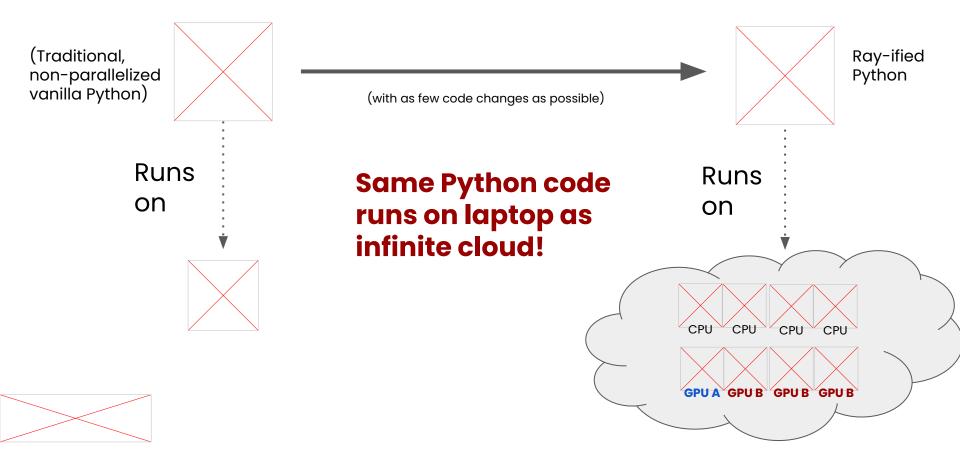
Companies scaling ML with Ray Uber amazon VISA Microsoft ANT GROUP restaurant brands international robinhood 🚺 shopify

Companies scaling ML with Ray



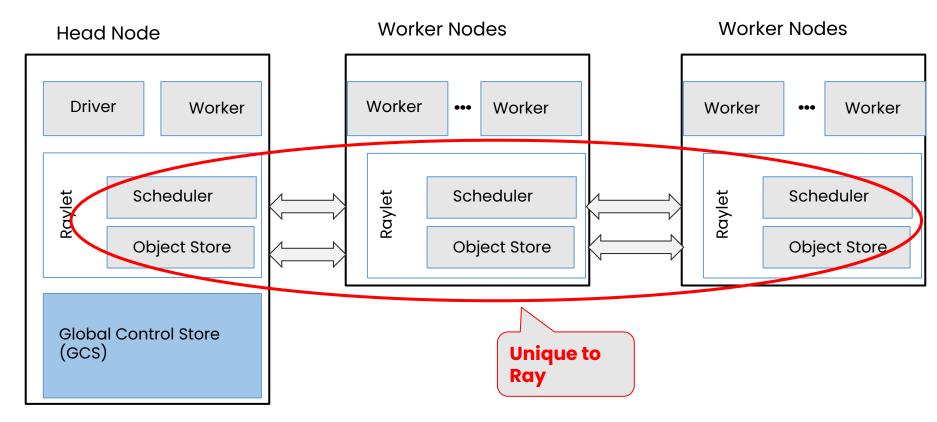
- <u>https://eng.uber.com/horovod-ray/</u>
- <u>https://www.anyscale.com/blog/wildlife-studios-serves-in-game-offers-3x-faster-at-1-10th-the-cost-with-ray</u>
- <u>https://www.ikigailabs.com/blog/how-ikigai-labs-serves-interactive-ai-workflows-at-scale-using-ray-serve</u>

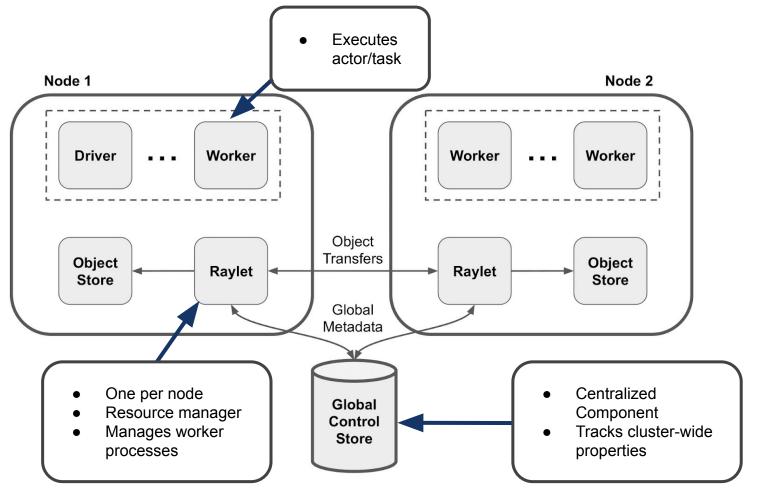
Ray's approach for scaling ML



Ray Architecture & Components

What does Ray Cluster Looks Like ...





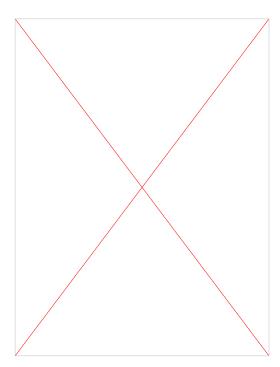
Ray Distributed Design Patterns & APIs

Ray Basic Design Patterns

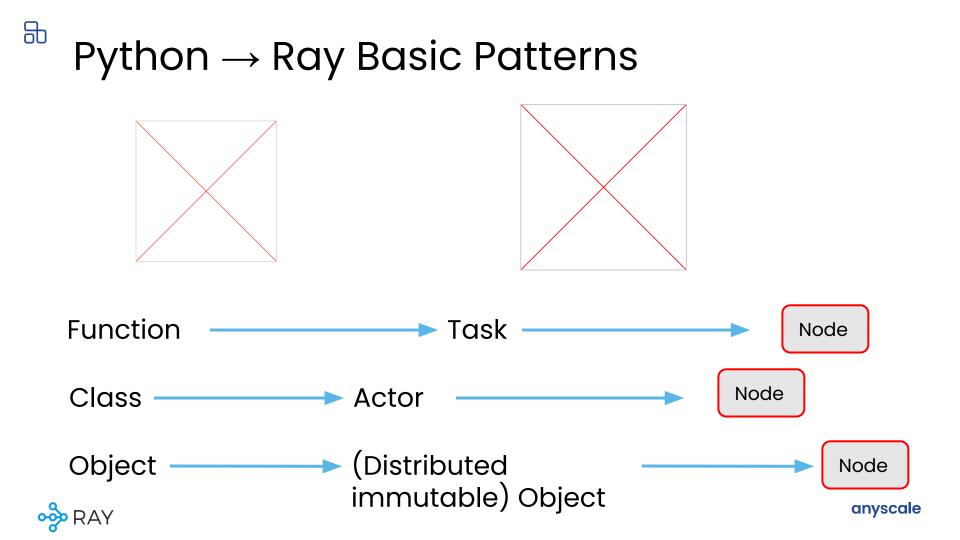
- Ray Parallel Tasks
 Functions as stateless units of execution

 - Functions distributed across a clusters as tasks
- bjects or Futures
 - Distributed (immutable) Object stored in cluster Retrievable when available

 - Enable asynchronous execution of
- v Actors
 - Stateful service on a cluster
 - Message passing and maintains state
- Patterns for Parallel Programming
- 2. Ray Design Patterns
- Ray Distributed Library Integration Patterns



Ы



Function \rightarrow Task

$Class \rightarrow Actor$

@ray.remote
def read_array(file):
 # read ndarray "a"
 # from "file"
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

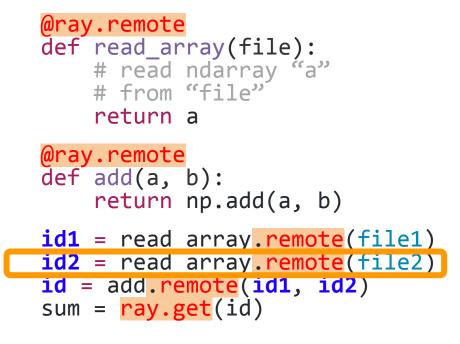
@ray.remote(num_gpus=1)
class Counter(object):
 def __init__(self):
 self.value = 0
 def inc(self):
 self.value += 1
 return self.value

c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()

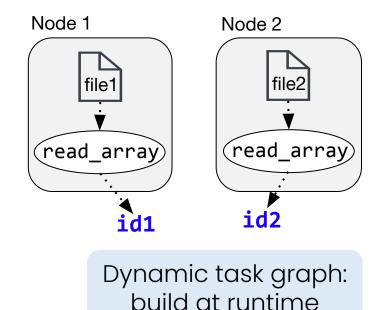
Node 1 Node 2 @ray.remote def read_array(file):
 # read ndarray "a" file2 file1 # from "file" return a read_array @ray.remote def add(a, b): return np.add(a, b) id1 id1 = read array.remote(file1) id2 = read_array.remote(tile2) id = add.remote(id1, id2) sum = ray.get(id) Return idl (future) immediately,

Blue variables are ObjectRef IDs (similar to futures)

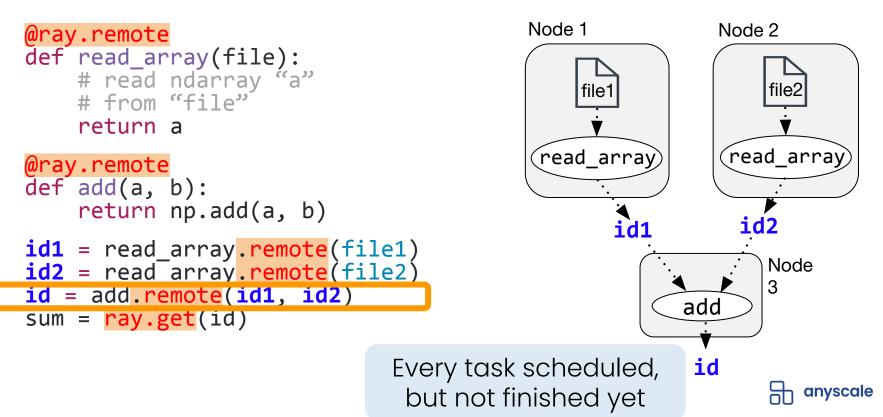
before read_array() finishes



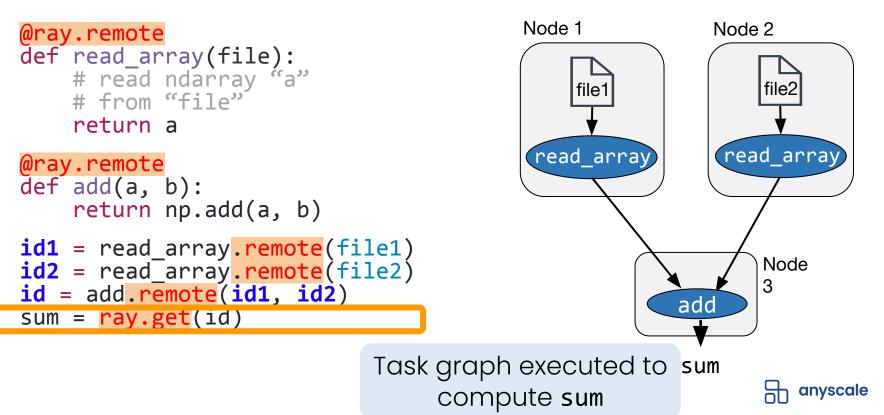
Blue variables are Object IDs (similar to futures)



anyscale

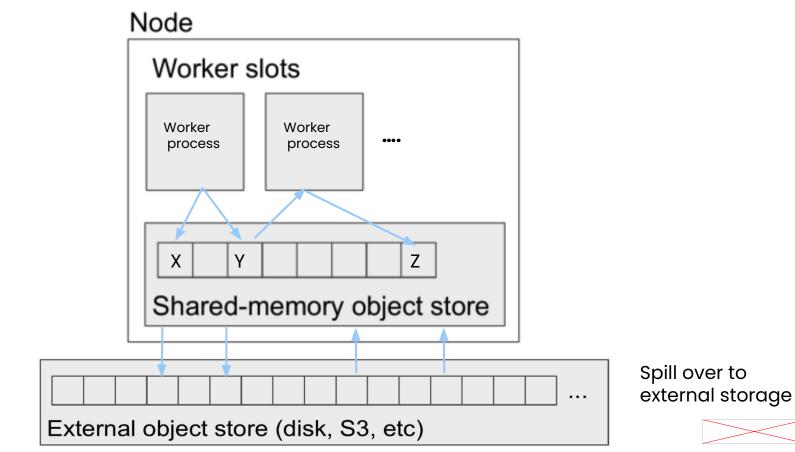


Blue variables are Object IDs (similar to futures)

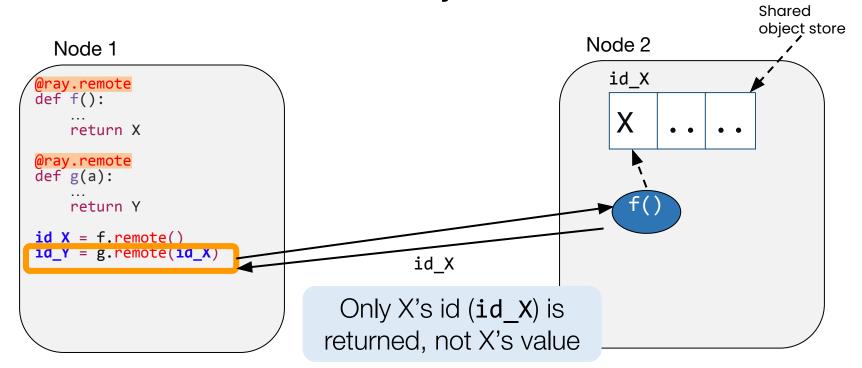


Blue variables are Object IDs (similar to futures)

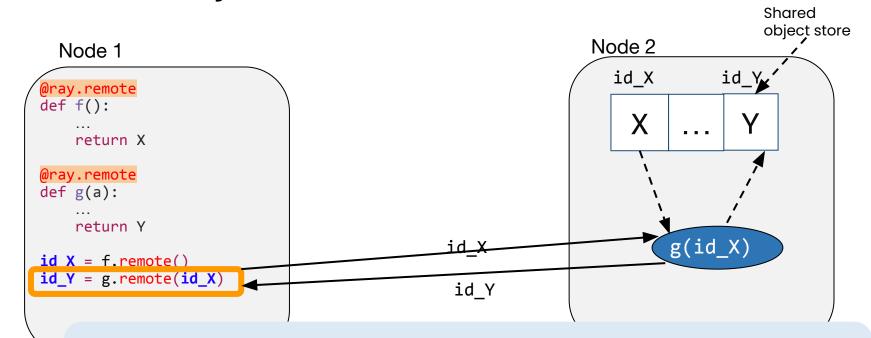
Distributed Immutable object store



Distributed Immutable object store



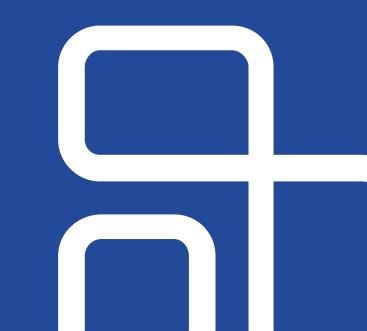
Distributed object store



g(id_X) is scheduled on same node, so X is never transferred

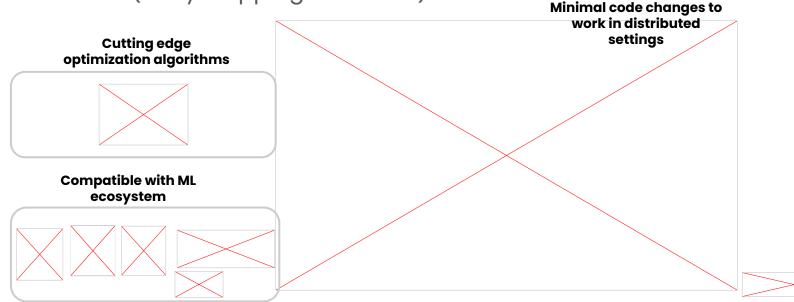
Ray Ecosystem Ray Tune XGBoost-Ray

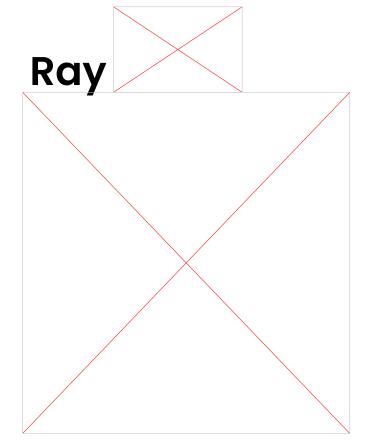
Ray Tune



Ray Tune - For distributed HPO

- Efficient algorithms that enable running trials in parallel
- Effective or chestration of distributed trials
- Easy to use APIs
- Interoperable with Ray Train and Ray Datasets Saves cost (early stopping bad trials)





https://docs.ray.io/en/latest/tune/api_docs/suggestion.html #tune-search-alg

Trial Schedulers (tune.schedulers)

In Tune, some hyperparameter optimization algorithms are written as "scheduling algorithms". These Trial Schedulers can early terminate bad trials, pause trials, clone trials, and alter hyperparameters of a running trial.

All Trial Schedulers take in a metric, which is a value returned in the result dict of your Trainable and is maximized or minimized according to mode.

tune.run(... , scheduler=Scheduler(metric="accuracy", mode="max"))

Summary

Tune includes distributed implementations of early stopping algorithms such as Median Stopping Rule, HyperBand, and ASHA. Tune also includes a distributed implementation of <u>Population Based Training (PBT)</u> and Population Based Bandits (PB2).

💡 Tip

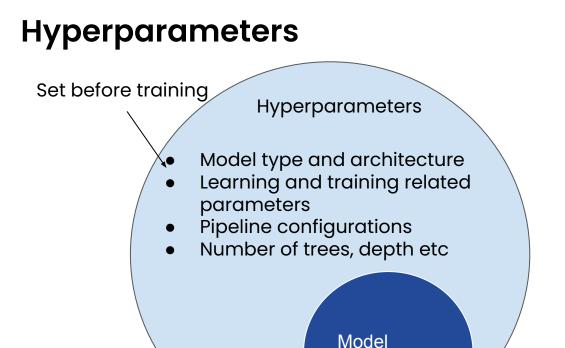
The easiest scheduler to start with is the ASHAScheduler which will aggressively terminate low-performing trials.

When using schedulers, you may face compatibility issues, as shown in the below compatibility matrix. Certain schedulers cannot be used with Search Algorithms, and certain schedulers are require checkpointing to be implemented.

Schedulers can dynamically change trial resource requirements during tuning. This is currently implemented in ResourceChangingScheduler, which can wrap around any other scheduler.

Scheduler	Need Checkpointing?	SearchAlg Compatible?	Example
ASHA	No	Yes	Link
Median Stopping Rule	No	Yes	Link
HyperBand	Yes	Yes	Link
ВОНВ	Yes	Only TuneBOHB	Link
Population Based Training	Yes	Not Compatible	Link
Population Based Bandits	Yes	Not Compatible	Basic Example, PPO example

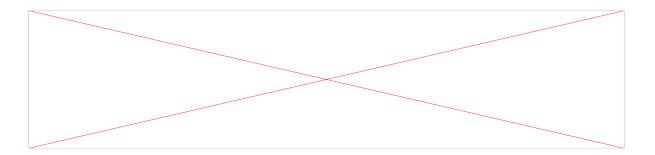
https://docs.ray.io/en/latest/tune/api_docs/schedulers. html#tune-schedulers



parameters

Hyperparameter tuning

"choosing a set of optimal hyperparameters for a learning algorithm"



Example: what network structure is best for your binary classification problem?

How many layers? What kinds of layers? Learning rate schedule? Every number here is a hyperparameter!

HPO Challenges at scale

- Time consuming and costly
 Use Resources (GPUs/CPUs) at lower costs
- Fault-tolerance and elasticity

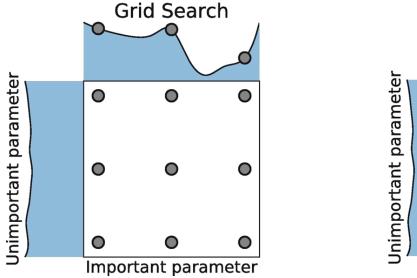
Ray Tune - HPO algorithms

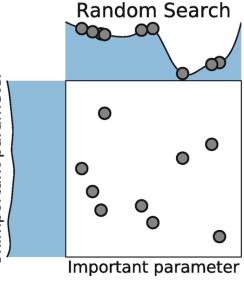
- Over 15+ algorithms natively provided or integrated
- Easy to swap out different algorithms with no code change

01 Exhaustive Search 02 Bayesian Optimization 03 Advanced Scheduling

Exhaustive Search

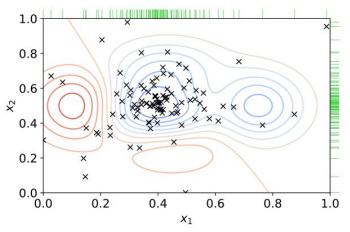
- Easily parallelizable, easy to implement
- Inefficient, compute intensive





Bayesian optimization

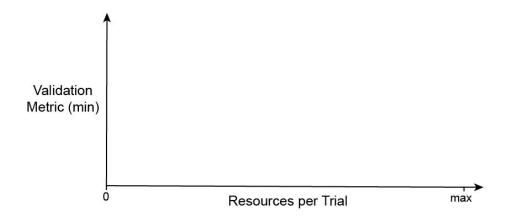
- Uses results from previous combinations (trials) to decide
 which trial to try next
- Inherently sequential
- Popular libraries:
 - hyperopt
 - Optuna
 - Scikit-optimize
 - Nevergrad

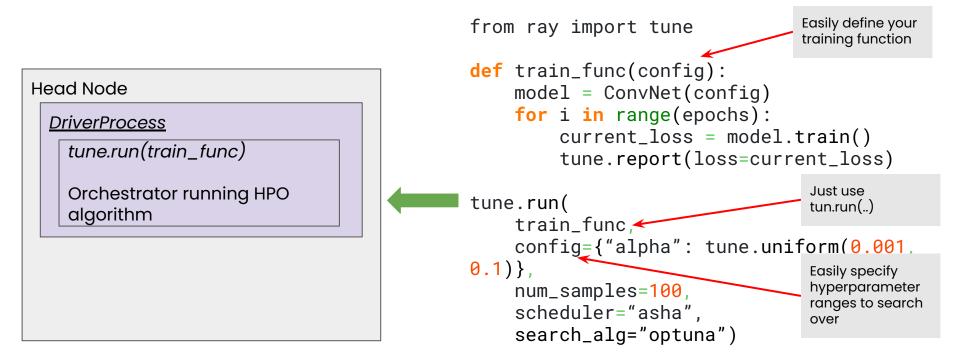


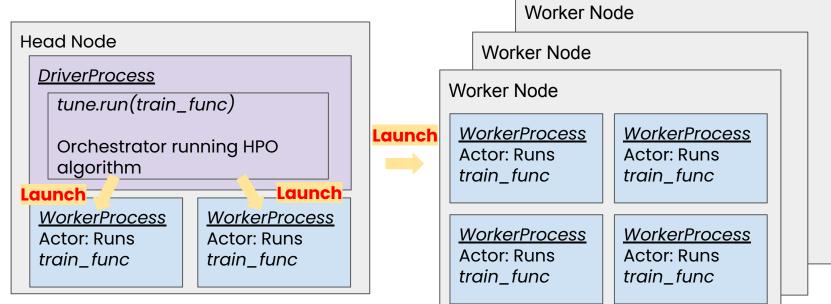
https://www.wikiwand.com/en/Hyperparamet er_optimization

Advanced Scheduling - Early stopping

- Fan out parallel trials during the initial exploration phase
- Use intermediate results (epochs, trees, samples) to prune underperforming trials, saving time and computing resources
- Median stopping, ASHA/Hyperband
- Can be combined with Bayesian Optimization (BOHB)

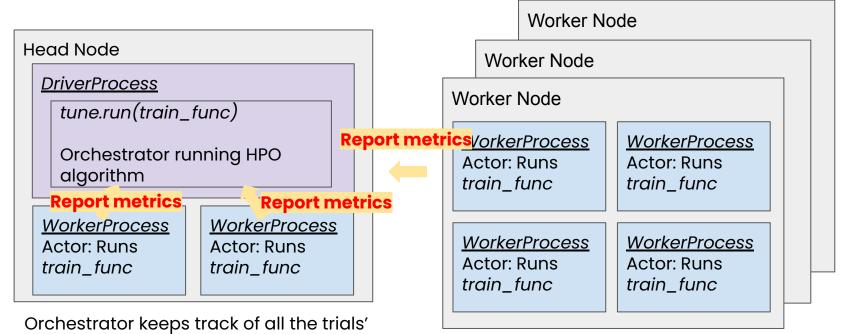


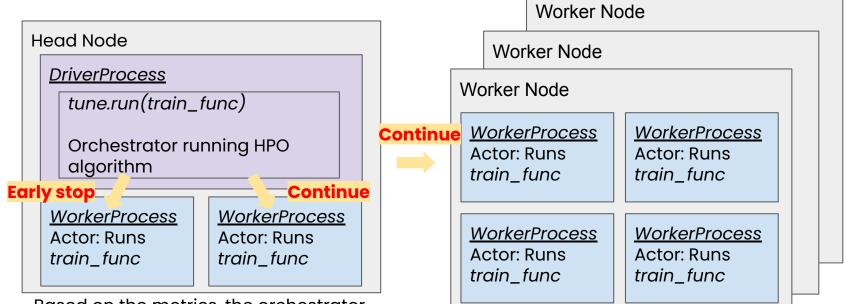




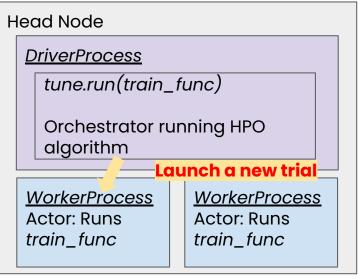
Each actor performs one set of hyperparameter combination evaluation (a trial)

progress and metrics.



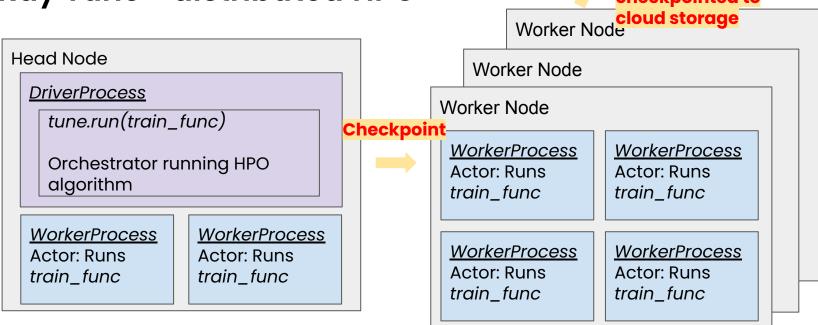


Based on the metrics, the orchestrator may stop/pause/mutate trials or launch new trials when resources are available.



Resources are repurposed to explore new trials.

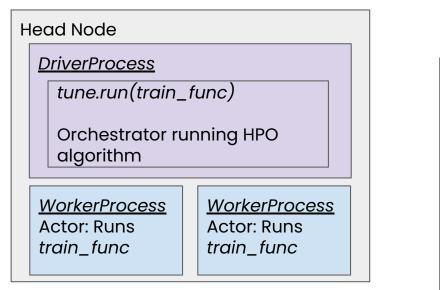
	Worker N	Worker Node			
	Worker Node				
Worker Node					
A	<u>/orkerProcess</u> ctor: Runs rain_func	<u>WorkerProcess</u> Actor: Runs train_func			
A	<u>/orkerProcess</u> ctor: Runs rain_func	<u>WorkerProcess</u> Actor: Runs train_func			



Orchestrator also manages checkpoint state.

Trials are

checkpointed to



Some worker process crashes.

Worke	er Node				
Worker No	de				
Worker Node					
<u>WorkerProces</u> Actor: Runs train_func	ss Actor: Runs train_func				
WorkerProces Actor Rons train	<u>SS</u> Actor: Runs train_func				

checkpoint.

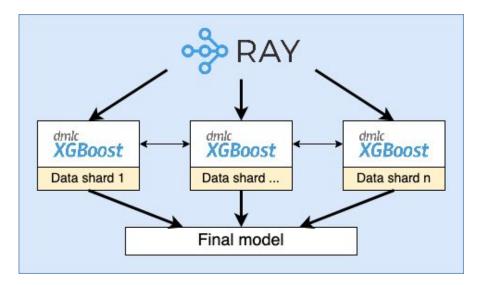


Load checkpoint from cloud storage

XGBoost-RayDesign & Features

XGBoost-Ray

- Distributed XGBoost-Ray Drop-in replacement for XGBoost
- Fault tolerance & Elastic training
- Integration with Ray Datasets and Ray Tune
 - <u>https://github.com/ray-project/xgboost_ray</u>
 - https://docs.ray.io/en/latest/xgboost-ray.html



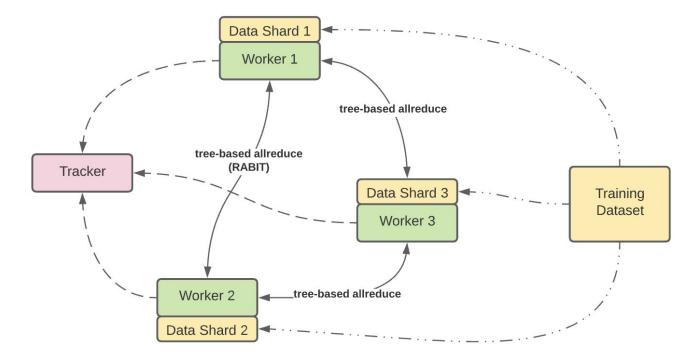
Motivation

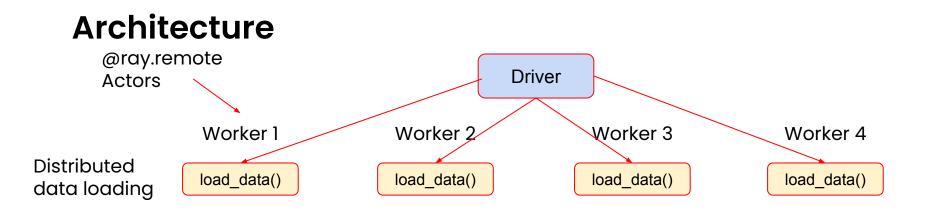
- There are existing solutions for distributed XGBoost
 - E.g. Apache Spark, Dask, Kubernetes etc
- But most existing solutions have shortcomings:
 - Dynamic computation graphs
 - Fault tolerance handling
 - GPU support
 - Integration with hyperparameter tuning libraries

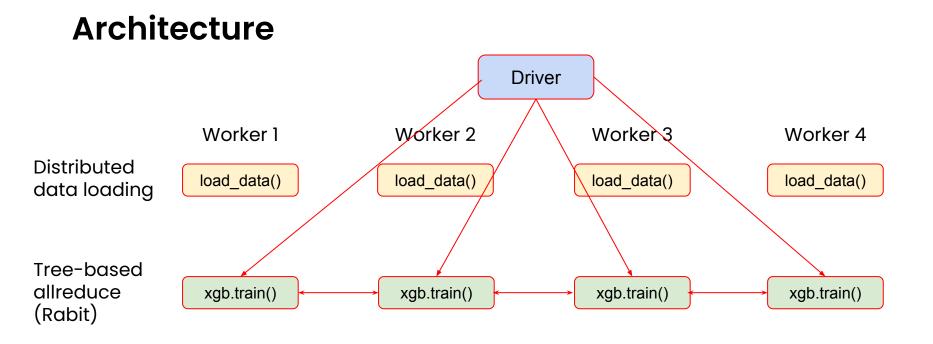
XGBoost-Ray

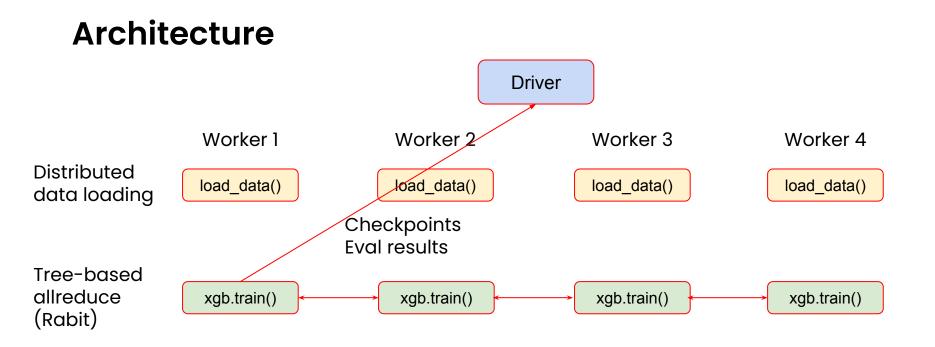
- Ray actors for stateful training workers
- Advanced fault tolerance mechanisms
- Full (multi) GPU support
- Locality-aware distributed data loading
- Integration with Ray Tune

Distributed XGBoost Architecture

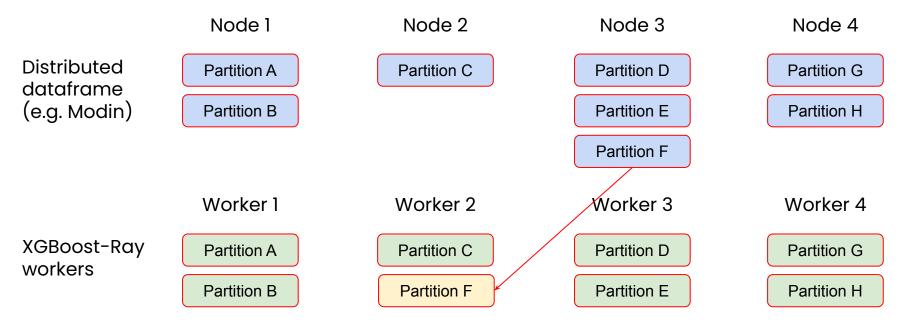








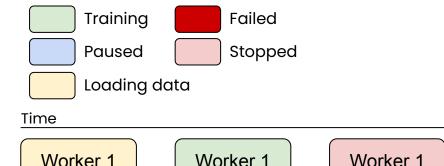
Distributed data loading

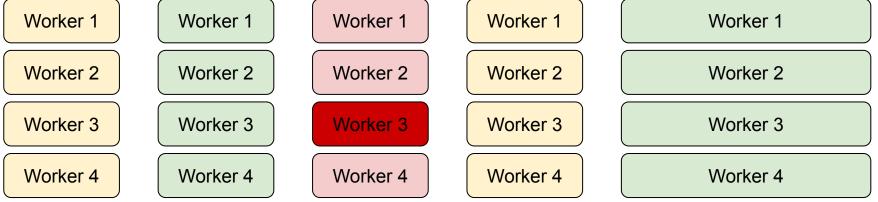


Fault tolerance strategies

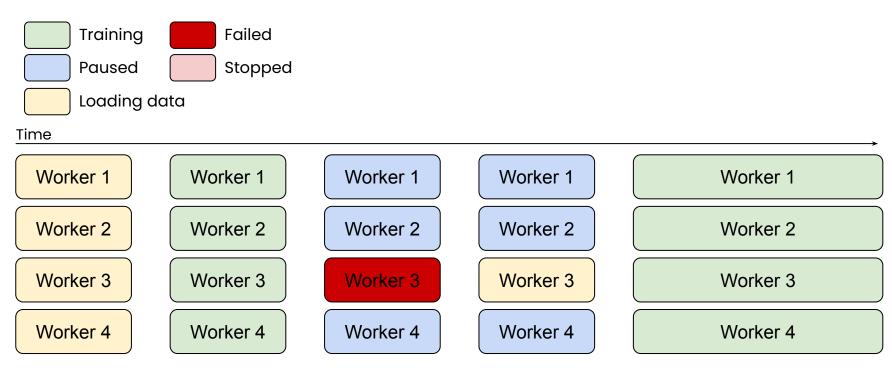
- In distributed training, some worker nodes are bound to fail eventually
- **Default**: Simple (cold) restart from last checkpoint
- Non-elastic training (warm restart): Only failing worker restarts
- Elastic training: Continue training with fewer workers until failed actor is back

Fault tolerance: Simple (cold) restart





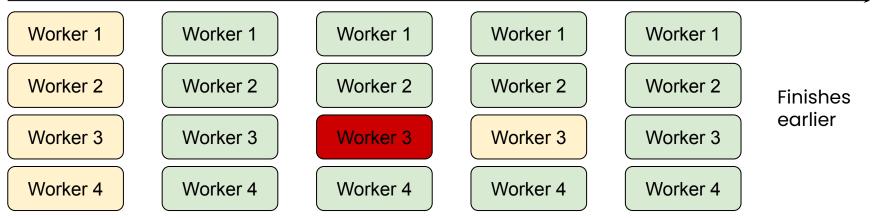
Fault tolerance: Non-elastic training (warm restart)

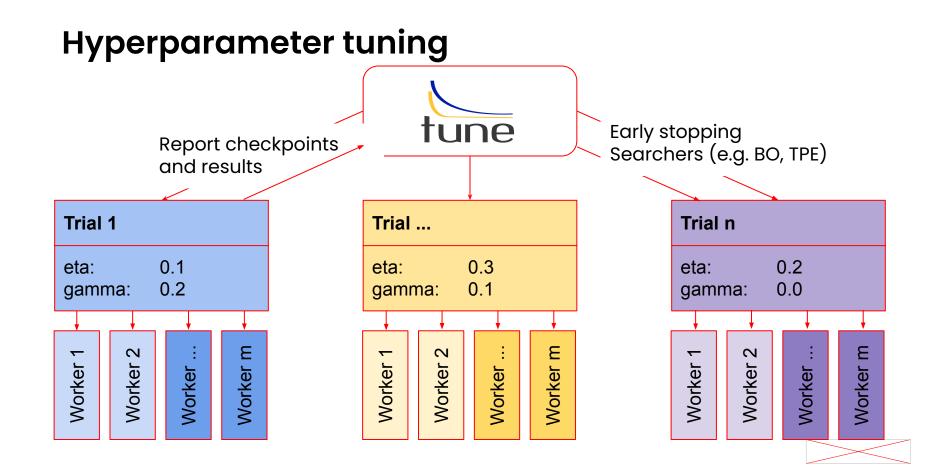


Fault tolerance: Elastic training



Time





Simple API example

from sklearn.datasets import load_breast_cancer
from xgboost_ray import RayDMatrix, RayParams, train

```
train_x, train_y = load_breast_cancer(return_X_y=True)
train_set = RayDMatrix(train_x, train_y)
```

```
bst = train(
    {"objective": "binary:logistic"},
    train_set,
    ray_params=RayParams(num_actors=2)
)
bst.save_model("trained.xgb")
```


Takeaways

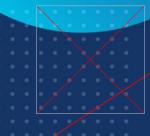
- Distributed computing is a necessity & norm
- Ray's vision: make distributed —programming simple
 - Don't have to be distributed systems expert. Just use @ray.remote :)
- Scale your ML workloads with Ray Libraries

MARCH 29 - VIRTUAL - FREE

Production RL Summit

A reinforcement learning event for practitioners

Register: https://tinyurl.com/mr9rd32h



Sergey Levine

Sumitra Ganesh

Volkmar Sterzing

Adam Kelloway

Marc Weber

SIEMENS

SIEMENS

ORGANIZED BY

anyscale

MARCH 29 - VIRTUAL

Production RL Summit

A reinforcement learning event for practitioners

Register: https://tinyurl.com/mr9rd32h

anvscale

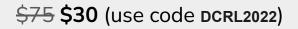
\$75 **\$30** Use code **DCRL2022** HANDS-ON TUTORIAL

Contextual Bandits & RL with RLlib

Learn how to apply cutting edge RL in production with RLlib.

Tutorial covers:

- Brief overview of RL concepts.
- Train and tune contextual bandits and SlateQ algorithm
- Offline RL using cutting-edge algos
- Deploy RL models into a live service



Instructor:

Sven Mika, Lead maintainer, RLlib

ORGANIZED BY

AUGUST 23 & 24TH | SAN FRANCISCO

DON'T WAIT! CFP closes April 11th

Start learning Ray and contributing ...

Getting Started: pip install ray

Documentation (docs.ray.io) *Quick start example, reference guides, etc*

Join Ray Meetup Revived in Jan 2022. Next meetup March 2nd. Meetup each month and publish recording to the members https://www.meetup.com/Bay-Area-Ray-Meetup/

Forums (discuss.ray.io) Learn / share with broader Ray community, including core team

Ray Slack Connect with the Ray team and community

Social Media (@raydistrtibuted, @anyscalecompute) Follow us on Twitter and linkedIn

GitHub

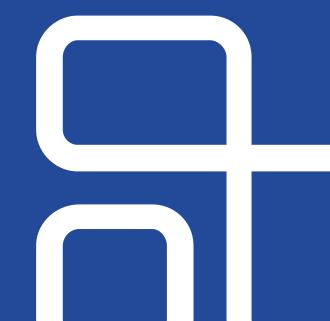
Check out sources, file an issue, become a contributor, give us a **Star** :) https://github.com/ray-project/ray

Thank you!

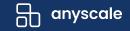
Let's stay in touch:

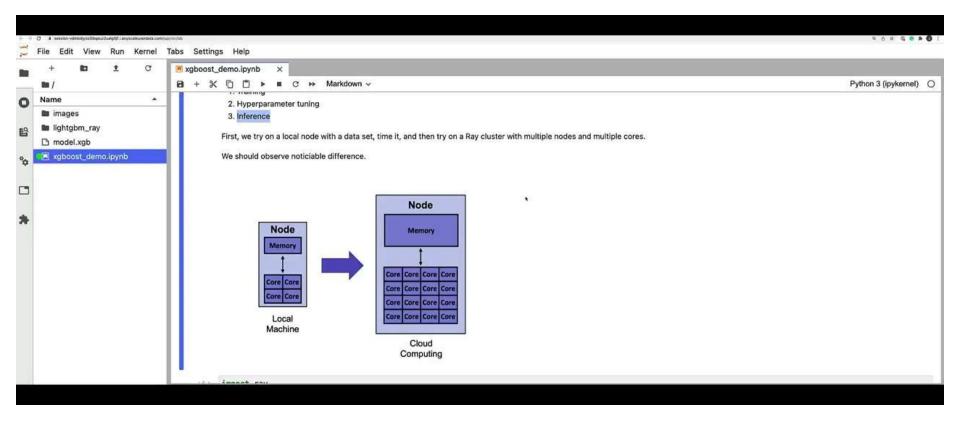
jules@anyscale.com https://www.linkedin.com/in/dmatrix/

@2twitme



VIDEO





Making Humans & Code GPU-Capable

Data Council Austin 2022

Emily May Curtin

Senior ML Ops Engineer, Mailchimp/Intuit @emilymaycurtin

Howdy, I'm Emily

- ATLien (don't call it Hotlanta)
- X #NotADataScientist
- 👸 Oil painter by passion
- H MLOps by day job (btw we're hiring!)
- 🤎 Big fan of <u>Ryan Curtin</u>

Our Goal: Help Data Scientists produce higher quality work faster

MLOps

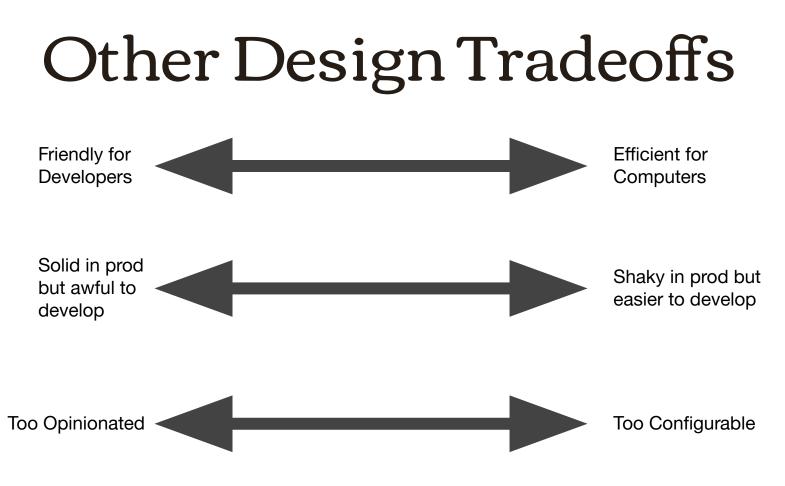
is a hyper-technical field that is

all about people

æ

Inherent Design Tradeoff

G



Let's talk

about ML

stacks

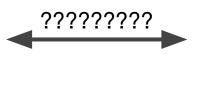
Typical ML Tech Stack

- Python
- Pytorch, HuggingFace, Tensorflow
- Docker
- Cloud infrastructure (we happen to use GCP)
- Kubernetes either directly or indirectly

Benefits

- Good scalability, reproducibility
- Cloud infra good for spiky ML workloads (vs. more consistent, predictable web service)

But...

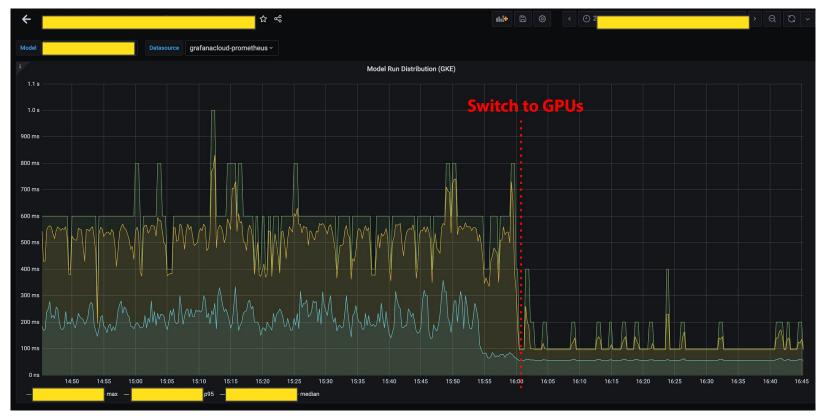




Let's talk

about GPUs

GPUs Can Be Really Awesome



GPUs...

- Are optional hardware peripherals
- Require special drivers
- Rely on system buses for I/O

GPUs...Are Printers

GPUs...Are Printers

That are very good at linear algebra

Call Stack on a plain server

,	An actual, real, not virtual GPU
	A physical server
	OS
	GPU device drivers
	CUDA libs
	ML Library (PyTorch, etc.)
	My Super Awesome Service Library
	My Amazing Service w/n MC's service framework

Call Stack on a plain server

My Amazing Service w/n MC's service framework
My Super Awesome Service Library
ML Library (PyTorch, Tensorflow, XGBoost, etc.)
CUDA libs
GPU device drivers
OS
A physical server
An actual, real, not virtual

inth	emeral	My Amazing Service My Super Awesome Service Library ML Library (PyTorch, etc.) Container Pod					
	Kubernetes						
	Nodes (virtual servers)						
	Probably like some hypervisors or whatever idk it's the cloud this layer doesn't tend to bother me						
	Physical Servers						
	An actual, real, not	virtual GPU					

What you need to talk to a GPU

- GPU
- Drivers
 - o nvidia.ko-Kernel mode GPU driver
 - o libcuda.so User mode GPU driver (aka low-level API)
- CUDA Toolkit
 - o libcudart.so-Runtime API (aka high-level API)
 - cuBLAS, cuRAND, cuSOLVER, and other toolkit libs

GPUs and

Device

Drivers

These come from your k8s service provider, GKE in my case

GKE Provides

- Configurable GPUs and GPU pools
- DaemonSet for device drivers

Solutions Cloud Why Google Solutions	Products Pricing Getting Started	Q	D
Google Kubernetes Engine (GKE) Overview	Guides Reference Samples Support Resources		_
Kubernetes Engine Product overview Anthos GKE home	About the CUDA libraries CUDA® 🔁 is NVIDIA's parallel computing platform and programming model for GPUs. The NVIDIA device drivers you install in your cluster include the CUDA libraries 🛃.		
Quickstarts GKE quickstart Deploying a language-specific app	CUDA libraries and debug utilities are made available inside the container at /usr/local/nvidia/lib64 and /usr/local/nvidia/bin, respectively. CUDA applications running in Pods consuming NVIDIA GPUs need to dynamically discover CUDA libraries. This requi		
Samples All Kubernetes Engine code samples All code samples for all products	including /usr/local/nvidia/lib64 in the LD_LIBRARY_PATH environment variable. You should use Ubuntu based CUDA Docker base images [2] for CUDA explications in GKE, where LD_LIBRARY_PATH already set appropriately. The latest supported CUDA version is 11.0 on both COS (1.18.6-gke.3504+) and Ubuntu		
How-to guides All how-to guides Creating clusters	(1.19.8-gke.1200+). Monitoring GPU nodes		

Various **CUDAAPIs**

and other libs

- Some Python ML Libs ship with binaries in the wheels
 - Dependent on Python package manager (pip, anaconda, etc)
 - Usually does not include libcuda.so
- Might be made available via your device driver Daemonset
 - Set LD_LIBRARY_PATH to access
 - Usually only API binaries, not other toolkit libs
- Might have to DIY via base container or custom install step
- Might have to combine all of the above

Matching CUDA Versions Matters

- CUDA version supported by your ML library of choice
- CUDA version in your base docker image
- CUDA version available on your k8s nodes, exposed through Daemonset

Matching CUDA Versions Matters*

Matching CUDA Versions Matters*

*Sometimes. Depending. Maybe not.

E

Matching CUDA Versions Matters*

*Sometimes. Depending. Maybe not.

YMMV depending on your library

- PyTorch does a lot of stuff to support 10.x and 11.x
- Tensorflow is very picky about everything

CUDA has complex forward and backward compatibility scenarios

ltrace and strace rock

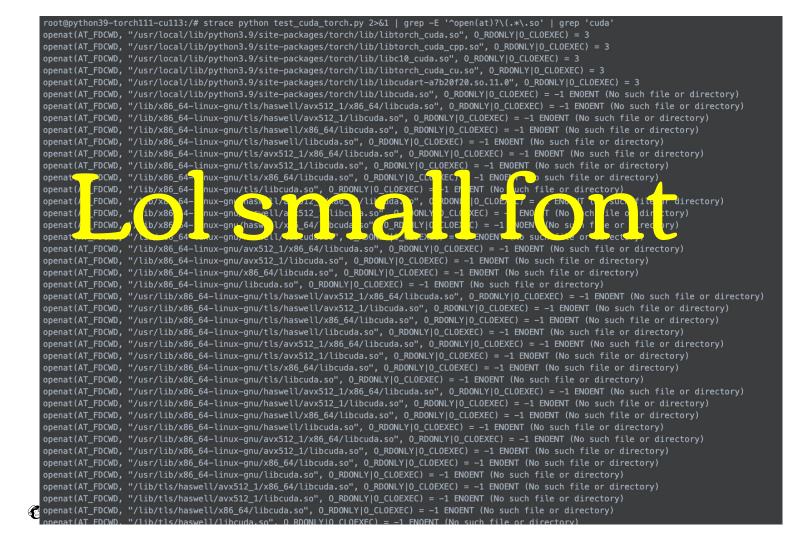
DESCRIPTION top

ltrace is a program that simply runs the specified *command* until it exits. It intercepts and records the dynamic library calls which are called by the executed process and the signals which are received by that process. It can also intercept and print the system calls executed by the program.

Its use is very similar to strace(1).

ltrace shows parameters of invoked functions and system calls. To determine what arguments each function has, it needs external declaration of function prototypes. Those are stored in files called prototype libraries--see ltrace.conf(5) for details on the syntax of these files. See the section PROTOTYPE LIBRARY DISCOVERY to learn how ltrace finds prototype libraries.

root@python39-torch111-cu113:/# strace python test cuda torch.py 2>&1 | grep -E '^open(at)?\(.*\.so' | grep 'cuda' openat(AT FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libtorch cuda.so", 0 RDONLY|0 CLOEXEC) = 3 openat(AT FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libtorch cuda cpp.so", 0 RDONLY|0 CLOEXEC) = 3 openat(AT FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libc10 cuda.so", 0 RDONLY|0 CLOEXEC) = 3 openat(AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libtorch_cuda_cu.so", 0_RDONLY[0_CLOEXEC) = 3 openat(AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libcudart-a7b20f20.so.11.0", 0_RDONLY|0_CLOEXEC) = 3 openat(AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libcuda.so", 0_RDONLY[0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/lib/x86_64-linux-gnu/tls/haswell/avx512_1/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86 64-linux-gnu/tls/haswell/avx512 1/libcuda.so", 0 RDONLY10 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/lib/x86_64-linux-gnu/tls/haswell/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/lib/x86_64-linux-gnu/tls/haswell/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86 64-linux-gnu/tls/avx512 1/x86 64/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86 64-linux-gnu/tls/avx512 1/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86 64-linux-qnu/tls/x86 64/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86_64-linux-gnu/tls/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1_ENOENT (No such file or directory) openat(AT_FDCWD, "/lib/x86_64-linux-gnu/haswell/avx512_1/x86_64/libcuda.so", 0_RDONLY[0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/lib/x86_64-linux-gnu/haswell/avx512_1/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86 64-linux-gnu/haswell/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/lib/x86_64-linux-gnu/haswell/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86 64-linux-gnu/avx512 1/x86 64/libcuda.so", 0 RDONLY/0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/lib/x86_64-linux-gnu/avx512_1/libcuda.so", 0_RDONLY[0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86 64-linux-gnu/x86 64/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86 64-linux-gnu/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/usr/lib/x86 64-linux-gnu/tls/haswell/avx512 1/x86 64/libcuda.so", O RDONLY|O CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/usr/lib/x86_64-linux-gnu/tls/haswell/avx512_1/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/usr/lib/x86_64-linux-gnu/tls/haswell/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/usr/lib/x86_64-linux-gnu/tls/haswell/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/usr/lib/x86 64-linux-gnu/tls/avx512_1/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory), openat(AT_FDCWD, "/usr/lib/x86_64-linux-gnu/tls/avx512_1/libcuda.so", 0_RDONLY[0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/usr/lib/x86 64-linux-gnu/tls/x86 64/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/usr/lib/x86 64-linux-gnu/tls/libcuda.so", 0 RDONLY/0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/usr/lib/x86_64-linux-gnu/haswell/avx512_1/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/usr/lib/x86 64-linux-qnu/haswell/avx512 1/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/usr/lib/x86_64-linux-gnu/haswell/x86_64/libcuda.so", 0_RDONLY[0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/usr/lib/x86_64-linux-gnu/haswell/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/usr/lib/x86_64-linux-gnu/avx512_1/x86_64/libcuda.so", 0_RDONLY[0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/usr/lib/x86 64-linux-gnu/avx512 1/libcuda.so", 0 RDONLY/0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/usr/lib/x86_64-linux-gnu/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/usr/lib/x86 64-linux-gnu/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/tls/haswell/avx512 1/x86 64/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/tls/haswell/avx512 1/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/tls/haswell/x86 64/libcuda.so", 0 RDONLY|0 CL0EXEC) = -1 ENOENT (No such file or directory) openat(AT EDCWD, "/lib/tls/baswell/libcuda.so", 0 RDONLY10 CLOEXEC) = -1 ENOENT (No such file or directory)



s/torch/lib/libtorch_cuda.so", 0 RDONLY/0 CLOEXEC) = 3 s/torch/lib/libtorch_cuda_cpp.so", 0_RDONLY 0 CLOEXEC) = 3 s/torch/lib/libc10_cuda.so", 0_RDONLY|0_CLOEXEC) = 3 s/torch/lib/libtorch cuda cu.so", 0 RDONLY/0 CLOEXEC) = 3 s/torch/lib/libcudart-a7b20f20.so.11.0", 0_RDONLY|0_CLOEXEC) = 3 s/torch/lib/libcuda.so'', 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory)512_1/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) 512 1/libcuda.so", 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) 64/libcuda.so'', 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) cuda.so", 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) 6 64/libcuda.so", 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) bcuda.so", $0_RDONLY|0_CLOEXEC) = -1 ENOENT$ (No such file or directory) uda.so", O RDONLY O CLOEXEC) = -1 ENOENT (No such file or directory) . O RDONLYIO CLOEXEC) = -1 ENOENT (No such file or directory)

s/torch/lib/libtorch_cuda.so", 0 RDONLY|0 CLOEXEC) = 3 s/torch/lib/libtorch_cuda_cpp.so", 0 RDONLY|0 CLOEXEC) = 3 s/torch/lib/libc10_cuda.so", 0_RDONLY|0_CLOEXEC) = 3 s/torch/lib/libtorch cuda cu.so", 0 RDONLY|0 CLOEXEC) = 3 s/torch/lib/libcudart-a7b20f20.so.11.0", 0 RDONLY/0 CLOEXEC) = 3 s/torch/lib/libcuda.so"_ 0_RDONLX|0_CLOEXEC) = -1 ENOENT (No such file or directory) 512_1/ 86_64/libruda.set, P_RDON X+0_CLOEXECY = _1 ENDENT (No such file or)irectory) 512_1 ib uda sc', 0 RD(NL T _CL EX) C = 1 FNO NT (o such irectorv) 64/libcuda.so'', 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) cuda.so", 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) 6 64/libcuda.so", 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) bcuda.so", 0 RDONLY | 0 CLOEXEC) = -1 ENOENT (No such file or directory) uda.so", O RDONLY O CLOEXEC) = -1 ENOENT (No such file or directory) 0 RDONLYIO CLOEXEC) = -1 ENGENT (No such file or directory)

s/torch/lib/libtorch_cuda.so", 0 RDONLY/0 CLOEXEC) = 3 s/torch/lib/libtorch_cuda_cpp.so", 0_RDONLY 0 CLOEXEC) = 3 s/torch/lib/libc10_cuda.so", 0_RDONLY|0_CLOEXEC) = 3 s/torch/lib/libtorch cuda cu.so", 0 RDONLY/0 CLOEXEC) = 3 s/torch/lib/libcudart-a7b20f20.so.11.0", 0_RDONLY|0_CLOEXEC) = 3 s/torch/lib/libcuda.so'', 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory)512_1/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) 512 1/libcuda.so", 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) 64/libcuda.so'', 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) cuda.so", 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) 6 64/libcuda.so", 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) bcuda.so", $0_RDONLY|0_CLOEXEC) = -1 ENOENT$ (No such file or directory) uda.so", O RDONLY O CLOEXEC) = -1 ENOENT (No such file or directory) . O RDONLYIO CLOEXEC) = -1 ENOENT (No such file or directory)

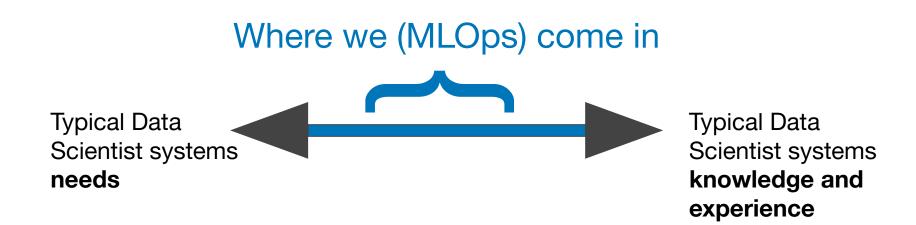
MLOps

is a hyper-technical field that is

all about people

æ

E



E

Systems Abstraction

Providing a good enough encapsulation of the system so Data Scientists can focus on the application layers.

It's really hard.

Most MLOps systems are *full* of leaky abstractions.

Data Scientists focus on the top layers		My Amazing Service My Super Awesome Service Library ML Library (PyTorch, etc.) Container Pod			
	Kubernetes				
Nodes (virtual server		5)			
	Probably like some hypervisors or whatever idk it's the cloud this layer doesn't tend to bother m				
	Physical Servers				
	An actual, real, not	virtual GPU			

E

Design Tradeoffs

Doesn't do what I need it to do

E

Too Open Ended

How on earth do I make it do what I need it to do

To enable high

tech,

go low tech

GPUs for ML

... via repo templating

@lowcost_cosplay

Repo templating is not cool. And it works.

Repo Templating

- Provide a good enough, general enough base for the majority
- Includes
 - Base container to encapsulate the runtime environment
 - Places to integrate custom Python code
 - Basic run scripts for applications
 - Basic CI/CD stuff (ex: Jenkinsfile)
- GPU capability built in via base container(s)

Challenges

- Is your base container general enough? Will it match prod?
- Differences between libraries, batch jobs, live services, etc.
- How do children of a template get updates from the parent?
- How do we provide general GPU capability to everything using the template(s)?

Some Hard-Won Wisdom

- One template per project type (library, batch job, etc.) with shared base containers.
- Allow massive flexibility in ML lib choice within your language
- One base container is probably not good enough. Have curated options. (ex: tensorflow breaks everything)
- Design for the 90% cases, don't generalize the other 10%

In Conclusion

@emilymaycurtin

- MLOps is a super technical role that's **all about people**
- strace is your friend
- Repo templating is your friend
- Be uncool to do cool stuff

Thank you.

The Modern Stack for ML Infrastructure

Ville Tuulos

The modern stack?

LAMP (1998)

LAMP (1998)

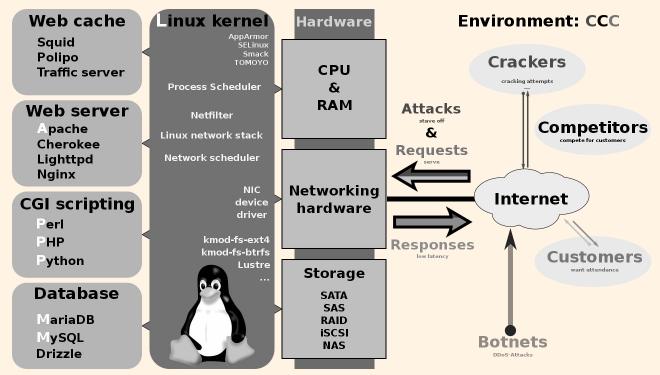
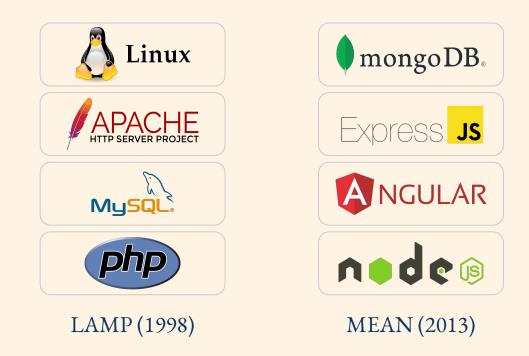
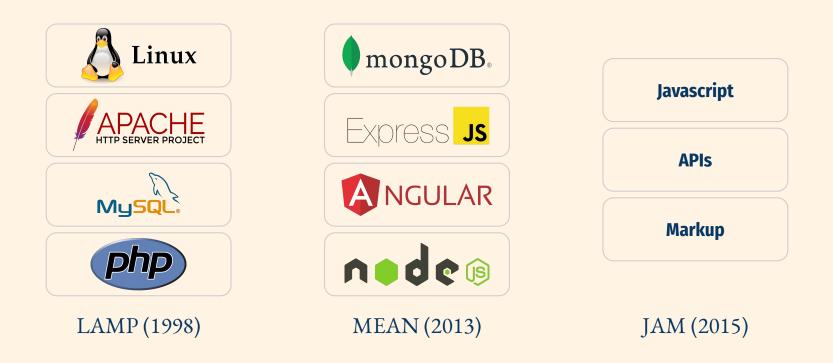


Figure by Shmuel Csaba Otto Traian / Wikipedia

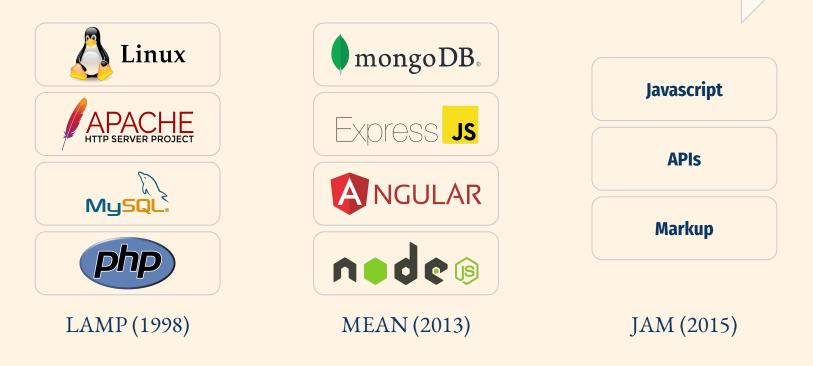




The stack becomes **less technical, more human-centric** 😊

Linux	mongoDB.	
APACHE HTTP SERVER PROJECT	Express Js	Javascript
MySQL	NGULAR	APIs
php	n e d e 📦	Markup
LAMP (1998)	MEAN (2013)	JAM (2015)

The stack becomes **simpler, more capable** over time



The stack for ML infrastructure will become

The Evolution of ML Stack

The stack becomes **less technical, more human-centric** 😊

MLOps (2018)

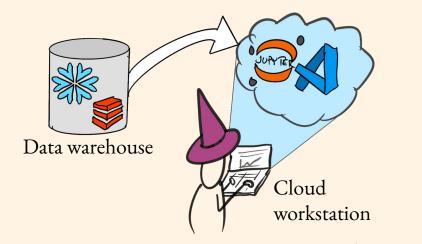
Future?

Let's design **a modern ML stack** from the ground up

Here's a data scientist

A modern data scientist uses a cloud workstation

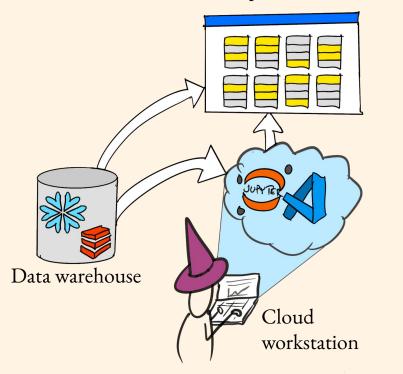
Data flows seamlessly from the data warehouse to the workstation



Data

Experiments run at scale on a cloud-based compute cluster

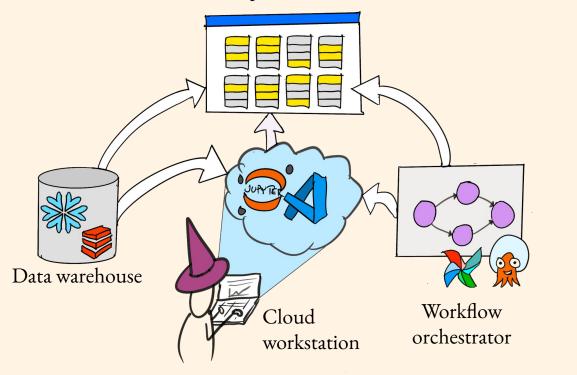
Compute resources



Compute Data

Complete workflows are developed and tested locally

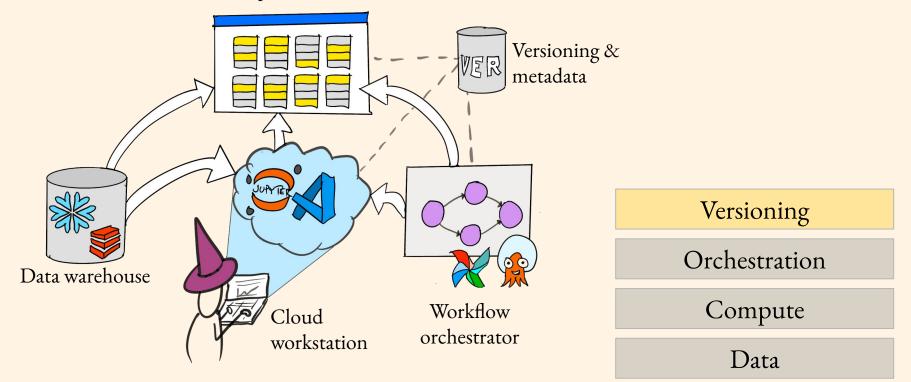
Compute resources



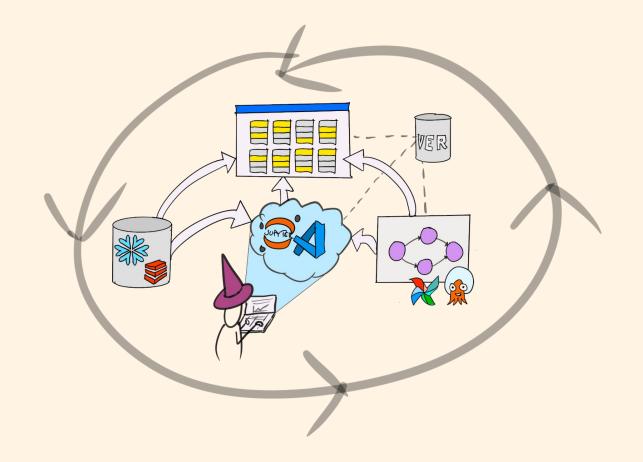
Orchestration	
Compute	
Data	

Code, models, logs, and metrics gets stored and versioned automatically

Compute resources

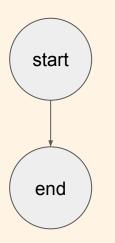


Data Scientist can develop, test, and iterate on projects rapidly



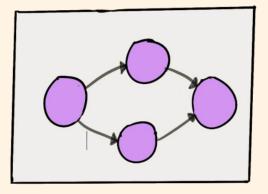
Define workflows with a human-friendly syntax

class MyFlow(FlowSpec):



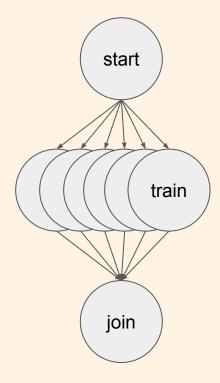
@step
def start(self):
 import pandas as pd
 pd.DataFrame(big_one)
 self.next(self.end)

```
@step
def end(self):
    pass
```



python myflow.py run

Experiments run at scale on a cloud-based compute cluster

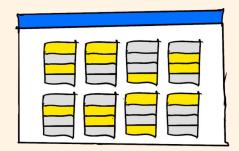


```
@step
def start(self):
    self.params = list(range(100))
    self.next(self.train, foreach='params')
```

```
@resources(memory=128000)
@step
def train(self):
    self.model = train(...)
    self.next(self.join)
```

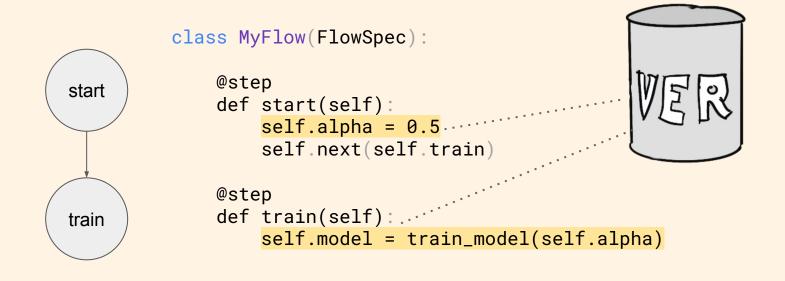
```
@step
def join(self, inputs):
```

. . .



python myflow.py run -with kubernetes

Everything gets versioned automatically



Comes with tools for fast data access

```
class QueryFlow(FlowSpec):
    @step
    def query(self):
        self.ctas = "CREATE TABLE %s AS %s" % (self.table, self.sql)
        query = wr.athena.start_query_execution(self.ctas)
        output = wr.athena.wait_query(query)
        loc = output['ResultConfiguration']['OutputLocation']
        with metaflow.S3() as s3:
            results = [obj.url for obj in s3.list_recursive([loc])
```


Data Scientist can develop, test, and iterate on projects rapidly

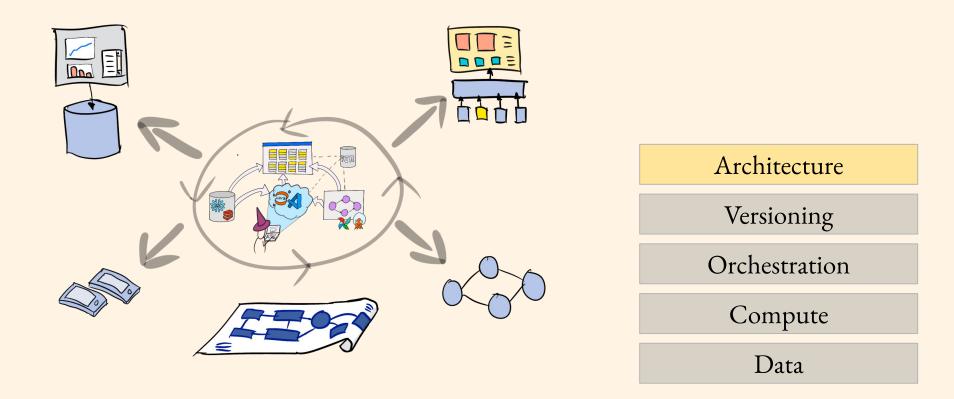
From prototype to **Production**

Real-world ML comes in many shapes and sizes

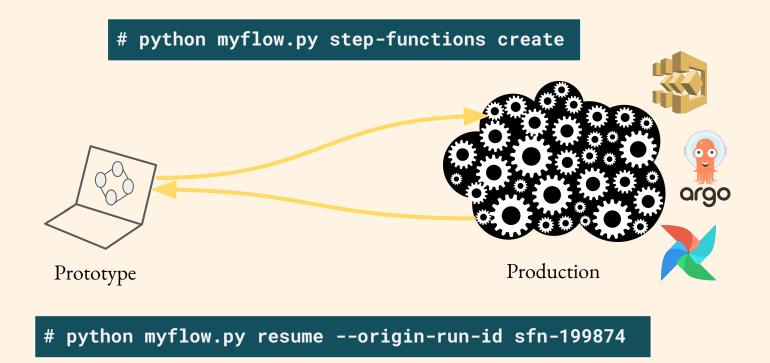
Product features Decision-support systems In On-device ML

Data enrichment

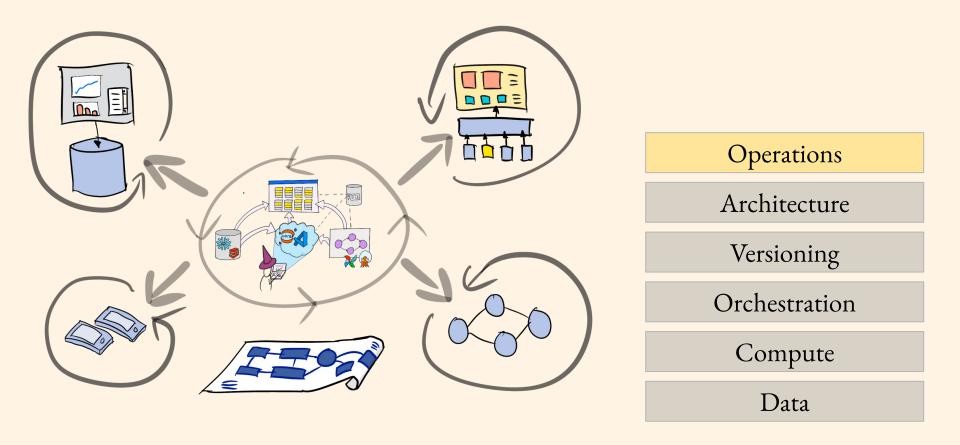
There is not a single *production* but many Provide architectural blueprints to support various deployment patterns



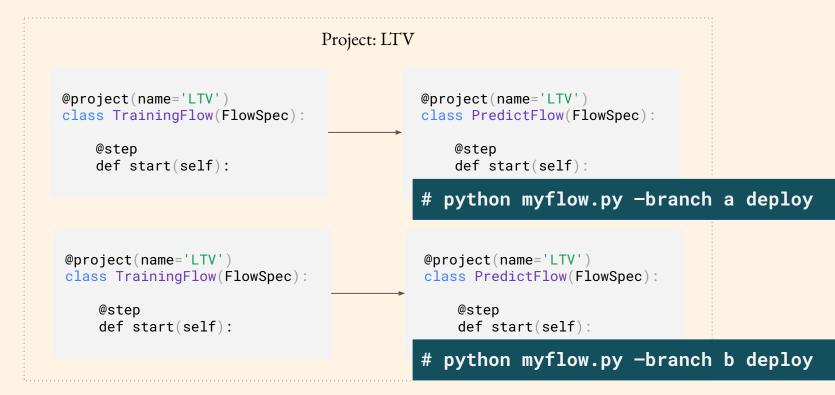
Metaflow Example Single-click deployment (and back)



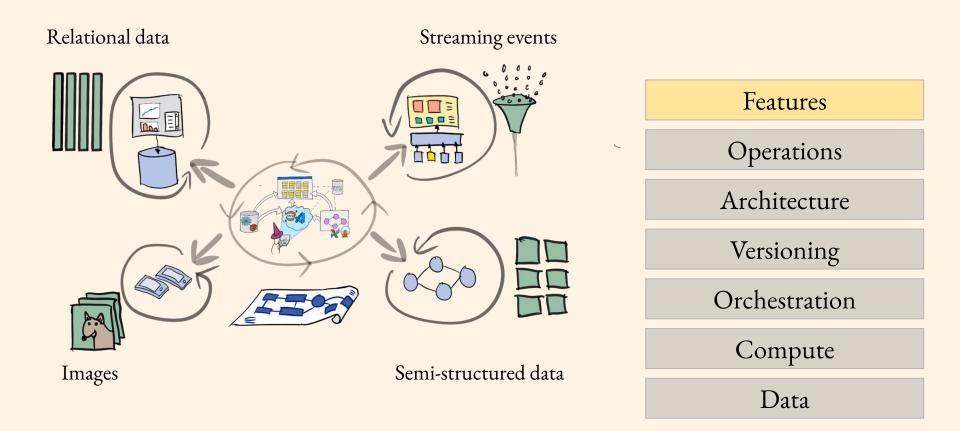
Continuous deployment, continuous experimentation



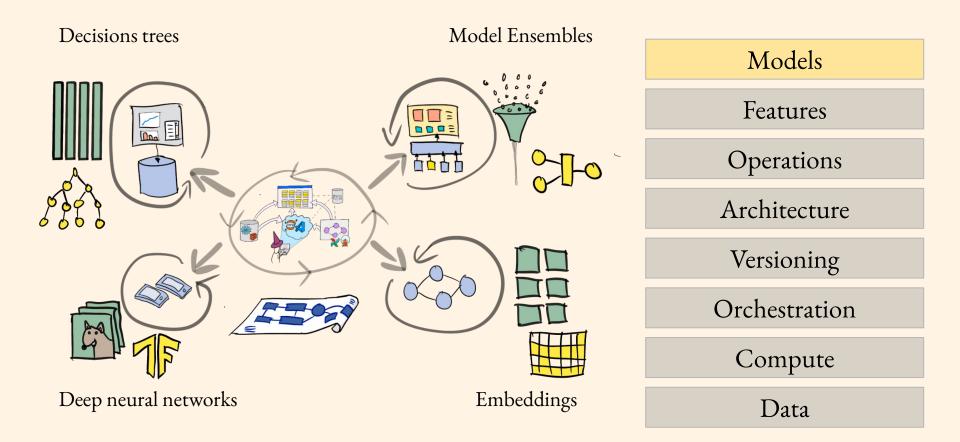
Metaflow example Deploy parallel models for A/B testing



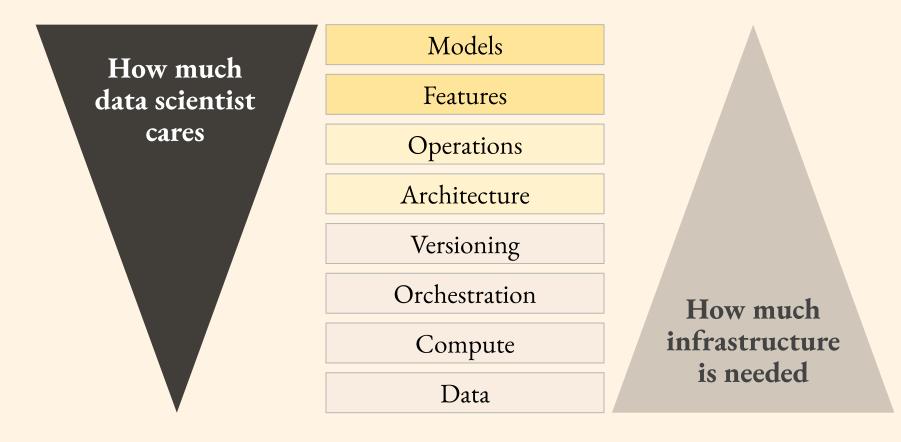
Data scientists can experiment with features flexibly...



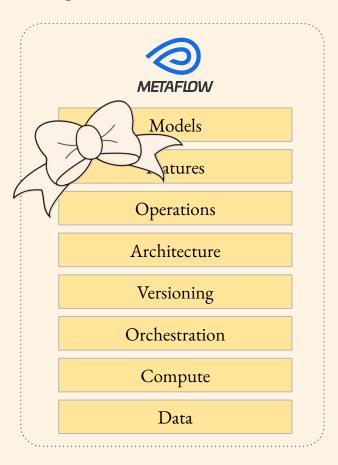
... as well as iterate on various modeling approaches...



because that's what data scientists are mostly supposed to do!



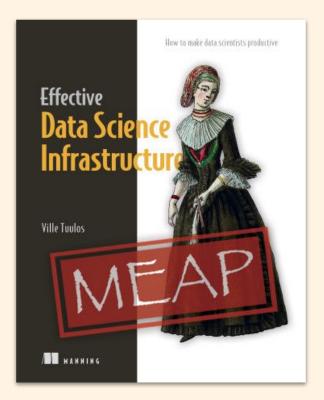
The full stack as a single, coherent, user-friendly package



The Evolution of ML Stack

The stack becomes **simpler, more capable** over time

Shameless plug: New book! *Effective Data Science Infrastructure*



Thank you

Curious to learn more about **open-source Metaflow**? Join 1000+ data scientists and engineers at

http://slack.outerbounds.co

Get Ready for ML! Level Up Your Data Lake With Deltache FS

Data Council – Austin

March 2022

Adi Polak Vice President of Developer Experience | Treeverse

Adi is an open-source technologist who believes in communities and is passionate about building a better world through open collaboration. As Vice President of Developer Experience at Treeverse, Adi helps build lakeFS, git-like interface for the data lakehouse. In her work, she brings her vast industry research and engineering experience to bear in educating and helping teams design, architect, and build cost-effective data systems and machine learning pipelines that emphasize scalability, expertise, and business goals.

Adi is a frequent worldwide presenter and the author of O'Reilly's upcoming book, "Machine Learning With Apache Spark." Adi is also a proud Beacon for Databricks! Previously, she was a senior manager for Azure at Microsoft, where she focused on building advanced analytics systems and modern architectures.

Paul Singman Developer Advocate | Treeverse

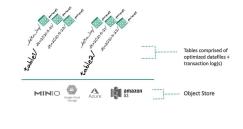
Paul is a developer advocate for the lakeFS project, after several years on the analytics team at Equinox Fitness. His goal is to democratize big data analytics through explaining data architectures that are both user-friendly and cost-effective. He's spoken at various conferences and meetups, including the Postgres Conference NYC and AWS re:Invent. When not working you can find him drinking tea and playing golf

Level 0: Basic Data Lake

Date separated .csv files

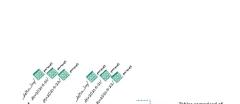
MINIO Azure in saazon Object Store

Level 1: Table-Format Enhanced Level 0: Basic Data Lake



MINIO Construction Azure in State State Object Store

Level 2: Full Data Version Control

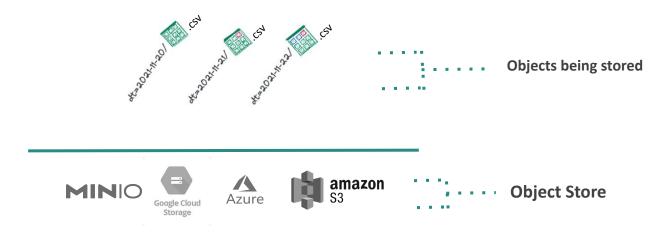


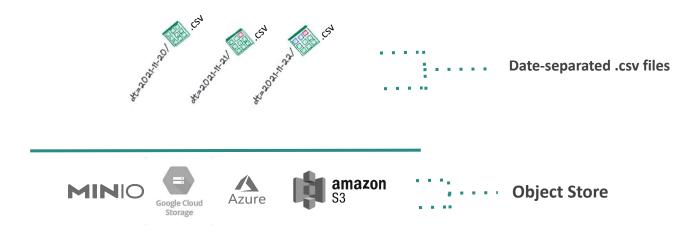
Data Repo

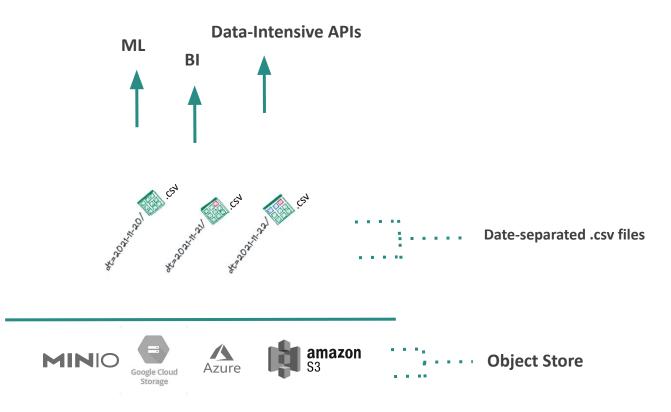
Branches of tables within

Object Store

Level 0: Basic Data Lake







- Performance
- Cost
- Developer Experience
- Connectivity

- Performance
- Cost
- Developer Experience
- Connectivity

- Achieve 3.5k PUT requests per second per prefix
- **5.5k** GET requests per second **per prefix**
- Auto-scales to this limit automatically and overall capacity is limitless
- "something like 11 '9's of availability"

- Performance
- Cost
- Developer Experience
- Connectivity

- Storage: \$.023 per GB vs \$.10 for RDS or \$.12 for EBS
- Network:
 - \$5 per million PUT, \$.40 per million GET requests,
 - \$0 transfer data in, \$.09 per GB for data transfer out
- ~5-8x times cheaper than block storage

- Performance
- Cost
- Developer Experience
- Connectivity

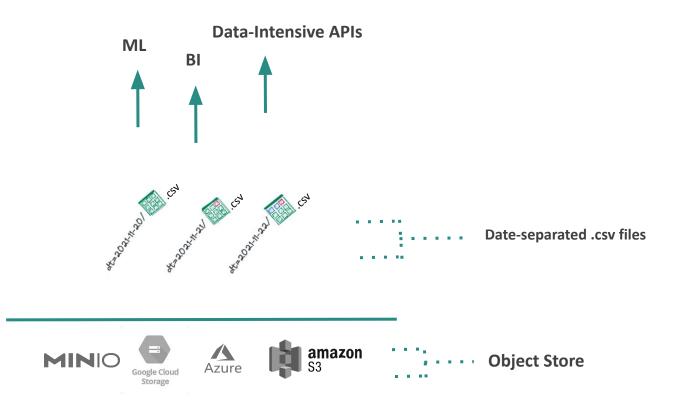
- Mature client SDKs
- Strong Consistency (2020)
- AWS Storage Lens (2020)
- Feature-rich (events, permissions, inventories, replication...)

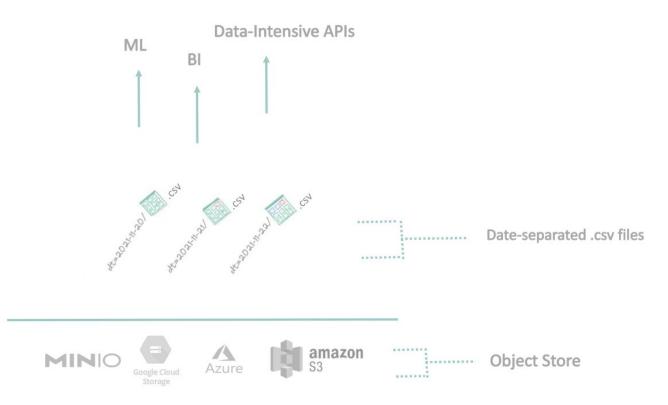
Azure amazon are awesome in terms of

Top 3 buckets						•
Bucket s3-lens-customer-bucket-3	Total storage 39.9 TB	% of total 58.30%	% change 0.45%	Trend from Sep 19 - Oct 19, 2020		Mature client SDKsStrong Consistency
i3-lens-customer-bucket-2	19.5 TB 9.0 TB	28.52%	0.48%			(2020)
Top 3 prefixes Prefix	Total storage	% of total	% change	Trend from Sep 19 - Oct 19, 2020		AWS Storage Lens (2020)
s3-lens-customer-bucket-3/prefix-3 s3-lens-customer-bucket-3/prefix-1 s3-lens-customer-bucket-2/prefix-3	5.2 TB 4.8 TB 3.7 TB	7.54% 7.04% 5.41%	-55.58% 159.12% -31.64%		}	• Feature-rich (events,
Szene-coscine-bocket-z/heine-		5.4170	-51.0470		,	permissions, inventor replication)

- Performance
- Cost
- Developer Experience
- Connectivity

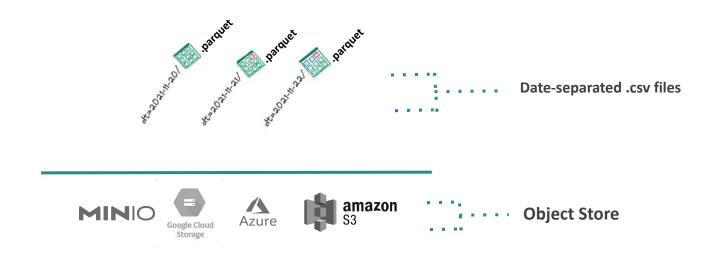
- Performance
- Cost
- Developer Experience
- Connectivity





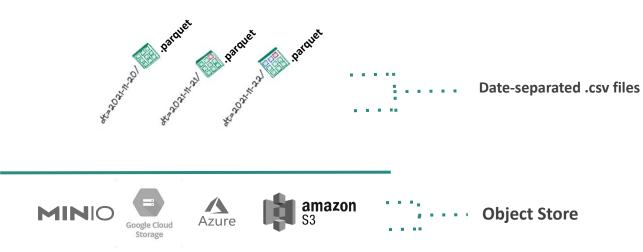
Now let's make object store-specific improvements

partuet partuet partuet



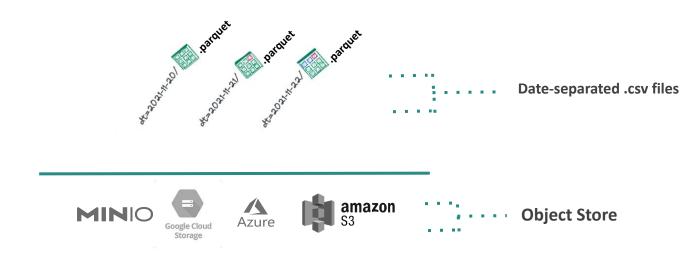
Benefits of parquet:

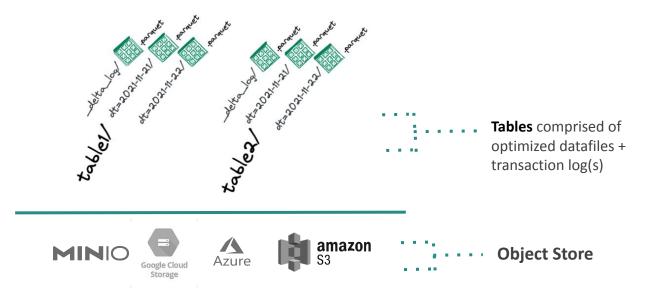
- 1. Columnar
- 2. Compressible
- 3. Complex



Challenges with parquet:

1. Operates at the object level





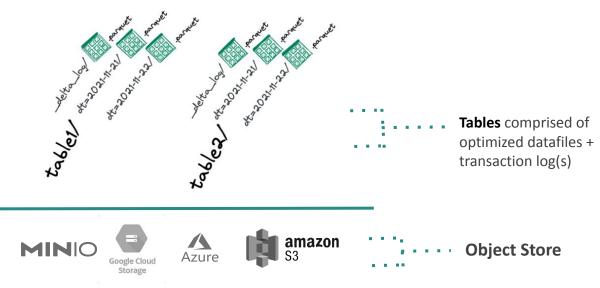
L1: Modern Table Formats

New Operations at the table level

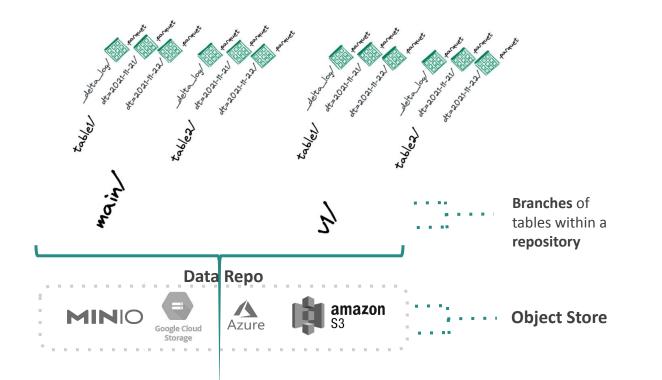
- Define schema
- Traverse versions
- Upsert atomically

Implementations:

- Apache Hudi
- Apache Iceberg
- Delta Lake





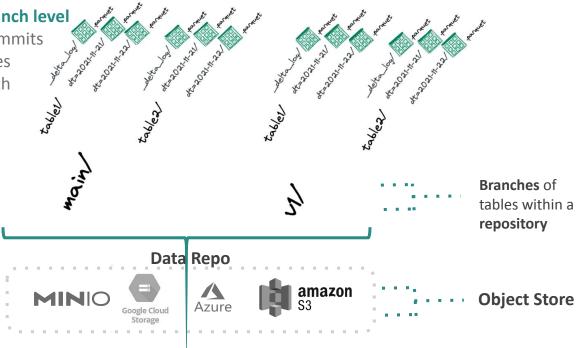


New Operations at the branch level

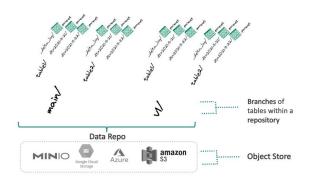
- Traverse among commits
- Merge two branches
- Create a new branch
- Take a commit

Implementations:

- lakeFS
- Proj Nessie



L2: Data Version Control Applications



New Operations at the branch level

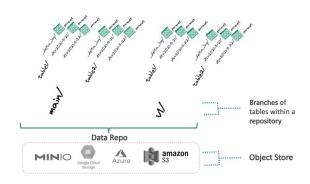
Traverse among commits

Merge two branches

Create a new branch

Take a commit

L2: Data Version Control Applications



New Operations at the branch level

Traverse among commits

Merge two branches

Create a new branch

Take a commit

lakeFS CLI Example

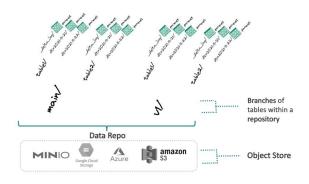
\$ lakectl revert main^1

\$ lakectl merge my-branch-main

\$ lakectl branch create my-branch

\$ lakectl commit -m "new commit"
my-branch

L2: Data Version Control Applications



New Operations at the branch level

Traverse among commits

Merge two branches

Create a new branch

Take a commit

lakeFS CLI Example

\$ lakectl revert main^1

\$ lakectl merge my-branch-main

\$ lakectl branch create my-branch

\$ lakectl commit -m "new commit"
my-branch

Useful for...

Instant recovery from issues

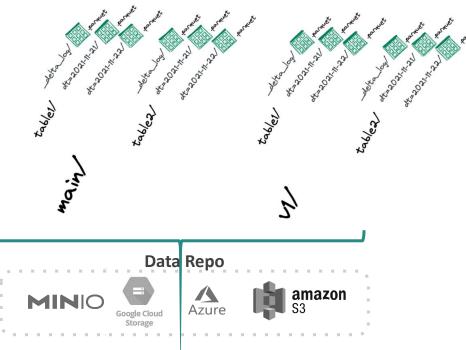
Atomic updates (cross-coll)

Dev Environment creation

Reproducing ML experiments

Stop operating at the file level

Start operating at the table and repository level



THANK YOU!

Type-safe Machine Learning Orchestration with Flyte and Pandera

Niels Bantilan, ML Engineer @ Union.ai 03/23/2022 **Type-safety** is a critical feature of orchestration tools that deal with data and machine learning **Types** define the set of values that data can take, but they also define the *domain of operations* that we can perform on that data.

integers \in { 1, 2, -1, 5, 1000, ... } strings \in { "a", "xyz", "hello", "foobar", ...}

 $1 + 1 \rightarrow 2$ $1 + "a" \rightarrow undefined$

 $\bigvee \text{mean}([1, 2, 3]) \rightarrow 2$ $\bigwedge \text{mean}(["a", "b", "a", "c"]) \rightarrow undefined$

Types can be simple:

int, float, str

Or more complex:

```
list[int]
dict[str, float]
dict[str, list[float]]
```

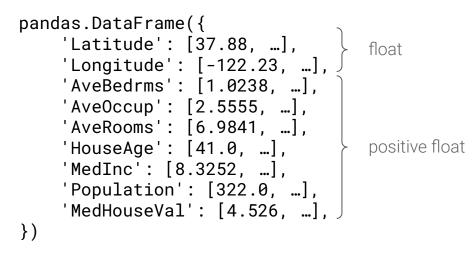

7.2.7. California Housing dataset

Data Set Characteristics:

Number of Instances:	20640				
Number of Attributes:	8 numeric, predictive attributes and the target				
Attribute Information:	 MedInc median income in block group HouseAge median house age in block group AveRooms average number of rooms per household AveBedrms average number of bedrooms per household Population block group population AveOccup average number of household members Latitude block group latitude Longitude block group longitude 				
Missing Attribute Values:	None				

Source: https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset

Let's talk about housing 🏠

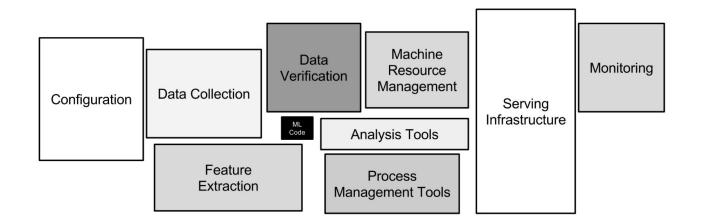


Source: https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html

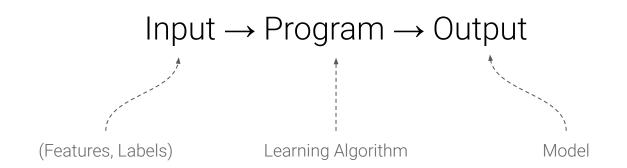
Enforcing and maintaining data quality is challenging

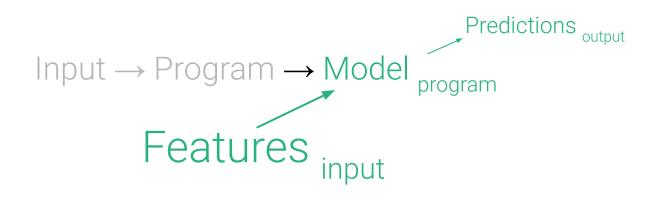
Production machine learning has a *complexity* problem

How do I know if these components are compatible?



source: https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf





Strongly-typed interfaces unlock static analysis capabilities that push many potential errors from the *runtime context* into the *compile-time context*.

Reliability

Readability: as a human being ***** or machine **i**, I can tell what a component needs as input and what it produces as output.

Reproducibility: when a component fails \bigotimes at its input/output boundaries, I can be more confident that I can reproduce the error \bigotimes .

Efficiency

Caching: if I want to determine whether I should hit the cache for re-compute the result of a component, I can first check for changes in a function's type signature before checking actual input values.

Parallelization: before I try to concurrently apply functions to a collection of inputs in the collection are of the correct type.

Auditability

Debugging: When a pipeline execution fails 💥, I can pinpoint the cause of the error quickly and understand how to address it.

Data Lineage: I can understand how some downstream artifact *include* came to be by looking at the upstream processes **and** that produced it.

Flyte is a *data*- and *machine-learning*-aware **orchestration tool** with **type-safety** built into multiple layers of the software stack.

Flyte

Easily Compose Workflows 🔀 using Tasks as Building Blocks

pip install flytekit

from flytekit import task, workflow

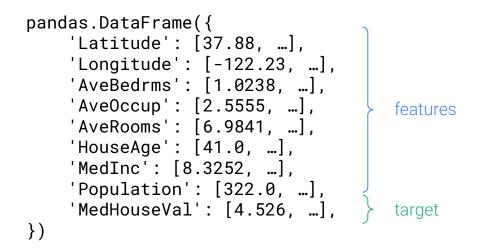
@task
def get_data(): ...

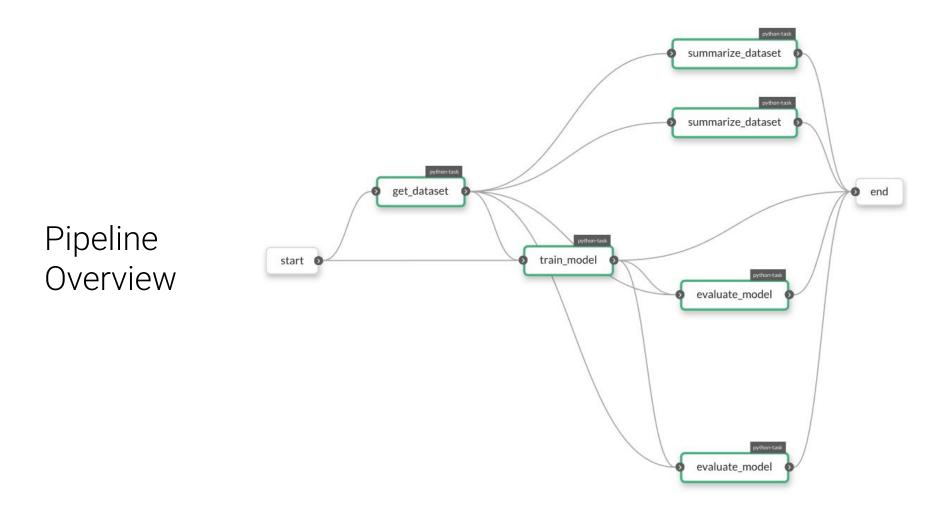
@task
def process_data(): ...

@task
def train_model(): ...

@workflow
def training_workflow():
 data = get_data()
 processed_data = process_data(data=data)
 return train_model(processed_data=processed_data)

California House Price Regression





What Types are We Going to Use?

```
Dataset = Annotated[
    pd.DataFrame,
    kwtypes(
        Latitude=float,
        Longitude=float,
        AveBedrms=float,
        AveOccup=float,
        AveRooms=float,
        HouseAge=float,
        MedInc=float,
        MedHouseVal=float,
TARGET = "MedHouseVal"
DatasetSplits = NamedTuple(
    "DatasetSplits", train=Dataset, test=Dataset
TrainingResult = NamedTuple(
    "TrainingResult", model=Ridge, train_mse=float, test_mse=float
You, now | 1 author (You)
@dataclass_json
@dataclass
class Hyperparameters:
    alpha: float
    random_state: int = 42
```

Tasks are Containerized Units of Work With a Transparent Interface

```
@task
def get_dataset(test_size: float, random_state: int) -> DatasetSplits:
    dataset = fetch_california_housing(as_frame=True).frame
    return train_test_split(dataset, test_size=test_size, random_state=random_state)
```

@task

def summarize_dataset(dataset: Dataset) -> pd.DataFrame: return dataset.describe()

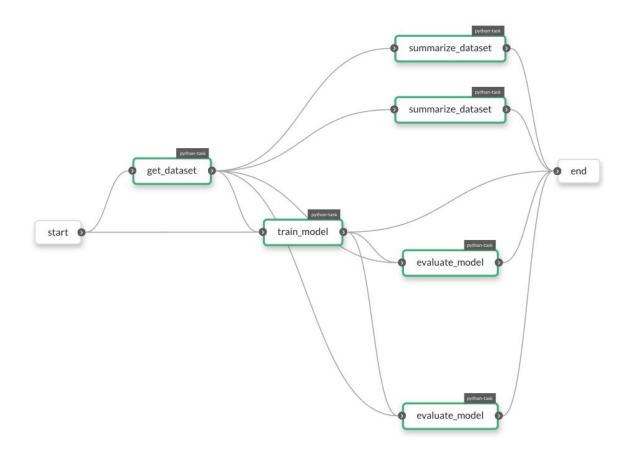
@task

def train_model(dataset: Dataset, hyperparameters: Hyperparameters) -> Ridge: model = Ridge(**asdict(hyperparameters)) return model.fit(dataset.drop(TARGET, axis="columns"), dataset[TARGET])

@task

def evaluate_model(dataset: Dataset, model: Ridge) -> float:
 features, target = dataset.drop(TARGET, axis="columns"), dataset[TARGET]
 return mean_squared_error(target, model.predict(features))

Workflows are Dynamic DAGs that Compose Tasks Together to do Something Useful



Auto-generate Strongly Typed Launch Forms 📝

/ california_housing_regression.sii	Create New Execution california_housing_regression.simple_workflows.main			
description.	Workflow Version	~		
w Versions	Launch Plan california_housing_regression.simple_workflows.main	~		
1d436d28301efc4efde35402	Inputs Enter input values below. Items marked with an asterisk(*) are required.		TIME CREATED	
the Workflow	hyperparameters (struct)*		5/21/2022 5.34	
UTC	random_state (integer)			
e Workflow	alpha (float)			
sion 👻 Start Time 👻 Dura	random_state (integer)		STATUS	START TIME
,	random_state test_size (float)		SUCCEEDED	3/21/2022 3:41 3/21/2022 11:41:
	0.2 test_size			
	Cancel	unch		

Docker 🐳 Guarantees Reproducibility

...as long as tasks are idempotent

FROM python:3.9-slim-buster

WORKDIR /root ENV VENV /opt/venv ENV LANG C.UTF-8 ENV LC_ALL C.UTF-8 ENV PYTHONPATH /root

e.g. flyte.config or sandbox.config
ARG config

RUN apt-get update && \
 apt-get install -y \
 libsm6 \
 libxext6 \
 libxrender-dev \
 ffmpeg \
 build-essential

Install the AWS cli separately to prevent issues with boto being written over RUN pip3 install <code>awscli</code>

ENV VENV /opt/venv

Virtual environment
RUN python3 -m venv \${VENV}
ENV PATH="\${VENV}/bin:\$PATH"

Install Python dependencies

COPY requirements.txt /root RUN pip install -r /root/requirements.txt

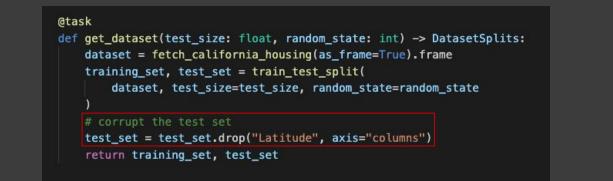
COPY california_housing_regression /root/california_housing_regression COPY \$config /root/flyte.config

This image is supplied by the build script and will be used to determine the version # when registering tasks, workflows, and launch plans ARG image ENV FLYTE_INTERNAL_IMAGE \$image

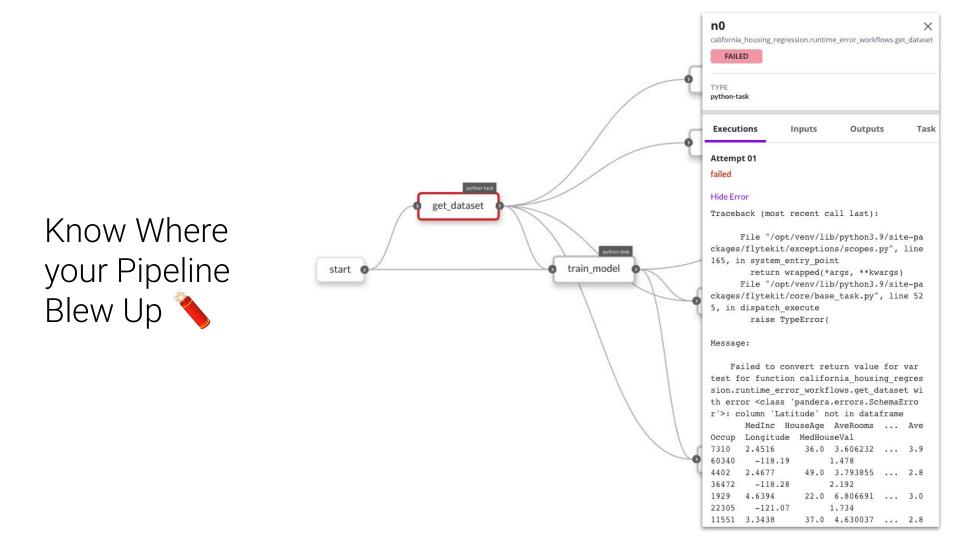
Flyte Statically Analyzes the DAG to catch Type Errors

```
@task
def train_model(dataset: Dataset, hyperparameters: Hyperparameters) -> Ridge:
    model = Ridge(**asdict(hyperparameters))
    return model.fit(dataset.drop(TARGET, axis="columns"), dataset[TARGET])
@task
def train_model_type_error(dataset: dict, hyperparameters: Hyperparameters) -> Ridge:
    model = Ridge(**asdict(hyperparameters))
    return model.fit(dataset.drop(TARGET, axis="columns"), dataset[TARGET])
# TypeError: Cannot convert from scalar {
    schema {
     uri: "/tmp/flyte/20220319_170441/raw/f6608163de0159a39b9d21456bf4dc17"
       columns {name: "Latitude" type: FLOAT}
       columns {name: "Longitude" type: FLOAT}
       columns {name: "AveBedrms" type: FLOAT}
       columns {name: "AveOccup" type: FLOAT}
       columns {name: "AveRooms" type: FLOAT}
        columns {name: "HouseAge" type: FLOAT}
        columns {name: "MedInc" type: FLOAT}
        columns {name: "MedHouseVal" type: FLOAT}
# to <class 'dict'>
```

Catch Value Errors (* When Testing Locally



TypeError: Failed to convert return value for var test for functionmainget_dataset with error <class 'pandera.errors.schemaerror'="">: column 'Latitude' not in dataframe</class>									
								MedHouseVal	
7310	2.4516	36.0	3.606232	1.073654	1398.0	3.960340	-118.19	1.478	
4402	2.4677	49.0	3.793855	1.186323	2862.0	2.836472	-118.28	2.192	
1929	4.6394	22.0	6.806691	1.018587	813.0	3.022305	-121.07	1.734	
11551	3.3438	37.0	4.630037	1.003663	783.0	2.868132	-117.98	1.996	
9882	3.0608	22.0	4.750515	1.039863	3794.0	2.607560	-121.79	1.683	



Cache the Outputs of a Task

@task(cache=True, cache_version="1.0")
def get_dataset(test_size: float, random_state: int) -> DatasetSplits:
 dataset = fetch_california_housing(as_frame=True).frame
 return train_test_split(dataset, test_size=test_size, random_state=random_state)

@task(cache=True, cache_version="1.0")
def summarize_dataset(dataset: Dataset) -> pd.DataFrame:
 return dataset.describe()

@task(cache=True, cache_version="1.0")
def train_model(dataset: Dataset, hyperparameters: Hyperparameters) -> Ridge:
 model = Ridge(**asdict(hyperparameters))
 return model.fit(dataset.drop(TARGET, axis="columns"), dataset[TARGET])

@task(cache=True, cache_version="1.0")
def evaluate_model(dataset: Dataset, model: Ridge) -> float:
 features, target = dataset.drop(TARGET, axis="columns"), dataset[TARGET]
 # corrupt the features
 features = features.drop("Latitude", axis="columns")
 return mean_squared_error(target, model.predict(features))

Errors at the End of a Long-running Training Pipeline got you Down 😓? Domain Version Time Cluster 8c4d6213ade5d6339cc7431d497b665c465b99f1 3/21/2022 5:46:50 PM UTC development Traceback (most recent call last): File "/opt/venv/lib/python3.9/site-packages/flytekit/exceptions/scopes.py", return wrapped(*args, **kwargs) File "/root/california housing regression/caching runtime error workflows.p return mean squared error(target, model.predict(features)) File "/opt/venv/lib/python3.9/site-packages/sklearn/linear model/ base.py", return self. decision function(X) File "/opt/venv/lib/python3.9/site-packages/sklearn/linear model/ base.py", X = self. validate data(X, accept sparse=["csr", "csc", "coo"], reset=Fal File "/opt/venv/lib/python3.9/site-packages/sklearn/base.py", line 585, in self. check n features(X, reset=reset) File "/opt/venv/lib/python3.9/site-packages/sklearn/base.py", line 400, in raise ValueError(

Message:

X has 7 features, but Ridge is expecting 8 features as input.

User error.

Don't Re-compute, Hit the Cache!

@task(cache=True, cache_version="1.0")
def evaluate_model(dataset: Dataset, model: Ridge) -> float:
 features, target = dataset.drop(TARGET, axis="columns"), dataset[TARGET]
 # corrupt the features
 features = features.drop("Latitude", axis="columns")
 return mean_squared_error(target, model.predict(features))

get_dataset california_housing_regression	n0	Python-Task	SUCCEEDED
summarize_dataset california_housing_regression	n1	Python-Task	SUCCEEDED
summarize_dataset california_housing_regression	n2	Python-Task	SUCCEEDED
train_model california_housing_regression	n3	Python-Task	SUCCEEDED

View Inputs & Outputs

Relaunch

Recover

Workflows Execute Tasks with Built-in Parallelism 🔀

```
@workflow
def main(
    hyperparameters: Hyperparameters,
    test_size: float = 0.2,
    random_state: int = 43,
)-> TrainingResult:
    train_dataset, test_dataset = get_dataset(
        test_size=test_size, random_state=random_state
    )
```

summarize_dataset(dataset=train_dataset)
summarize_dataset(dataset=test_dataset)

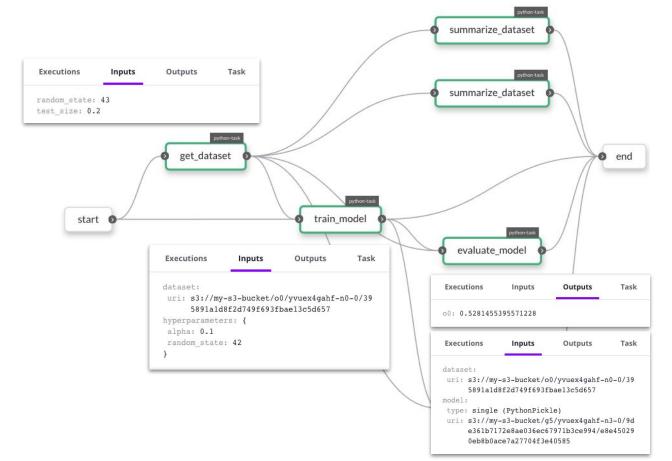
model = train_model(dataset=train_dataset, hyperparameters=hyperparameters)
train_mse = evaluate_model(dataset=train_dataset, model=model)
test_mse = evaluate_model(dataset=test_dataset, model=model)

return model, train_mse, test_mse

Static Type Checking Applies to Parallelized Invocations of a Task

```
@task
 def summarize_dataset(dataset: Dataset) -> pd.DataFrame:
      return dataset.describe()
 @task
 def summarize_dataset(dataset: dict) -> pd.DataFrame:
     return dataset.describe()
 @workflow
 def main(
     hyperparameters: Hyperparameters,
     test_size: float = 0.2,
     random state: int = 43,
 )-> TrainingResult:
     train_dataset, test_dataset = get_dataset(test_size=test_size, random_state=random_state)
     summarize_dataset(dataset=train_dataset)
     summarize_dataset(dataset=test_dataset)
     ...
TypeError: Cannot convert from scalar {
  schema {
    uri: "/tmp/flyte/20220321_133605/raw/abe1d6d3bf9e88288a5ce4d1e1d44b55"
    type {
 to <class 'dict'>
```

Trace Model Artifacts to the Data and Downstream Processes that Produced it



But wait, what about **data types** for *machine learning*?

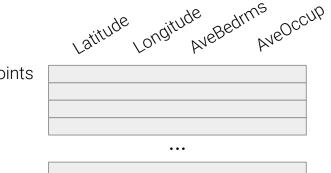
Pandera is a **statistical typing** and **data testing** library for *dataframes*, providing tools for defining *complex data types* and *unit testing* your pipelines with them.

Statistical Typing: Specifying the properties of collections of data points

Single data point

- Primitive data types
- Value range
- Allowable values
- Regex string match
- Nullability

Statistical Typing: Specifying the properties of collections of data points

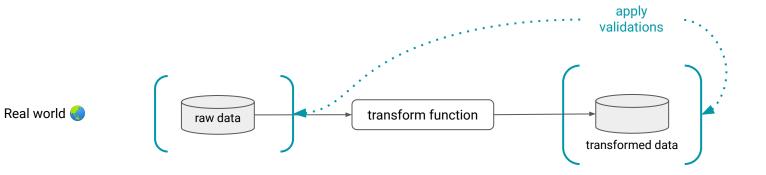


Collection of data points

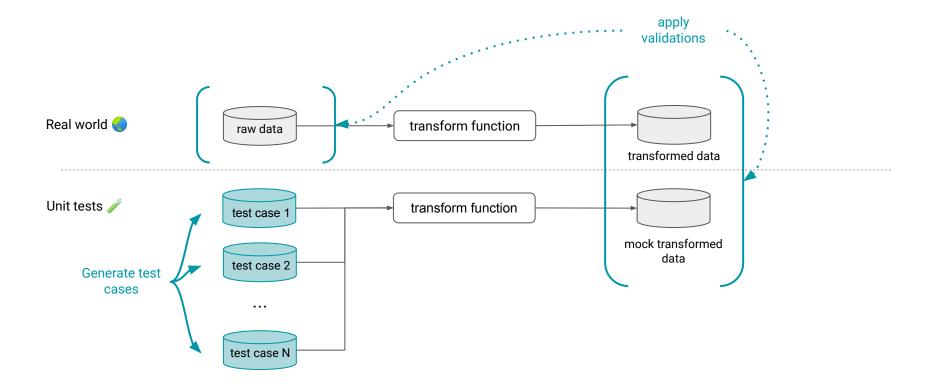
- Apply atomic checks at scale
- Uniqueness
- Monotonicity
- Mean, median, standard deviation
- Statistical distributions
- Fractional checks, e.g. "90% of data points are not null"

Statistical properties, by definition, can only be verified at *runtime*, but we can also define *functions* that use **statistical type annotations** that verify valid operations on those types.

Data Testing: Validating not only real data...



... but also the functions that produce them



Pandera

Define Statistical Types for your DataFrame-like Objects pip install pandera

import pandera as pa
from pandera.typing import Series, DataFrame

class MySchema(pa.SchemaModel): col1: Series[float] col2: Series[int] col3: Series[str]

@pa.check_types
def func(df: DataFrame[MySchema]):

• • •

Pandera and Flyte Play Well Together 💝

pip install flytekitplugins-pandera

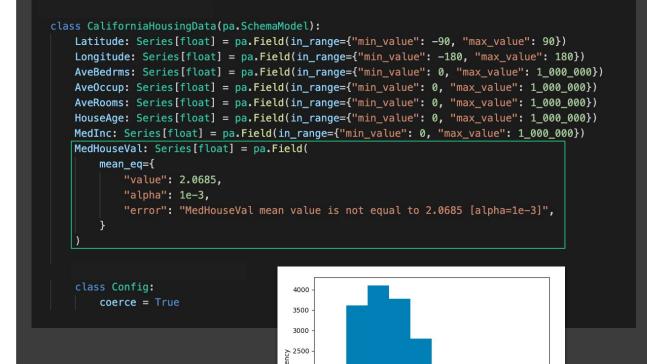
import flytekitplugins.pandera
import pandera as pa
from flytekit import task
from pandera.typing import Series, DataFrame

```
class MySchema(pa.SchemaModel):
    col1: Series[float]
    col2: Series[int]
    col3: Series[str]
```

@task
def func(df: DataFrame[MySchema]):

...

Defining a Statistical Type for California Housing Dataset



2

1

Custom Checks are Just...


```
def mean_eq(pandas_obj, *, value, alpha):
   Null hypothesis: the mean of data is equal to the value argument.
   If pvalue is greater than alpha, we can't reject the null hypothesis
   _, pvalue = stats.ttest_1samp(pandas_obj, value)
    return pvalue >= alpha
def mean_eq_strategy(
   pandera_dtype: pa.DataType,
   strategy: Optional[st.SearchStrategy] = None,
   *,
   value,
   alpha,
):
   if strategy:
        raise pa.errors.BaseStrategyOnlyError(
            "mean_eq_strategy is a base strategy. You cannot specify the "
            "strategy argument to chain it to a parent strategy."
    return pandas_dtype_strategy(
        pandera_dtype,
       strategy=st.builds(lambda: np.random.normal(loc=value, scale=0.01))
extensions.register_check_method(
    mean_eq,
   statistics=["value", "alpha"],
   strategy=mean_eq_strategy,
   supported_types=[pd.Series],
   check_type="vectorized",
```

Know When Your Data Has Missing Columns **m**

TASK NAME	NO	DEID	TYPE		ST	ATUS	START TIME		DURATION Queued Time	LOGS
get_dataset california_housing_	n0 regression		Pythor	n-Task		FAILED	3/21/2022 6:45:3 3/21/2022 2:45:38		40s	View Logs
[3/	3] currentA	ttempt don	e. Last Er	ror: S	SYSTEM::Tr	aceback (mo	ost recent call last	:):		
nt	return File "/o	wrapped(*	args, **kw b/python3.	args)		-	exceptions/scopes.py core/base_task.py",			
Mes	sage:									
	Failed to	convert re	turn value	for v	var test f	or function	a california_housing	_regression.	pandera_column	_error
_wo	rkflows.get	_dataset w	ith error	<class< td=""><td>s 'pandera</td><td>.errors.Sch</td><td>emaError'>: column</td><td>'Latitude' n</td><td>ot in datafram</td><td>e</td></class<>	s 'pandera	.errors.Sch	emaError'>: column	'Latitude' n	ot in datafram	e
	MedInc	HouseAge	AveRooms			-	MedHouseVal			
731			3.606232		3.960340		1.478			
440			3.793855							
192			6.806691							
	51 3.3438		4.630037		2.868132					
988	2 3.0608	22.0	4.750515	•••	2.607560	-121.79	1.683			
500.										

Know When Your Data Has the Wrong Type

TASK NAME	NODE ID	TYPE	STATUS	START TIME	DURATION Queued Time	LOGS
get_dataset california_housing_	n0 regression	Python-Task	FAILED	3/21/2022 6:51:21 PM UTC 3/21/2022 2:51:21 PM EDT	44s	View Logs
[3/ nt	File "/opt/venv/			ost recent call last): exceptions/scopes.py", line 165	, in system_ent	ry_poi
Mes	File "/opt/venv/ raise TypeErro sage:		ackages/flytekit/o	core/base_task.py", line 525, i	n dispatch_exec	ute
flo	kflows.get_dataset	with error <class 'pa<="" td=""><td>andera.errors.Sch</td><td>a california_housing_regression maError'>: Error while coercin > data_container into type flo</td><td>g 'Latitude' to</td><td></td></class>	andera.errors.Sch	a california_housing_regression maError'>: Error while coercin > data_container into type flo	g 'Latitude' to	
0 1 2 3	7310 N/A 4402 N/A 1929 N/A 11551 N/A					
4	9882 N/A					

Know When Your Data Has the Wrong Values

TASK NAME	NODE ID	TYPE	STATUS	START TIME	DURATION Queued Time	LOGS
get_dataset california_housing_regr	n0 ession	Python-Task	FAILED	3/21/2022 6:52:01 PM UTC 3/21/2022 2:52:01 PM EDT	45s	View Logs
nt Messaq Fa workfi <check failur inc 0 73 1 44 2 15 3 115</check 	File "/opt/venv/l return wrapped(File "/opt/venv/l raise TypeError e: iled to convert r ows.get_dataset w oat64))> failed e in_range: in_ran e cases: lex failure_case l0 _1000.0 02 _1000.0	<pre>ib/python3.9/site-pa *args, **kwargs) ib/python3.9/site-pa (eturn value for var ith error <class 'pa<br="">lement-wise validato</class></pre>	ackages/flytekit/e ackages/flytekit/c test for function andera.errors.Schem	st recent call last): xceptions/scopes.py", line 165 ore/base_task.py", line 525, i california_housing_regression maError'>: <schema column(name<="" td=""><td>n dispatch_exec</td><td>ute error_</td></schema>	n dispatch_exec	ute error_

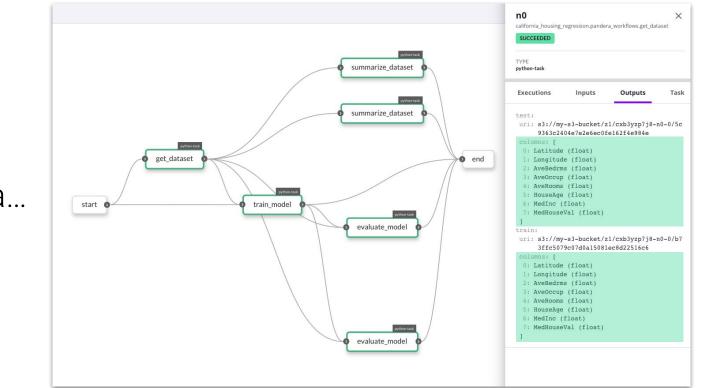
Know When Your Data Has the Wrong Statistical Distribution

Synthesize Valid Data Under Your Schema's Constraints 🔯

```
class CaliforniaHousingData(pa.SchemaModel):
   Latitude: Series[float] = pa.Field(in_range={"min_value": -90, "max_value": 90})
   Longitude: Series[float] = pa.Field(in_range={"min_value": -180, "max_value": 180})
   AveBedrms: Series[float] = pa.Field(in_range={"min_value": 0, "max_value": 1_000_000})
   AveOccup: Series[float] = pa.Field(in_range={"min_value": 0, "max_value": 1_000_000})
   AveRooms: Series[float] = pa.Field(in_range={"min_value": 0, "max_value": 1_000_000})
   HouseAge: Series[float] = pa.Field(in_range={"min_value": 0, "max_value": 1_000_000})
   MedInc: Series[float] = pa.Field(in_range={"min_value": 0, "max_value": 1_000_000})
   MedHouseVal: Series[float] = pa.Field(
       mean_eq={
           "value": 2.0685,
           "alpha": 1e-3,
           "error": "MedHouseVal mean value is not equal to 2.0685 [alpha=1e-3]",
   You, 4 hours ago | 1 author (You)
   class Config:
        coerce = True
```

In [4]: CaliforniaHousingData.example(size=10) Out[4]:

	Latitude	Longitude	AveBedrms	Ave0ccup	AveRooms	HouseAge	MedInc	MedHouseVal
0	79.860317	-148.351836	617031.632900	430128.971850	443742.477199	406612.645892	131667.872588	2.086141
1	-83.911119	-152.615588	787734.901377	913864.745456	829602.617830	588931.710189	625756.218540	2.072502
2	-80.177753	45.788823	587724.138773	200528.372483	394840.357825	521478.101969	426340.773699	2.078287
3	-14.809506	-38.640055	243580.951957	684329.660363	606582.209433	999449.778528	630028.219752	2.090909
4	-27.059190	-151.681259	864490.359815	389024.206781	916451.018379	909982.137180	931783.406294	2.087176
5	-10.783020	-43.581889	215860.187036	894330.091919	8619.707035	454911.557053	334877.131920	2.058727
6	64.063853	110.388789	467241.509949	893325.190377	915692.697615	648908.833563	413997.494038	2.078001
7	-65.360114	-148.623687	516877.114701	832633.647027	223950.545425	617144.879712	712547.371572	2.066986
8	-43.119623	61.017426	311425.228971	86337.978370	213803.011351	282039.522190	884250.395130	2.067468
9	-74.311844	-86.239245	185285.958695	385889.718367	904564.855290	111351.354414	336936.792431	2.072606



Test Your Data...

... the Functions That Produce Them...

```
def test_dataset():
    kwargs = {"test_size": 0.2, "random_state": 100}
    pandera_workflows.get_dataset(**kwargs)
    for get_dataset_fn, error_regex in [
            pandera_column_error_workflows.get_dataset,
            r"column 'Latitude' not in dataframe",
        ).
            pandera_dtype_error_workflows.get_dataset,
            r"Could not coerce <class 'pandas.core.series.Series'> data_container into type float64",
        ).
            pandera_value_error_workflows.get_dataset,
            r"failed element-wise validator 0:\s<Check in_range: in_range\(-90, 90\)>",
        ).
            pandera_stats_error_workflows.get_dataset,
            r"MedHouseVal mean value is not equal to 2.0685 \[alpha=1e-3\]",
        with pytest.raises(TypeError, match=error_regex):
            get_dataset_fn(**kwargs)
```

... and the Artifacts They Help Create.

```
predictions = model.predict(features)
assert all(isinstance(x, float) for x in predictions)
```

Takeaway 1

Flyte is an *orchestration* and *distributed execution* platform where **type-safety** is deeply integrated with other features, which together provide strong *reliability*, *efficiency*, and *auditability* guarantees.

Takeaway 2

With **Pandera**, you can ensure the *quality of data* flowing through your machine learning pipelines *and the correctness of those pipelines themselves* by expressing **statistical types** *directly in your codebase*.

Takeaway 3

With **Flyte** and **Pandera** combined, you can **build**, **deploy**, and **scale** these ML pipelines while enjoying the guarantee that, when things go wrong, you'll know where exactly the error occurred to help you fix it.

Flyte Roadmap

Flyte Decks: A Customizable Reporting API for your Pipeline Artifacts

ML-awareness: Intra-task model checkpointing, data labeling.

Serving Integrations: support for model serving, low latency batch workflows, model monitoring.

Pandera Roadmap

Extensibility: support for *xarray*, *jsonschema*, *pyarrow*, and more!

User Experience: more built-in checks, statistical hypothesis checks

Interoperability: tighter integrations with the python ecosystem, e.g. *fastapi*, *pydantic*, *pytest*

Where do I learn more?

Flyte

website: www.flyte.org docs: docs.flyte.org repo: github.com/flyte.org

Pandera

docs: pandera.readthedocs.io repo: github.com/pandera-dev/pandera

Contact

email: niels@union.ai twitter: @cosmicbboy linkedin: linkedin.com/in/nbantilan

On the importance of using a data quality framework to monitor your data.

Don't Let Your Models Decay!

SODA:

Bastien Boutonnet, Lead Data Scientist

Bastien joined Soda last year and before that he was at TripActions and Travelbird, once he decided that the Postdoctoral Fellow wasn't half the fun ;-). He's a die hard dbt fan, DJ, and French person living in Amsterdam.

https://www.bastienboutonnet.com

Zillow: A Cautionary Tale

\$500m

Zillow **overestimated** the value of the houses it purchased in Q3 and Q4 of 2021 **by over \$500m**

Q3 **losses of \$304m**, leading into a ~25% workforce reduction

Coincided with a strong change in housing market conditions which causes housing prices to fall

Strong evidence that their models were trained on the, then "old" situation which indicated growing prices, which caused their unattended models to work under a different "assumption" or concept

Did they do everything badly?

No!

- Their models were rigorously tested during development
- Their models were released to production gradually and KPIs were closely monitored.
- When those were deemed satisfactory, humans derived decisions to aggressively expand their purchasing programme.

Any good Data Science team would do that. It's their job and part of deploying to prod.

Could it have been avoided?

Yes!

- Some phenomena in nature are likely to change, and can do so drastically. When it comes to pricing, that's definitely true.
- This is commonly referred to as "data drift" and it can be detected by:
 - Tracking and alerting on drift.
 - Tracking and altering on accuracy.

Any good Data Science team is aware of that, but data quality management is not their job or core product.

A Detour Into Data Drift

So what is data drift?

When the distribution of one or more of your input features has changed between, for example training time and deployment.

How do you detect it?

01
"Freeze" a reference distribution
02
Compare distribution at time t+n and reference distribution

Simple right? 🔮

On the Importance of A Data Quality Framework, Whichever It Is

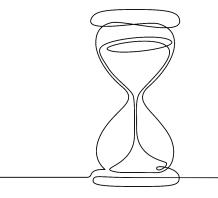
Why data quality monitoring is "hard".

- Simply put: you have to write a bunch more code
- Choose your methods from a sometimes large pool
- Orchestrating the checks
- Make it reusable
- Maintain and extend
- The list goes on...



Data quality should not add time to release.

- Developing ML automation takes time and resources
- Data quality monitoring, isn't an internal data team's core product.
- Implementing data quality monitoring can easily increase the scope of any data product's feature set with no direct value add.
- It often ends up "on the backlog"



Wouldn't it Be Nice If...

Wouldn't it be nice if you could to the following:

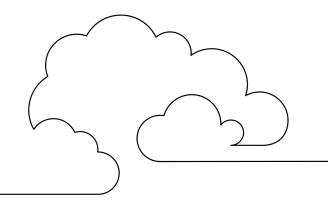
⊙ 🍂 🥑 📷 12. 📾 🚓 👘 45° 🚛 8 🛔 8 🛔 8 🖓 🚺 120 79% … 😭 6 Sun 20 Mar 15:53:21

	I I I A My Drive-Google X & My Drive-Google X X B Drive-Google X X Drive-Google X X Drive-How to Vice X C How Rege-Selec X B Unded-Appler Is X B wind data to party: X A proton-How to Vice X + v C O localhoot 8888/hotebools/Untitled.lpmDrivered_manuscrython3
	File Edit View Insert Cell Kernel Widgets Help Tosted Python 3 (ipykernel) (
<pre>(vf=sds=sql)(kets) = distribution_choics ruis (vf=sds=sql)(kets) = distribution_choics ruis statistic ruis_ruis rAM dc_auting ruis_ruis_ruis_ruis_ruis_ruis_ruis_ruis_</pre>	<figure></figure>

What's Next?

Why stop there?

- Connect to **Soda Cloud** (to avoid inconvenience of experimental file-based experimental feature)
- Rich visualisation in Cloud/and OSS
- More user control over algos + more algos to choose from
- Entirely data based solution (store reference sample instead of object in cloud/s3)
- Bespoke drift wrappers (monitor for both concept and label drift over one or several datasets)



Give it a try!

- docs.soda.io
- `pip install soda-core-[datasource_type] soda-core-scientific`
- https://github.com/sodadata/soda-core

Hit me up, I'll be around!

- Bastien Boutonnet (find me on the socials)
- <u>bastien@soda.io</u>
- www.bastienboutonnet.com

Drink Belgian Eat Texan Be Happy

Wedneday, March 23rd Mort Subite | 7:30pm - 12 Midnight

Say Hello While in Austin

- We're at Booth 23
- Watch a Soda product demo
- Join our Happy Hour
- Get good swag

Thank You!