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Background



Recommender systems

▪ Use cases: e-commerce, media streaming, 

social, ride-hailing, biomedical, etc

▪ Who: data scientists, data engineers, 

platform engineers

▪ Trend: Batch predictions → online 

predictions

▪ In practice, consists usually of two steps: 

candidate generation + reranking

▪ Long tail of operational challenges

Feast x RecSysLow latency & freshnessRecSys challenges CorrectnessBackground



What is a feature store?

● Manages ingestion and storage of 

streaming and batch data

● Allows for standardized definitions of 

features and transformations

● Generates point-in-time correct features

● Ensures model performance by tracking, 

validating, and monitoring features

Feast x RecSysLow latency & freshnessRecSys challenges CorrectnessBackground



Recommender system challenges



A typical journey of building a recommender system

Background Feast x RecSysLow latency & freshness CorrectnessRecSys challenges

Core business use case

e.g. e-commerce website with 
user purchase history

Batch recommendations

e.g. explorations of initial 
models (collaborative filtering), 
regularly re-train + generate 
recommendations for all users

Online recommendations

e.g. add candidate generation 
vs ranking split, increase model 
complexity, more sources of 
training / serving skew

Chaining more ML models

e.g. handling ML fairness, 
re-ranking for diversity, adding 
explainability, robust handling 
of cold start problem

Heuristic powered 
recommendations

e.g. most popular items in user 
location



Challenges with recommender systems

Type of challenge   Examples

Operational ● Low latency batch retrieval of features
● Feature freshness

Feature engineering ● Access to request data at training time
● Supporting time-travel in model training

Data quality ● Mitigating training / serving skew or data drift
● Bad data pushes from stream sources

Organizational ● Data scientist vs engineers
● Multiple business objectives to optimize
● A/B tests to measure business metrics lift

Miscellaneous ● Cold start
● Privacy / GDPR

Background Feast x RecSysLow latency & freshness CorrectnessRecSys challenges



Operational challenges

Among other requirements, an online recommender system often:

● Needs fresh features (write heavy) 

○ Why? e.g. user session activity

○ Different events update different features

● Needs low latency access to features for many entities (read heavy)

○ Why? e.g. for a given user, need to rank 100s to 1000s of items

■ Typically, the faster the recommendation, the more likely users accept them. 

■ The less time spent on data, the more time the model can spend inferring.

Optimizing for the above can introduce significant data quality issues too. 

Background Feast x RecSysLow latency & freshness CorrectnessRecSys challenges



Low-latency access to fresh features



Achieving lower latency

Generally, there is a need to have features available at low latency in serving via an online store. There are 

many challenges in building such a store though:

1. Balancing requirements (read vs write, cost, etc)

2. Complex + slow type conversions across different sources

3. Optimizing for batch retrieval 

Background Feast x RecSysRecSys challenges CorrectnessLow latency & freshness



Challenges of building a low latency online store

Consideration

1. Balancing requirements

a. update features independently (e.g. 

from streams)

b. reading features for a specific model 

quickly

c. enable feature re-use across models

d. cost management 

Background Feast x RecSysRecSys challenges CorrectnessLow latency & freshness

Example strategies

➜ Store features from an event together in both 

online store & offline store

➜ Store features for an entity for a specific model 

together (pruning unused columns)
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Challenges of building a low latency online store

Consideration

1. Balancing requirements

a. update features independently (e.g. from 

streams)

b. reading features for a specific model 

quickly

c. enable feature re-use across models

d. cost management 
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➜ Feature versioning

➜ TTL entities (warning: multiple models)



Challenges of building a low latency online store

Consideration

2. Managing type conversions for online store

a. Data source types and Pandas / Python 

types (in data scientist notebook)

Background Feast x RecSysRecSys challenges CorrectnessLow latency & freshness



Challenges of building a low latency online store

Consideration

3. Optimizing for batch retrieval 

a. Multiple types of entities in same 

request (e.g. user ids + item ids)

b. Large batch sizes (i.e. number of entities 

to score in the sample request)

c. Online store specific optimizations. 

Background Feast x RecSysRecSys challenges CorrectnessLow latency & freshness

Example strategies

➜ De-duplication of requested entities

➜ Co-locating entities

➜ Caching

➜ E.g. Redis pipelines & mget vs hmget vs 

hgetall 

➜ E.g. Different ways of bulk loading data into 

online store



Co-locating entities

Background Feast x RecSysRecSys challenges CorrectnessLow latency & freshness

Example: fetch features for all stores in a region Also: Redis hmget vs hgetall



Caching

Background Feast x RecSysRecSys challenges CorrectnessLow latency & freshness

Caching (e.g. popular entities hit Redis)



Correctness



Handling bad data

Many sources of bad data:

● E.g. upstream systems change, resulting in 

schema or feature distribution shifts (e.g. 

engineers change normalization logic)

● E.g. faulty feature transformation logic or 

messy data that has not been properly 

cleaned

● E.g. streams can publish bad data (or fail to 

publish data), leading to poor quality or 

missing data.
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Feature stores may:

● Implement data quality monitoring

○ e.g. see Feast DQM and versioned 

datasets via SavedDatasets

○ e.g. Great Expectations integration 

○ can easily go wrong with false alerts

● Distinguish between missing data & empty 

feature values in response. 

● Fallback to old / default values or impute 

values for missing / faulty data. 



Why using Great Expectations isn’t enough

Background Feast x RecSysRecSys challenges Low latency & freshness Correctness

Source: https://arxiv.org/pdf/2004.05785.pdf

Source: Feast 0.19 data quality monitoring 
tutorial (first milestone in RFC)

https://arxiv.org/pdf/2004.05785.pdf
https://docs.feast.dev/tutorials/validating-historical-features
https://docs.feast.dev/tutorials/validating-historical-features


Handling bad data
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Why a transformation library isn’t enough

● Data scientist vs engineers

○ Data scientists do their SQL transformations in DWH and Python transformations in notebooks

○ Engineers work in a different environment (e.g. Java / Go servers)

● What about Spark / Flink / Beam? 

○ Some transformations need access to request data or need to execute at inference time

● Optimizing for fast model training iterations != optimizing for fast serving

○ E.g. Pandas is much slower with small number of rows (e.g. at serving time)

● Assumption that data is neatly organized by timestamp + available in the same fashion

○ E.g. request data that’s available in memory isn’t regularly snapshotted at inference time

Background Feast x RecSysRecSys challenges Low latency & freshness Correctness



Data pipeline delays

Consider a naive approach:

● At training time, generate features from offline store (data warehouse) using event timestamps

● At serving time, use an online store to serve features that loads data from batch periodically

BUT: what if there’s a delay in data pipelines to populate offline / online stores? 

● A watermark + materialization (e.g. processing time) timestamps matters

○ e.g. incremental processing of offline data

■ e.g. reject items later than X (materialize from last end time - X until now)

○ e.g. monitor delay (e.g. most recent event_timestamp in data source or data source 

created_timestamp vs event_timestamp.)

● Stream based ingestion into online store

Background Feast x RecSysRecSys challenges Low latency & freshness Correctness



Feast x RecSys



Feast

Background

● Feast is an open-source feature store that 

connects to GCP, AWS, Azure, Snowflake, 

Hive, Redis, Spark, etc

● Active community with 3k+ members on 

Slack and bi-weekly community calls

● Goal: to simplify & reduce overhead of 

managing features / data in ML systems

RecSys challenges Low latency & freshness Correctness Feast x RecSys



Feast

● Building a framework for managing:

○ Multiple data sources

○ Multiple types of entities

○ Sources of training / serving skew

● Enforcing best practices on storage within 

offline / online stores & batch / stream sources

● Encouraging best practices for reducing error 

across teams (e.g. feature reuse, feast plan)

● Reducing effort to author features (e.g. 

abstracting away point-in-time joins)

● Pluggable (e.g. custom offline / online stores)

Background RecSys challenges Low latency & freshness Correctness Feast x RecSys



Deploying feature stores

● Airflow for scheduled materialization of 

online features

○ Stream processors push data to online 

store directly

● Deployment of a feature server

○ Serverless (e.g. Using Feast’s Lambda 

integration)

○ Kubernetes (e.g. Feast Serving)

● Versioning models with feature service

Background RecSys challenges Low latency & freshness Correctness Feast x RecSys

https://feast.dev/blog/feast-0-14-adds-aws-lambda-feature-servers/
https://feast.dev/blog/feast-0-14-adds-aws-lambda-feature-servers/
https://github.com/feast-dev/feast-java/tree/master/serving


For batch recommender systems

Example: predict suggested items for users to purchase with matrix factorization

▪ V0: use only user ids and item ids with purchase patterns

▪ User id + item id -> user embeddings + item ids -> dot product for purchase

▪ Store embeddings in Feast + do lookups

▪ V1: Mitigate cold start problems

▪ Use content-based model or other heuristic (e.g. bandit algorithms)

▪ Use Feast to fetch other user features & item features as part of model to generate embeddings

▪ Key challenges solved by Feast

▪ Collaboration + sharing of features / pipelines. 

▪ Future: Feast batch transformations 

▪ Lineage: knowing which models depend on which features

▪ Future: Data drift (when to retrain model, or when other upstream signals are changing)

Background RecSys challenges Low latency & freshness Correctness Feast x RecSys



Background RecSys challenges Low latency & freshness Correctness Feast x RecSys

For online 
recommender 
systems



For online recommender systems

Example: predict videos to watch, predict next piece of clothing to buy given previous purchases, generate search results 

given a query

▪ Need access to data only available at request time (e.g. current time vs time of video, session data, etc)

▪ Feast: OnDemandFeatureView

▪ Freshness of features can matter (e.g. data in session)

▪ Feast: regular feature materialization & push based stream ingestion. Also: DQM for drift detection

▪ Low latency is important. Often, this means we have a candidate generation model + a ranking model.

▪ Feast: simplifies fetching and monitoring features (+ versioning models with features)

▪ Environment difference between training environment (notebook) and serving environment (API server) 

▪ Feast: OnDemandFeatureView enables python logic from training to be re-used at serving

▪ Feast: manages differences in type systems across data sources vs online stores vs feature schemas

Background RecSys challenges Low latency & freshness Correctness Feast x RecSys



Sample features

● Binning

● Feature crossing

○ (instead of e.g. using BQML’s 

crossing functionality which can’t 

be done at serving time)

● Time related features (e.g. time since last 

event, how recently a video was 

published)

● Batch features

○ User / item metadata

○ User / item history: 

last_X_purchased_items

Background RecSys challenges Low latency & freshness Correctness Feast x RecSys

session_fv = RequestFeatureView(

    name="request_data",

    request_data_source=RequestDataSource(

        name="request_data",

        schema={

            "video_category_one_hot": ValueType.INT64_LIST,

            "last_purchase_time": ValueType.UNIX_TIMESTAMP,

            "current_time": ValueType.UNIX_TIMESTAMP,

        }

    ),

)

@on_demand_feature_view(

    inputs={"request_data": session_fv, "user_features": user_fv},

    features=[Feature(name="time_since_purchased", dtype=ValueType.INT64)]

)

def time_since_last_purchased(inputs: pd.DataFrame) -> ValueType.STRING:

   from datetime import datetime

   from keras.utils.np_utils import to_categorical 

   df = pd.DataFrame()

   df["time_since_purchase"] = inputs["current_time"] - inputs["last_purchase_time"]

   df["user_age_decade"] = inputs["user_age"].apply(lambda x : np.floor(x / 10))

   df["user_age_x_item"] = df.apply(lambda x: 

np.outer(to_categorical(x['user_age_decade'], num_classes=10, dtype='int32'), 

x["video_cat_one_hot"]), axis=1) 

   return df



Takeaways
● Recommender systems can quickly balloon in 

complexity

○ E.g. low latency (read vs write), batch reads, correctness / 

bad data, type conversions

● Feature stores can enforce best practices / abstract 

some of this complexity away for both batch + online 

recommender systems

○ E.g. difference between offline / online store

○ E.g. lineage via feature repository + Web UI

● Consistent + performant on demand transformations 

are key to online recommender systems



Questions?
Useful resources

● https://feast.dev/ 

● https://github.com/feast-dev/feast 

● https://slack.feast.dev/ 

https://feast.dev/
https://github.com/feast-dev/feast
https://slack.feast.dev/
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Overview
● Why & What Ray & Ray Ecosystem
● Ray Architecture & Components
● Ray Core APIs
● Ray Native ML Libraries 

○ Ray Tune, XGBoost-Ray
● Demo

○ Scaling ML workloads
● Q & A



- Machine learning is pervasive in every 
domain

- Distributed machine learning is becoming a 
necessity

- Distributed systems is notoriously hard

Why Ray?



- Machine learning is pervasive in every 
domain

- Distributed machine learning is becoming 
a necessity

- Distributed systems is notoriously hard

Why Ray? 



35x every 18 months

2020

GPT-3

Specialized hardware is also not enough

CPU

https://openai.com/blog/ai-and-compute/

GPU*
TPU
*

https://openai.com/blog/ai-and-compute/


35x every 18 months

2020

GPT-3

Specialized hardware is also not enough

Moore’s Law (2x every 18 months)
CPU

https://openai.com/blog/ai-and-compute/

GPU*
TPU
*

No way out but to distribute!

https://openai.com/blog/ai-and-compute/


- Machine learning is pervasive in every 
domain

- Distributed machine learning is becoming a 
necessity

- Distributed systems and programming are 
notoriously hard

Why Ray? 



Existing solutions have may tradeoffs

Generality
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- Machine learning is pervasive in every domain
- Distributed machine learning is becoming a necessity
- Distributed systems are  notoriously hard

Ray’s  vision: 
Make distributed computing accessible to every developer

Why Ray?



The Ray Layered Cake and Ecosystem
Datasets 

Workflows 

Run 
anywhere

Universal 
framework 
for 
distributed 
computing

Library + 
app 
ecosystem



Rich ecosystem for scaling ML workloads

Ray Core 
/ Datasets

Model 
Serving

Data
Processing Training Serving

Ray Core + 
Datasets

Reinforcement
Learning

Hyper.
Tuning

** a small subset of the Ray ecosystem in MLOnly use the libraries you need!

Ray Train
Built-in
“batteries 
included”
libraries



Companies scaling ML with Ray



Ray Core 
/ Datasets

Model 
Serving

Data
Processing Training Serving Reinforcement

Learning
Hyper.
Tuning

Companies scaling ML with Ray

● https://eng.uber.com/horovod-ray/
● https://www.anyscale.com/blog/wildlife-studios-serves-in-game-offers-3x-faster-at-1-10th-the-cost-with-ray
● https://www.ikigailabs.com/blog/how-ikigai-labs-serves-interactive-ai-workflows-at-scale-using-ray-serve

https://eng.uber.com/horovod-ray/
https://www.anyscale.com/blog/wildlife-studios-serves-in-game-offers-3x-faster-at-1-10th-the-cost-with-ray
https://www.ikigailabs.com/blog/how-ikigai-labs-serves-interactive-ai-workflows-at-scale-using-ray-serve


Ray’s approach for scaling ML

(with as few code changes as possible)

Runs
on

CPU CPU CPU CPU

GPU A GPU B GPU B GPU B

Runs
on

Same Python code 
runs on laptop as 
infinite cloud!

(Traditional, 
non-parallelized 
vanilla Python)

Ray-ified 
Python



Ray Architecture & Components



What does Ray Cluster Looks Like … 

   Driver    Worker

Global Control Store 
(GCS)

   Scheduler 

   Object Store     
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Unique to 
Ray

… …

Head Node Worker Nodes Worker Nodes



● One per node
● Resource manager
● Manages worker 

processes

● Centralized 
Component

● Tracks cluster-wide 
properties

● Executes 
actor/task



Ray Distributed Design Patterns & APIs



Ray Basic Design Patterns

• Ray Parallel Tasks
• Functions as  stateless units of execution 
• Functions distributed across a clusters as tasks

• Ray Objects or Futures
• Distributed (immutable) Object stored in cluster 
• Retrievable when available
• Enable asynchronous execution of

• Ray Actors
• Stateful service on a  cluster
• Message passing and maintains state

1. Patterns for Parallel Programming
2. Ray Design Patterns
3. Ray Distributed Library Integration Patterns

https://www.goodreads.com/book/show/85053.Patterns_for_Parallel_Programming
https://docs.google.com/document/d/167rnnDFIVRhHhK4mznEIemOtj63IOhtIPvSYaPgI4Fg/edit#heading=h.crt5flperkq3
https://www.anyscale.com/blog/ray-distributed-library-patterns


Python → Ray Basic Patterns

Function    

Class               

Object

Task

Actor

(Distributed 
immutable) Object

Node

Node

Node



Function → Task Class → Actor
@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

@ray.remote(num_gpus=1)
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value

c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()



Task API
@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file1 file2

Node 1 Node 2

Blue variables are ObjectRef IDs
(similar to futures) 

read_array

id1

Return id1 (future) immediately, 
before read_array() finishes



Task API
@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file1 file2

Node 1 Node 2

read_array

id1

read_array

id2

Dynamic task graph:
build at runtime

Blue variables are Object IDs
(similar to futures) 



Task API
@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file1 file2

Node 1 Node 2

read_array

id1

read_array

id2

add

id

Node 
3

Every task scheduled, 
but not finished yet

Blue variables are Object IDs
(similar to futures) 



Task API
@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file1

Node 1 Node 2

Node 
3

read_array

file2

read_array

add

sumTask graph executed to 
compute sum

Blue variables are Object IDs
(similar to futures) 



Distributed Immutable object store

Worker
 process 

Worker
 process ….

X Y Z

Spill over to 
external storage



Distributed Immutable object store

@ray.remote
def f():
    …
    return X

@ray.remote
def g(a):
    …
    return Y

id_X = f.remote()
id_Y = g.remote(id_X)

Node 1

id_X

Node 2

f()

X

id_X

Only X’s id (id_X) is 
returned, not X’s value

.. ..

Shared 
object store



Distributed object store

@ray.remote
def f():
    …
    return X

@ray.remote
def g(a):
    …
    return Y

id_X = f.remote()
id_Y = g.remote(id_X)

Node 1

g(id_X)

X

id_X

id_X

Node 2

Y

id_Y

id_Y

g(id_X) is scheduled on same node, so X is never transferred

…

Shared 
object store



Ray Ecosystem
● Ray Tune
● XGBoost-Ray



Ray  Tune 



● Efficient algorithms that enable running trials in parallel  
● Effective orchestration of distributed trials
● Easy to use APIs
● Interoperable with Ray Train and Ray Datasets
● Saves cost (early stopping bad trials)

Ray Tune - For distributed HPO

Cutting edge 
optimization algorithms

Minimal code changes to 
work in distributed 

settings

Compatible with ML 
ecosystem



Ray 

https://docs.ray.io/en/latest/tune/api_docs/suggestion.html
#tune-search-alg

https://docs.ray.io/en/latest/tune/api_docs/schedulers.
html#tune-schedulers

https://docs.ray.io/en/latest/tune/api_docs/suggestion.html#tune-search-alg
https://docs.ray.io/en/latest/tune/api_docs/suggestion.html#tune-search-alg
https://docs.ray.io/en/latest/tune/api_docs/schedulers.html#tune-schedulers
https://docs.ray.io/en/latest/tune/api_docs/schedulers.html#tune-schedulers


Hyperparameters

Model 
parameters

● Model type and architecture
● Learning and training related 

parameters
● Pipeline configurations
● Number of trees, depth etc

Set before training

Learn during training

Hyperparameters



Hyperparameter tuning
“choosing a set of optimal hyperparameters for a learning algorithm”

How many layers? What kinds of layers? Learning rate 
schedule?

Every number here is a hyperparameter!

Example: what network structure is best for your binary classification problem?



HPO Challenges at scale

● Time consuming and costly
● Use Resources (GPUs/CPUs) at lower costs
● Fault-tolerance and elasticity 

+$$$



01 02 03Exhaustive 
Search

Bayesian 
Optimization

Advanced 
Scheduling

● Over 15+ algorithms natively provided or integrated
● Easy to swap out different algorithms with no code change

Ray Tune - HPO algorithms



● Easily parallelizable, easy to implement
● Inefficient, compute intensive

Exhaustive Search



● Uses results from previous combinations (trials) to decide 
which trial to try next

Bayesian optimization

https://www.wikiwand.com/en/Hyperparamet
er_optimization

● Inherently sequential
● Popular libraries:

○ hyperopt
○ Optuna
○ Scikit-optimize
○ Nevergrad



● Fan out parallel trials during the initial exploration phase
● Use intermediate results (epochs, trees, samples) to prune 

underperforming trials, saving time and computing resources

Advanced Scheduling - Early stopping

● Median stopping, ASHA/Hyperband
● Can be combined with Bayesian Optimization (BOHB)



Ray Tune - distributed HPO

Head Node

DriverProcess
tune.run(train_func)

Orchestrator running HPO 
algorithm

from ray import tune

def train_func(config):
    model = ConvNet(config)
    for i in range(epochs):
        current_loss = model.train()
        tune.report(loss=current_loss)
 
tune.run(
    train_func,
    config={“alpha”: tune.uniform(0.001, 
0.1)},
    num_samples=100,
    scheduler=“asha”,
    search_alg=”optuna”)
 
 

Easily specify 
hyperparameter 
ranges to search 
over

Easily define your 
training function

Just use 
tun.run(..)



Worker Node

Worker Node

Ray Tune - distributed HPO

Each actor performs one set of hyperparameter 
combination evaluation (a trial)

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO 
algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

Launch Launch

Launch



Worker Node

Worker Node

Ray Tune - distributed HPO

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO 
algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

Report metrics Report metrics

Report metrics

Orchestrator keeps track of all the trials’ 
progress and metrics. 



Worker Node

Worker Node

Ray Tune - distributed HPO

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO 
algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

Early stop Continue

Continue

Based on the metrics, the orchestrator 
may stop/pause/mutate trials or launch 
new trials when resources are available.



Worker Node

Worker Node

Ray Tune - distributed HPO

Resources are repurposed to explore 
new trials.

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO 
algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

Launch a new trial



Worker Node

Worker Node

Ray Tune - distributed HPO

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO 
algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

Trials are 
checkpointed to 
cloud storage

Orchestrator also manages checkpoint state.

Checkpoint



Worker Node

Worker Node

Ray Tune - distributed HPO

Some worker process crashes.

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO 
algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func



Worker Node

Worker Node

Ray Tune - distributed HPO

New actor comes up fresh and the 
crashed trial is restored from remote 
checkpoint.

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO 
algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

Load checkpoint 
from cloud storage

restore



XGBoost-Ray
●  Design & Features



XGBoost-Ray
• Distributed XGBoost-Ray -  

Drop-in replacement for 
XGBoost

• Fault tolerance & Elastic 
training 

• Integration with Ray 
Datasets and Ray Tune

● https://github.com/ray-project/xgboost_ray
● https://docs.ray.io/en/latest/xgboost-ray.html

https://github.com/ray-project/xgboost_ray
https://docs.ray.io/en/latest/xgboost-ray.html


Motivation

• There are existing solutions for distributed XGBoost
• E.g. Apache Spark, Dask, Kubernetes etc

• But most existing solutions have shortcomings:
• Dynamic computation graphs
• Fault tolerance handling
• GPU support
• Integration with hyperparameter tuning libraries



XGBoost-Ray

• Ray actors for stateful training workers
• Advanced fault tolerance mechanisms
• Full (multi) GPU support
• Locality-aware distributed data loading
• Integration with Ray Tune



 Distributed XGBoost Architecture



Driver

load_data()

Worker 1 Worker 2 Worker 3 Worker 4

load_data() load_data() load_data()
Distributed
data loading

@ray.remote
Actors

Architecture



Driver

load_data()

Worker 1 Worker 2 Worker 3 Worker 4

xgb.train()

load_data()

xgb.train()

load_data()

xgb.train()

load_data()

xgb.train()

Distributed
data loading

Tree-based
allreduce 
(Rabit)

Architecture



Driver

load_data()

Worker 1 Worker 2 Worker 3 Worker 4

xgb.train()

load_data()

xgb.train()

load_data()

xgb.train()

load_data()

xgb.train()

Distributed
data loading

Tree-based
allreduce 
(Rabit)

Checkpoints
Eval results

Architecture



Partition A

Node 1 Node 2 Node 3 Node 4

Partition B

Partition C

Partition F

Partition D

Partition E

Partition G

Partition H

Partition A

Worker 1 Worker 2 Worker 3 Worker 4

Partition B

Partition C

Partition F

Partition D

Partition E

Partition G

Partition H

Distributed
dataframe
(e.g. Modin)

XGBoost-Ray
workers

Distributed data loading



• In distributed training, some worker nodes are bound to fail 
eventually

• Default: Simple (cold) restart from last checkpoint
• Non-elastic training (warm restart):

Only failing worker restarts
• Elastic training: Continue training with fewer workers until 

failed actor is back

Fault tolerance strategies



Worker 1

Worker 2

Worker 3

Worker 4

Training

Paused

Failed

Stopped

Loading data

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Time

Fault tolerance: Simple (cold) restart



Fault tolerance: Non-elastic training (warm restart)

Worker 1

Worker 2

Worker 3

Worker 4

Training

Paused

Failed

Stopped

Loading data

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Time



Worker 1

Worker 2

Worker 3

Worker 4

Training

Paused

Failed

Stopped

Loading data

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Time

Finishes
earlier

Fault tolerance: Elastic training



Hyperparameter tuning

Trial 1

eta: 0.1
gamma: 0.2

Trial ...

eta: 0.3
gamma: 0.1

Trial n

eta: 0.2
gamma: 0.0

W
or
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r 2

W
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W
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W
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Early stopping
Searchers (e.g. BO, TPE)Report checkpoints

and results



Simple API example
from sklearn.datasets import load_breast_cancer
from xgboost import DMatrix, train

train_x, train_y = load_breast_cancer(return_X_y=True)
train_set = DMatrix(train_x, train_y)

bst = train(
   {"objective": "binary:logistic"},
   train_set
)
bst.save_model("trained.xgb")

bst = train(

   {"objective": "binary:logistic"},

   train_set,

   ray_params=RayParams(num_actors=2)

)

bst.save_model("trained.xgb")

from xgboost_ray import RayDMatrix, RayParams, train

train_set = RayDMatrix(train_x, train_y)



Takeaways

● Distributed computing is a necessity & 
norm

● Ray’s vision: make distributed 
programming simple
○ Don’t have to be distributed systems 

expert. Just use @ray.remote :)
● Scale your ML workloads with Ray 

Libraries



Production 
RL Summit

MARCH 29 - VIRTUAL - FREE

A reinforcement learning 
event for practitioners

Ben Kasper Sumitra GaneshSergey Levine

Marc Weber Volkmar SterzingAdam Kelloway

ORGANIZED BY

Register: https://tinyurl.com/mr9rd32h



Instructor: 

Sven Mika, Lead maintainer, RLlib

HANDS-ON TUTORIAL 

Contextual Bandits & RL with RLlib

Learn how to apply cutting edge RL in production with RLlib. 

Tutorial covers: 
● Brief overview of RL concepts. 
● Train and tune contextual bandits and SlateQ algorithm
● Offline RL using cutting-edge algos
● Deploy RL models into a live service

$75 $30 (use code DCRL2022)Register: https://tinyurl.com/mr9rd32h

$75 $30 
Use code DCRL2022

Production 
RL Summit

MARCH 29 - VIRTUAL 

A reinforcement learning 
event for practitioners

ORGANIZED BY



DON’T WAIT!
CFP closes 
April 11th

Call for Papers is Now Open!
Submit your talk at 

anyscale.com/ray-summit-2022



Start learning Ray and contributing …
Getting Started:  pip install ray

Documentation (docs.ray.io) 
Quick start example, reference guides, etc

Join Ray Meetup  
Revived in Jan 2022. Next meetup March 2nd. 
Meetup each month and publish recording to the members
https://www.meetup.com/Bay-Area-Ray-Meetup/

Forums (discuss.ray.io) 
Learn / share with broader Ray community, including core team

Ray Slack 
Connect with the Ray team and community

Social Media (@raydistrtibuted, @anyscalecompute) 
Follow us on Twitter and linkedIn

GitHub 
Check out sources, file an issue, become a contributor, give us a Star :)
https://github.com/ray-project/ray

https://www.meetup.com/Bay-Area-Ray-Meetup/
https://github.com/ray-project/ray


Thank you!

Let's stay in touch:

jules@anyscale.com
https://www.linkedin.com/in/dmatrix/

@2twitme



VIDEO



https://docs.google.com/file/d/1RAGKa7Uahw3ufIkit85mpwG94kIxhfq5/preview
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Making Humans & Code 
GPU-Capable
Data Council Austin 2022

 

Emily May Curtin
Senior ML Ops Engineer, Mailchimp/Intuit
@emilymaycurtin



2022

👽   ATLien (don’t call it Hotlanta)

❌  #NotADataScientist

🎨  Oil painter by passion

💾  MLOps by day job (btw we’re hiring!)

❤  Big fan of Ryan Curtin 

Howdy, I’m 
Emily
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https://ratml.org/
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Our Goal:
Help Data Scientists 
produce higher quality 
work faster



2022

MLOps 
is a hyper-technical field that is

all about people



2022

Hyper-Technical Used by people

Inherent Design 
Tradeoff



2022

Other Design Tradeoffs
Efficient for 
Computers

Friendly for 
Developers

Solid in prod 
but awful to 
develop

Shaky in prod but 
easier to develop

Too Opinionated Too Configurable



2022

Let’s talk 
about ML 
stacks



2022

● Python

● Pytorch, HuggingFace, Tensorflow

● Docker

● Cloud infrastructure (we happen to use GCP)

● Kubernetes either directly or indirectly

Typical ML Tech Stack



2022

● Good scalability, reproducibility

● Cloud infra good for spiky ML workloads (vs. more consistent, 
predictable web service)

Benefits



2022

But...

?????????



2022

Let’s talk 
about GPUs





GPUs Can Be Really Awesome



2022

● Are optional hardware peripherals

● Require special drivers

● Rely on system buses for I/O

GPUs … 



2022

GPUs … Are Printers



2022

GPUs … Are Printers
That are very good at linear algebra



My Amazing Service w/n MC’s service framework 

ML Library (PyTorch, etc.)

CUDA libs

GPU device drivers

A physical server

OS

An actual, real, not virtual GPU

Call Stack 
on a plain 
server

My Super Awesome Service Library



My Amazing Service w/n MC’s service framework 

ML Library (PyTorch, Tensorflow, XGBoost, etc.)

CUDA libs

GPU device drivers

A physical server

OS

An actual, real, not virtual GPU

Call Stack 
on a plain 
server

My Super Awesome Service Library



Pod

Container

My Amazing Service 

ML Library (PyTorch, etc.)

Kubernetes

Probably like some hypervisors or whatever idk it’s the cloud this layer doesn’t tend to bother me

Nodes (virtual servers)

An actual, real, not virtual GPU

Call Stack 
in the 
ephemeral 
world

My Super Awesome Service Library

Physical Servers



2022

● GPU
● Drivers

○ nvidia.ko - Kernel mode GPU driver
○ libcuda.so - User mode GPU driver (aka low-level API) 

● CUDA Toolkit
○ libcudart.so - Runtime API (aka high-level API)
○ cuBLAS, cuRAND, cuSOLVER, and other toolkit libs

What you need to 
talk to a GPU



2022

GPUs and 
Device 
Drivers



2022

GKE Provides
- Configurable GPUs and GPU 

pools
- DaemonSet for device drivers

These come 
from your 
k8s service 
provider, 
GKE in my 
case





2022

Various 
CUDA APIs 
and other libs



2022

● Some Python ML Libs ship with binaries in the wheels

○ Dependent on Python package manager (pip, anaconda, etc)

○ Usually does not include libcuda.so

● Might be made available via your device driver Daemonset

○ Set LD_LIBRARY_PATH to access

○ Usually only API binaries, not other toolkit libs

● Might have to DIY via base container or custom install step 

● Might have to combine all of the above



2022

● CUDA version supported by your ML library of choice

● CUDA version in your base docker image

● CUDA version available on your k8s nodes, exposed through 
Daemonset

Matching CUDA 
Versions Matters



2022

Matching CUDA 
Versions Matters*



2022

*Sometimes. Depending. Maybe not.

Matching CUDA 
Versions Matters*



2022

*Sometimes. Depending. Maybe not.

YMMV depending on your library

● PyTorch does a lot of stuff to support 10.x and 11.x

● Tensorflow is very picky about everything

CUDA has complex forward and backward compatibility scenarios

Matching CUDA 
Versions Matters*

https://docs.nvidia.com/deploy/cuda-compatibility/index.html


2022

ltrace and strace rock



2022
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Lol small font



2022



2022

Kinda better font?



2022



2022

MLOps 
is a hyper-technical field that is

all about people



2022

Typical Data 
Scientist systems 
needs

Typical Data 
Scientist systems 
knowledge and 
experience



2022

Typical Data 
Scientist systems 
needs

Typical Data 
Scientist systems 
knowledge and 
experience

Where we (MLOps) come in{



2022

Providing a good enough encapsulation of the system so Data 

Scientists can focus on the application layers.

It’s really hard.

Most MLOps systems are full of leaky abstractions.

Systems Abstraction



Pod

Container

My Amazing Service 

ML Library (PyTorch, etc.)

Kubernetes

Probably like some hypervisors or whatever idk it’s the cloud this layer doesn’t tend to bother me

Nodes (virtual servers)

An actual, real, not virtual GPU

Data 
Scientists 
focus on 
the top 
layers

My Super Awesome Service Library

Physical Servers
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Too Opinionated Too Open Ended

Design Tradeoffs



2022

Too Opinionated Too Open Ended

Design Tradeoffs

Doesn’t do what I 
need it to do

How on earth do I 
make it do what I 
need it to do



2022

To enable high 
tech, 
go low tech



@lowcost_cosplay

GPUs for ML … via repo templating



2022

Repo 
templating is 
not cool. 
And it works.



2022

● Provide a good enough, general enough base for the majority

● Includes

○ Base container to encapsulate the runtime environment

○ Places to integrate custom Python code

○ Basic run scripts for applications

○ Basic CI/CD stuff (ex: Jenkinsfile)

● GPU capability built in via base container(s)

Repo Templating



2022

● Is your base container general enough? Will it match prod?

● Differences between libraries, batch jobs, live services, etc.

● How do children of a template get updates from the parent?

● How do we provide general GPU capability to everything using 
the template(s)?

Challenges



2022

● One template per project type (library, batch job, etc.) with 
shared base containers.

● Allow massive flexibility in ML lib choice within your language

● One base container is probably not good enough. Have 
curated options. (ex: tensorflow breaks everything)

● Design for the 90% cases, don’t generalize the other 10%

Some Hard-Won Wisdom



2022

In Conclusion

● MLOps is a super technical 
role that’s all about people

● strace is your friend

● Repo templating is your 
friend

● Be uncool to do cool stuff

@emilymaycurtin
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Thank you.



The Modern Stack
for ML Infrastructure

Ville Tuulos



The modern stack?

🤔



The stack?

🤔



The Evolution of Web Stacks

LAMP (1998)



The Evolution of Web Stacks
LAMP (1998)

Figure by Shmuel Csaba Otto Traian / Wikipedia



The Evolution of Web Stacks

LAMP (1998) MEAN (2013)



The Evolution of Web Stacks

APIs

Javascript

Markup

LAMP (1998) MEAN (2013) JAM (2015)



The Evolution of Web Stacks

APIs

Javascript

Markup

LAMP (1998) MEAN (2013) JAM (2015)

The stack becomes less technical, more human-centric 😊



The Evolution of Web Stacks

APIs

Javascript

Markup

LAMP (1998) MEAN (2013) JAM (2015)

The stack becomes simpler, more capable over time 💪



The stack for ML infrastructure will become

simpler, more capable 💪
&

more human-centric 😊



CLAM (1998)

The Evolution of ML Stack

MLOps (2018) Future?

🔮

The stack becomes less technical, more human-centric 😊



Let’s design
a modern ML stack 
from the ground up



Here’s a data scientist



A modern data scientist uses a cloud workstation

Cloud 
workstation



Data

Data flows seamlessly from the data warehouse to the workstation

Cloud 
workstation

Data warehouse



Data

Compute
Data warehouse

Cloud 
workstation

Experiments run at scale on a cloud-based compute cluster

Compute resources



Data

Compute

Orchestration

Cloud 
workstation

Complete workflows are developed and tested locally

Data warehouse

Workflow 
orchestrator

Compute resources



Data

Compute

Orchestration

Versioning

Compute resources

Workflow 
orchestrator

Versioning &
metadata

Cloud 
workstation

Code, models, logs, and metrics gets stored and versioned automatically

Data warehouse



Data Scientist can develop, test, and iterate on projects rapidly



Example



Define workflows with a human-friendly syntax

class MyFlow(FlowSpec):

    @step
    def start(self):
        import pandas as pd
        pd.DataFrame(big_one)
        self.next(self.end)

    @step
    def end(self):
        pass

start

end

# python myflow.py run



Experiments run at scale on a cloud-based compute cluster

@step
def start(self):
    self.params = list(range(100))
    self.next(self.train, foreach='params')

@resources(memory=128000)
@step
def train(self):
    self.model = train(...)
    self.next(self.join)

@step
def join(self, inputs):
    ...

start

endendendendendtrain

join

# python myflow.py run –with kubernetes 



Everything gets versioned automatically

class MyFlow(FlowSpec):

    @step
    def start(self):
        self.alpha = 0.5
        self.next(self.train)

    @step
    def train(self):
        self.model = train_model(self.alpha)

start

train



Comes with tools for fast data access

class QueryFlow(FlowSpec):
    @step
    def query(self):
        self.ctas = "CREATE TABLE %s AS %s" % (self.table, self.sql)
        query = wr.athena.start_query_execution(self.ctas)
        output = wr.athena.wait_query(query)
        loc = output['ResultConfiguration']['OutputLocation']
        with metaflow.S3() as s3:
            results = [obj.url for obj in s3.list_recursive([loc])



Data Scientist can develop, test, and iterate on projects rapidly

http://www.youtube.com/watch?v=YSJXn6KLzXg


From prototype to
Production



Decision-support systems Product features

Data enrichmentOn-device ML

Real-world ML comes in many shapes and sizes



Data

Compute

Orchestration

Versioning

Architecture

There is not a single production but many
Provide architectural blueprints to support various deployment patterns



Metaflow Example
Single-click deployment (and back)

# python myflow.py resume --origin-run-id sfn-199874

# python myflow.py step-functions create

Prototype Production



Data

Compute

Orchestration

Versioning

Architecture

Operations

Continuous deployment, continuous experimentation



Metaflow example
Deploy parallel models for A/B testing

Project: LTV

@project(name='LTV')
class TrainingFlow(FlowSpec):

    @step
    def start(self):

@project(name='LTV')
class PredictFlow(FlowSpec):

    @step
    def start(self):

@project(name='LTV')
class TrainingFlow(FlowSpec):

    @step
    def start(self):

@project(name='LTV')
class PredictFlow(FlowSpec):

    @step
    def start(self):

# python myflow.py –branch a deploy

# python myflow.py –branch b deploy



Data

Compute

Orchestration

Versioning

Architecture

Operations

Features

Images

Relational data Streaming events

Semi-structured data

Data scientists can experiment with features flexibly…



Data

Compute

Orchestration

Versioning

Architecture

Operations

Features

Models

Deep neural networks Embeddings

Model EnsemblesDecisions trees

…as well as iterate on various modeling approaches…



Data

Compute

Orchestration

Versioning

Architecture

Operations

Features

Models

because that’s what data scientists are mostly supposed to do!

How much
data scientist

cares

How much
infrastructure

is needed



Data

Compute

Orchestration

Versioning

Architecture

Operations

Features

Models

The full stack as a single, coherent, user-friendly package



CLAM (1998)

The Evolution of ML Stack

MLOps (2018) Future!

User-friendly
Coherent 
Full stack

The stack becomes simpler, more capable over time 💪



Shameless plug: New book!
Effective Data Science Infrastructure



Thank you

Curious to learn more about open-source Metaflow?
Join 1000+ data scientists and engineers at

http://slack.outerbounds.co



Get Ready for ML!

Level Up Your Data Lake

With Delta and         
 

Data Council – Austin

March 2022



 

Speakers

Adi Polak
Vice President of Developer Experience | Treeverse

Adi is an open-source technologist who believes in communities and is passionate about building a better world through open 
collaboration. As Vice President of Developer Experience at Treeverse, Adi helps build lakeFS, git-like interface for 
the data lakehouse. In her work, she brings her vast industry research and engineering experience to bear in educating and 
helping teams design, architect, and build cost-effective data systems and machine learning pipelines that emphasize scalability, 
expertise, and business goals.

Adi is a frequent worldwide presenter and the author of O'Reilly's upcoming book, "Machine Learning With Apache Spark."  Adi 
is also a proud Beacon for Databricks! Previously, she was a senior manager for Azure at Microsoft, where she focused on 
building advanced analytics systems and modern architectures. 

Paul Singman
Developer Advocate | Treeverse

Paul is a developer advocate for the lakeFS project, after several years on the analytics team at Equinox Fitness. His goal is to 
democratize big data analytics through explaining data architectures that are both user-friendly and cost-effective. He's spoken 
at various conferences and meetups, including the Postgres Conference NYC and AWS re:Invent. When not working you can find 
him drinking tea and playing golf



 

Narrative Flow

Level 0: Basic Data Lake



 

Narrative Flow

Level 0: Basic Data Lake

Level 1: Table-Format Enhanced



 

Narrative Flow

Level 0: Basic Data Lake

Level 1: Table-Format Enhanced

Level 2: Full Data Version Control



L0: Basic Data Lake



L0: Basic Data Lake

Object Store



L0: Basic Data Lake

Object Store
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Date-separated .csv files



L0: Basic Data Lake

Object Store

.cs
v

.cs
v
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Date-separated .csv files

ML
BI

Data-Intensive APIs



Why Object Storage?



are awesome in terms of

Why Object Storage?



are awesome in terms of

• Performance
• Cost

• Connectivity
• Developer Experience

Why Object Storage?



are awesome in terms of

• Performance
• Cost

• Connectivity
• Developer Experience

• Achieve 3.5k PUT requests per 
second per prefix

• 5.5k GET requests per 
second per prefix

• Auto-scales to this 
limit automatically and overall 
capacity is limitless

• "something like 11 '9's of 
availability"

Why Object Storage?



are awesome in terms of

• Performance
• Cost

• Connectivity
• Developer Experience

• Storage: $.023 per GB vs $.10 for 
RDS or $.12 for EBS

• Network: 
• $5 per milllion PUT, $.40 per 

million GET requests, 
• $0 transfer data in, $.09 per GB 

for data transfer out
• ~5-8x times cheaper than block 

storage

Why Object Storage?



are awesome in terms of

• Performance
• Cost

• Connectivity
• Developer Experience • Mature client SDKs

• Strong Consistency 
(2020)

• AWS Storage Lens (2020)
• Feature-rich (events, 

permissions, inventories,
 replication...)

Why Object Storage?



are awesome in terms of

• Mature client SDKs
• Strong Consistency 

(2020)
• AWS Storage Lens 

(2020)
• Feature-rich (events, 

permissions, inventories,
 replication...)

Why Object Storage?



are awesome in terms of

• Performance
• Cost

• Connectivity
• Developer Experience

Why Object Storage?



are awesome in terms of

• Performance
• Cost

• Connectivity
• Developer Experience

Why Object Storage?



Object Store

.cs
v
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.cs
v

Date-separated .csv files

ML
BI

Data-Intensive APIs

L0: Basic Data Lake



Now let's make object store-specific improvements

Object Store

.cs
v

.cs
v

.cs
v

Date-separated .csv files

ML
BI

Data-Intensive APIs

L0: Basic Data Lake
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L0.5: Parquet File Format
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L0.5: Parquet File Format



Object Store
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Date-separated .csv files

L0.5: Parquet File Format

Benefits of parquet:
1. Columnar
2. Compressible
3. Complex



Object Store

.p
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Date-separated .csv files

L0.5: Parquet File Format

Challenges with parquet:
1. Operates at the object 

level



L1: Modern Table Formats

Tables comprised of 
optimized datafiles + 
transaction log(s)

Object Store



L1: Modern Table Formats

Tables comprised of 
optimized datafiles + 
transaction log(s)

Object Store

New Operations at the table level
• Define schema
• Traverse versions
• Upsert atomically

Implementations:
• Apache Hudi
• Apache Iceberg
• Delta Lake



L2: Data Version Control



L2: Data Version Control

Branches of 
tables within a 
repository

Data Repo

Object Store



L2: Data Version Control

Branches of 
tables within a 
repository

Data Repo

Object Store

New Operations at the branch level
• Traverse among commits
• Merge two branches
• Create a new branch
• Take a commit

Implementations:
• lakeFS
• Proj Nessie



L2: Data Version Control Applications

New Operations at the branch level

Traverse among commits

Merge two branches

Create a new branch

Take a commit



L2: Data Version Control Applications

New Operations at the branch level

Traverse among commits

Merge two branches

Create a new branch

Take a commit

lakeFS CLI Example

$ lakectl revert main^1

$ lakectl merge my-branch-main

$ lakectl branch create my-branch

$ lakectl commit –m "new commit" 
my-branch



L2: Data Version Control Applications

New Operations at the branch level

Traverse among commits

Merge two branches

Create a new branch

Take a commit

lakeFS CLI Example

$ lakectl revert main^1

$ lakectl merge my-branch-main

$ lakectl branch create my-branch

$ lakectl commit –m "new commit" 
my-branch

Useful for...

Instant recovery from issues

Atomic updates (cross-coll)

Dev Environment creation

Reproducing ML experiments



Leveling Up Data Lake Takeaways

Data Repo

Stop operating at 
the file level

Start operating at the table 
and repository level



THANK YOU!

.io



Type-safe Machine Learning 
Orchestration with Flyte and 

Pandera
           Data Council Austin 2022
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Type-safety is a critical feature of 
orchestration tools that deal with data 
and machine learning



Types define the set of values that data can take, but they 
also define the domain of operations that we can perform on 
that data.



✅ 1 + 1 → 2
❌ 1 + “a” → undefined

✅ mean([1, 2, 3]) → 2
❌ mean([“a”, “b”, “a”, “c”]) → undefined

integers ∈ { 1, 2, -1, 5, 1000, … }
strings ∈ { “a”, “xyz”, “hello”, “foobar”, …}



Or more complex:

list[int]
dict[str, float]
dict[str, list[float]]

Types can be simple:

int, float, str



Let’s talk about housing 🏡

Source: https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset

https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset


Let’s talk about housing 🏡
pandas.DataFrame({
    'Latitude': [37.88, …],
    'Longitude': [-122.23, …],
    'AveBedrms': [1.0238, …],
    'AveOccup': [2.5555, …],
    'AveRooms': [6.9841, …],
    'HouseAge': [41.0, …],
    'MedInc': [8.3252, …],
    'Population': [322.0, …],
    'MedHouseVal': [4.526, …],
})

Source: https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html

float

positive float

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html


Enforcing and maintaining data quality is challenging



Production machine learning has a complexity problem



source: https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf

How do I know if these components are compatible?

https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf


Input → Program → Output

(Features, Labels) Learning Algorithm Model



Input → Program → Model program

Features input

Predictions output



Strongly-typed interfaces unlock static analysis capabilities 
that push many potential errors from the runtime context 
into the compile-time context.



Reliability

Readability: as a human being 👫 or machine 🤖, I can tell what a 
component needs as input and what it produces as output.

Reproducibility: when a component fails 💥 at its input/output boundaries, I 
can be more confident that I can reproduce the error 🐞.



Efficiency

Caching: if I want to determine whether I should hit the cache 🎒 or 
re-compute 🔁 the result of a component, I can first check for changes in a 
function’s type signature before checking actual input values.

Parallelization: before I try to concurrently apply functions to a collection of 
inputs 🛍🛍🛍, I can be confident that the elements in the collection are of 
the correct type.



Auditability

Debugging: When a pipeline execution fails 💥, I can pinpoint the cause of 
the error quickly and understand how to address it.

Data Lineage: I can understand how some downstream artifact 📦 came to 
be by looking at the upstream processes 🏭 that produced it.



Flyte is a data- and machine-learning-aware orchestration 
tool with type-safety built into multiple layers of the 
software stack.



Flyte
Easily Compose 
Workflows 🔀 
using Tasks as 
Building Blocks 
🧱

pip install flytekit



California House Price Regression

pandas.DataFrame({
    'Latitude': [37.88, …],
    'Longitude': [-122.23, …],
    'AveBedrms': [1.0238, …],
    'AveOccup': [2.5555, …],
    'AveRooms': [6.9841, …],
    'HouseAge': [41.0, …],
    'MedInc': [8.3252, …],
    'Population': [322.0, …],
    'MedHouseVal': [4.526, …],
})

features

target



Pipeline 
Overview



What Types are 
We Going to 
Use?



Tasks are 📦 
Containerized 
Units of Work 
🛠 with a 
Transparent 
Interface



Workflows are 
Dynamic DAGs 
that Compose 
Tasks Together 
to do Something 
Useful 🏗



Auto-generate 
Strongly Typed 
Launch Forms 📝



Docker 🐳 
Guarantees 
Reproducibility

…as long as tasks are 
idempotent 



Flyte Statically 
Analyzes 🔍 the 
DAG to catch 
Type Errors



Catch Value 
Errors 🐞 When 
Testing Locally 



Know Where 
your Pipeline 
Blew Up 🧨



Cache the 
Outputs of a 
Task 🎒



Errors at the 
End of a 
Long-running 
Training 
Pipeline got you 
Down 😓?



Don’t 
Re-compute,
Hit the Cache! 
🤜🎒



Workflows 
Execute Tasks 
with Built-in 
Parallelism 🔀



Static Type 
Checking 🔍 
Applies to 
Parallelized 
Invocations of a 
Task



Trace Model 
Artifacts to the 
Data and 
Downstream 
Processes that 
Produced it



But wait, what about data types for machine learning?



Pandera is a statistical typing and data testing library for 
dataframes, providing tools for defining complex data types 
and unit testing your pipelines with them.



Statistical Typing: Specifying the properties of collections 
of data points

Single data point
● Primitive data types
● Value range
● Allowable values
● Regex string match
● Nullability

Latitu
de

Longitude

AveBedrms

AveOccup



Collection of data points

Statistical Typing: Specifying the properties of collections 
of data points

Latitu
de

Longitude

AveBedrms

AveOccup

● Apply atomic checks at scale
● Uniqueness
● Monotonicity
● Mean, median, standard deviation
● Statistical distributions
● Fractional checks, e.g. “90% of data 

points are not null”

…



Statistical properties, by definition, can only be verified at 
runtime, but we can also define functions that use statistical 
type annotations that verify valid operations on those types.



Data Testing: Validating not only real data…

transform function

transformed data

apply 
validations

Real world 🌏 raw data



… but also the functions that produce them

transform function

transformed data

apply 
validations

transform function

mock transformed 
data

...

Real world 🌏

Unit tests 🧪 test case 1

test case 2

test case N

raw data

Generate test 
cases



Pandera
Define 
Statistical 
Types for your 
DataFrame-like 
Objects 📊🖼

pip install pandera



Pandera and 
Flyte Play Well 
Together 🤝

pip install flytekitplugins-pandera



Defining a 
Statistical Type 
for California 
Housing 
Dataset 🏡

log(MedHouseVal)



Custom Checks 
are Just…

🎉 Functions 🎉



Know When 
Your Data Has 
Missing 
Columns 🏛



Know When 
Your Data Has 
the Wrong 
Type ⌨



Know When 
Your Data Has 
the Wrong 
Values 💵



Know When 
Your Data Has 
the Wrong 
Statistical 
Distribution 📊



Synthesize Valid 
Data Under 
Your Schema’s 
Constraints 🤯



Test Your Data…



… the Functions 
That Produce 
Them…



… and the 
Artifacts They 
Help Create.



Takeaway 1
Flyte is an orchestration and distributed execution platform where 
type-safety is deeply integrated with other features, which together provide 
strong reliability, efficiency, and auditability guarantees.



Takeaway 2
With Pandera, you can ensure the quality of data flowing through your 
machine learning pipelines and the correctness of those pipelines 
themselves by expressing statistical types directly in your codebase.



Takeaway 3
With Flyte and Pandera combined, you can build, deploy, and scale these 
ML pipelines while enjoying the guarantee that, when things go wrong, 
you’ll know where exactly the error occurred to help you fix it.



Flyte Roadmap Pandera Roadmap

Flyte Decks: A Customizable Reporting  API for 
your Pipeline Artifacts

ML-awareness: Intra-task model checkpointing, 
data labeling.

Serving Integrations: support for model serving, 
low latency batch workflows, model monitoring.

Extensibility: support for xarray, jsonschema, 
pyarrow, and more!

User Experience: more built-in checks, statistical 
hypothesis checks

Interoperability: tighter integrations with the 
python ecosystem, e.g. fastapi, pydantic, pytest



Contact
email: niels@union.ai
twitter: @cosmicbboy
linkedin: linkedin.com/in/nbantilan

Flyte
website: www.flyte.org
docs: docs.flyte.org
repo: github.com/flyteorg/flyte

Pandera
docs: pandera.readthedocs.io
repo: github.com/pandera-dev/pandera

Where do I learn more?

https://twitter.com/cosmicBboy
http://www.linkedin.com/in/nbantilan/
http://www.flyte.org
https://docs.flyte.org/
https://github.com/flyteorg/flyte
https://pandera.readthedocs.io/en/stable/
https://github.com/pandera-dev/pandera


On the importance of using a data quality 
framework to monitor your data.

Don’t Let Your Models Decay!



© Soda Data NV. Proprietary and Confidential.

Bastien joined Soda last year and before that he was at 
TripActions and Travelbird, once he decided that the 
Postdoctoral Fellow wasn't half the fun ;-). He's a die hard 
dbt fan, DJ, and French person living in Amsterdam.

https://www.bastienboutonnet.com 

Bastien Boutonnet, 
Lead Data Scientist
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https://www.bastienboutonnet.com


Zillow: A Cautionary Tale



© Soda Data NV. Proprietary and Confidential.

~25%
Q3 losses of $304m, 
leading into a ~25% 
workforce reduction

290

$500m
Zillow overestimated 
the value of the houses it 
purchased in Q3 and Q4 
of 2021 by over $500m

Coincided with a strong 
change in housing 
market conditions 
which causes housing 
prices to fall

Strong evidence that their 
models were trained on 
the, then “old” situation 
which indicated growing 
prices, which caused their 
unattended models to 
work under a different 
“assumption” or concept



© Soda Data NV. Proprietary and Confidential.

- Their models were rigorously tested during 
development 

- Their models were released to production 
gradually and KPIs were closely monitored.

- When those were deemed satisfactory, humans 
derived decisions to aggressively expand their 
purchasing programme.

Did they do 
everything 
badly? 

291

No! Any good Data Science 
team would do that. It’s 
their job and part of 
deploying to prod.



© Soda Data NV. Proprietary and Confidential.

- Some phenomena in nature are likely to change, 
and can do so drastically. When it comes to 
pricing, that’s definitely true.

- This is commonly referred to as “data drift” and it 
can be detected by:

- Tracking and alerting on drift.

- Tracking and altering on accuracy.

Could it 
have been 
avoided? 

292

Yes!
Any good Data Science 
team is aware of that, but 
data quality management 
is not their job or core 
product.



A Detour Into Data Drift



© Soda Data NV. Proprietary and Confidential.

When the distribution of one or more of 
your input features has changed between, 
for example training time and deployment.

So what is data drift?

294

Mean: 500
Mean: 500 Mean: 650



How do you 
detect it?

01
“Freeze” a reference distribution

02
Compare distribution at time t+n 
and reference distribution

Simple right?



On the Importance of A Data Quality 
Framework, Whichever It Is



© Soda Data NV. Proprietary and Confidential.

- Simply put: you have to write a bunch more code

- Choose your methods from a sometimes large pool

- Orchestrating the checks

- Make it reusable

- Maintain and extend

- The list goes on…

Why data quality monitoring 
is “hard”.

297



© Soda Data NV. Proprietary and Confidential.

- Developing ML automation takes time and 
resources

- Data quality monitoring, isn’t an internal data 
team’s core product.

- Implementing data quality monitoring can easily 
increase the scope of any data product’s 
feature set with no direct value add.

- It often ends up “on the backlog”

Data quality should not add 
time to release.

298



Wouldn’t it Be Nice If…



© Soda Data NV. Proprietary and Confidential.

Wouldn’t it be nice if you 
could to the following:

300



https://docs.google.com/file/d/1d5TNMMq5eRb5_qOY8Kj71OUMzbgAMo5K/preview


What’s Next?



© Soda Data NV. Proprietary and Confidential.

- Connect to Soda Cloud (to avoid inconvenience of 
experimental file-based experimental feature)

- Rich visualisation in Cloud/and OSS

- More user control over algos + more algos to choose from

- Entirely data based solution (store reference sample instead 
of object in cloud/s3)

- Bespoke drift wrappers (monitor for both concept and label 
drift over one or several datasets)

Why stop there?

303



© Soda Data NV. Proprietary and Confidential.

- docs.soda.io

- `pip install soda-core-[datasource_type] soda-core-scientific`

- https://github.com/sodadata/soda-core

Give it a try!

304

Hit me up, 
I’ll be around!
- Bastien Boutonnet 

(find me on the socials)
- bastien@soda.io
- www.bastienboutonnet.com

mailto:bastien@soda.io


- We’re at Booth 23

- Watch a Soda product demo

- Join our Happy Hour

- Get good swag

Say Hello While in Austin



Thank You!


