Building high performance recommender
systems with feature stores

Data Council 2022

Danny Chiao

Software Engineer

Engineering Lead
Tecton / Feast (former lead at Google)

Agenda

e Background
o Recommender systems intro
o What is a feature store?
e Recommender systems challenges
e Optimizing performance
e Correctness in operational recommender systems

e [east x RecSys

Background

Low latency & freshness Correctness Feast x RecSys

predictions

= |n practice, consists usually of two steps: o
candidate generation + reranking Shop’fy

= Long tail of operational challenges

Background RecSys challenges

Recommender systems

= Use cases: e-commerce, media streaming,
social, ride-hailing, biomedical, etc

= Who: data scientists, data engineers,

platform engineers

* Trend: Batch predictions = online

RecSys challenges

Background

What is a feature store?

e Manages ingestion and storage of
streaming and batch data

e Allows for standardized definitions of
features and transformations

e Generates point-in-time correct features

e Ensures model performance by tracking,

validating, and monitoring features

Low latency & freshness Correctness

Feast x RecSys

Engineer
—
= @ FEAST
Build server that
Sl fetches features
Sources :
Validate %
Kafka, Kinesis Store Transform Serve and 5
Monitor > K . > l
« .
.
. Prediction
i i Model redic
Batch Register and Discover
Sources
BigQuery, Redshift,
88, GCS, Parquet
" ng‘s'gﬂvi'ﬁd Define features and
features transformations

Generate
training set

Data scientist

Recommender system challenges

Background RecSys challenges Low latency & freshness Correctness

A typical journey of building a recommender system

Core business use case Batch recommendations Chaining more ML models
e.g. e-commerce website with e.g. explorations of initial e.g. handling ML fairness,
user purchase history models (collaborative filtering), re-ranking for diversity, adding
regularly re-train + generate explainability, robust handling
recommendations for all users of cold start problem
Heuristic powered Online recommendations

recommendations
e.g. add candidate generation
e.g. most popular items in user vs ranking split, increase model
location complexity, more sources of
training / serving skew

Background RecSys challenges Low latency & freshness Correctness

Challenges with recommender systems

Type of challenge Examples

Operational e Low latency batch retrieval of features
e Feature freshness

Feature engineering e Access to request data at training time
e Supporting time-travel in model training

Data quality e Mitigating training / serving skew or data drift
e Bad data pushes from stream sources

Organizational e Data scientist vs engineers
e Multiple business objectives to optimize
e A/B tests to measure business metrics lift

Miscellaneous ° Cold start
e Privacy / GDPR

Background RecSys challenges Low latency & freshness Correctness

Operational challenges

Among other requirements, an online recommender system often:
e Needs fresh features (write heavy)
o Why? e.g. user session activity
o Different events update different features
e Needs low latency access to features for many entities (read heavy)
o Why? e.qg. for a given user, need to rank 100s to 1000s of items
m Typically, the faster the recommendation, the more likely users accept them.

m The less time spent on data, the more time the model can spend inferring.

Optimizing for the above can introduce significant data quality issues too.

Low-latency access to fresh features

Background RecSys challenges Low latency & freshness Correctness Feast x RecSys

Achieving lower latency

Generally, there is a need to have features available at low latency in serving via an online store. There are

many challenges in building such a store though:

1. Balancing requirements (read vs write, cost, etc)
2. Complex + slow type conversions across different sources

3. Optimizing for batch retrieval

Background RecSys challenges Low latency & freshness Correctness

Challenges of building a low latency online store

Consideration Example strategies

1. Balancing requirements

a. update features independently (e.g. =» Store features from an event together in both

from streams) online store & offline store

b. reading features for a specific model =» Store features for an entity for a specific model

quickly together (pruning unused columns)

c. enable feature re-use across models

d. cost management

RecSys challenges

Background

Low latency & freshness Correctness

User Metadata Features

user_id
country
age
Ltimestamp

User Session Features

User Features

user_id

country

age
last_viewed_item_category
ts_country

ts_age

ts_last_5_viewed_item_category

user_id
last_viewed_item_category
last_transaction_amt
}imestamp

User Historical Features

user_id
28d_avg_transaction_amt
28d_top_item_category
Ltimestamp

Embedding features

user_id
user_embedding

timestamp

Feast x RecSys

Background RecSys challenges Low latency & freshness Correctness Feast x RecSys

Challenges of building a low latency online store

Consideration Transaction Features

1. Balancing requirements txn_id
amt_usd
a. update features independently (e.g. from timestamp
location
streams)

b. reading features for a specific model

quickly
c. enable feature re-use across models = Feature versioning

d. cost management =*» TTL entities (warning: multiple models)

Background

RecSys challenges

Low latency & freshness

Correctness

Challenges of building a low latency online store

Consideration
2. Managing type conversions for online store
a. Data source types and Pandas / Python

types (in data scientist notebook)

Pandas dtype |Python type | NumPy type

object str or mixed | string_, unicode_, mixed types

APACHE int64 int int_, int8, int16, int32, int64, uint8, uint16,
A R ROW uint32, uint64
float64 float float_, float16, float32, float64

bool bool bool_
datetime64 NA datetime64[ns]
timedelta[ns] | NA NA

category NA NA

Feast x RecSys

0 copy @ DELETE

ElGSHEET.. ~ X E TABLE123 v X
B table123 ¢ +2 SHARE
SCHEMA DETAILS PREVIEW

Row string_field 0 string_field_1

1

o s W N

o e N o

n
12
13
14
15

INT64
NUMERIC
BIGNUMERIC
FLOAT65
BOOLEAN
STRING
BYTES

DATE

DATE

TIME
DATETIME
TIMESTAMP
GEOGRAPHY
ARRAY
STRUCT

12345
520000000000
5.2e+37

5.4321

false

555

coupler_io
2021-05-01
2021-05-01-3.00
5:59:12.0422
2021-05-01 21:32:45
2021-05-27 8:05:01-3:00

51.500989020415034, -0.12471081312336843

name, 123, 2021-01-01

555,name’

Background RecSys challenges Low latency & freshness Correctness

Challenges of building a low latency online store

Consideration Example strategies
3. Optimizing for batch retrieval
a. Multiple types of entities in same =» De-duplication of requested entities
request (e.g. user ids + item ids)

b. Large batch sizes (i.e. number of entities = Co-locating entities

to score in the sample request) =» Caching
c. Online store specific optimizations. =*» E.g. Redis pipelines & mget vs hmget vs
hgetall

=% E.g. Different ways of bulk loading data into

online store

Background RecSys challenges Low latency & freshness Correctness Feast x RecSys

Co-locating entities

Example: fetch features for all stores in a region Also: Redis hmget vs hgetall

Background RecSys challenges Low latency & freshness Correctness Feast x RecSys

Caching

Caching (e.g. popular entities hit Redis)

Online store

. DynamoDB e redis

He

“faipazon

Request
(user)

Correctness

Background RecSys challenges Low latency & freshness Correctness

Handling bad data

Many sources of bad data: Feature stores may:

e E.g. upstream systems change, resulting in e Implement data quality monitoring
schema or feature distribution shifts (e.g. o e.g.see Feast DQM and versioned
engineers change normalization logic) datasets via SavedDatasets

e [E.g. faulty feature transformation logic or o e.g. Great Expectations integration
messy data that has not been properly o can easily go wrong with false alerts
cleaned e Distinguish between missing data & empty

e E.g. streams can publish bad data (or fail to feature values in response.
publish data), leading to poor quality or e Fallback to old / default values or impute
missing data. values for missing / faulty data.

Correctness

Why using Great Expectations isn’t enough

DELTA = 0.1 # controlling allowed window in fraction of the value on

-
2

o
4
H
Sudde £ @ge_profiler
D.:'ifl:m i llllllll'l Time def stats_profiler(ds: PandasDataset) -> ExpectationSuite:
urs

A new cancept occurs within 2 short time # simple checks on data consistency
3 s
2 g ' ll ll' II"."'I..'I ds.expect_column_values_to_be_between (
Gradual £ et n i "avg_speed",
Drift: € Time :
min_value=0,

A new concept gradually replaces an old one over 2 penod of time
max_value=60,

25 111 & = =y o e

i3 .":JJ]JjjbjE]E]D mostly=0.99 # allow some outliers
Incremental L BEREREAREE HII
Drift: oLl Ll L1l s T)

An old concept incrementally changes to 2 new concept over 2 period of time

3 .llll"ll ds.expect_column_values_to_be_between(
-~
. =k "total_miles_travelled",
Reoceurring 21 JRHE000000 jatannn
Concepts: : Time min_value=0,
An old concept may reoccur afier some time max_value=500,

mostly=0.99 # allow some outliers

Source: https://arxiv.org/pdf/2004.05785.pdf

Source: Feast 0.19 data quality monitoring
tutorial (first milestone in RFC)

https://arxiv.org/pdf/2004.05785.pdf
https://docs.feast.dev/tutorials/validating-historical-features
https://docs.feast.dev/tutorials/validating-historical-features

Background RecSys challenges

Handling bad data

Push Service

buffer

.| Online
Store

entities features

Low latency & freshness

Correctness

Feature

buffer

Offline Store (DWH)

Feast x RecSys

Entities (request)

Features (response)

Background RecSys challenges Low latency & freshness Correctness

Why a transformation library isn’t enough

e Data scientist vs engineers
o Data scientists do their SQL transformations in DWH and Python transformations in notebooks
o Engineers work in a different environment (e.g. Java / Go servers)

What about Spark / Flink / Beam?

o Some transformations need access to request data or need to execute at inference time
e Optimizing for fast model training iterations != optimizing for fast serving

o E.g. Pandas is much slower with small number of rows (e.g. at serving time)
e Assumption that data is neatly organized by timestamp + available in the same fashion

o E.g.request data that’s available in memory isn’t regularly snapshotted at inference time

Background RecSys challenges Low latency & freshness Correctness

Data pipeline delays

Consider a naive approach:
e At training time, generate features from offline store (data warehouse) using event timestamps

e At serving time, use an online store to serve features that loads data from batch periodically

BUT: what if there’s a delay in data pipelines to populate offline / online stores?
e A watermark + materialization (e.g. processing time) timestamps matters
o e.g.incremental processing of offline data
m e.g.rejectitems later than X (materialize from last end time - X until now)
o e.g. monitor delay (e.g. most recent event_timestamp in data source or data source
created_timestamp vs event timestamp.)

e Stream based ingestion into online store

Feast x RecSys

Background RecSys challenges Low latency & freshness Correctness Feast x RecSys

Feast

Engineer

e Feastis an open-source feature store that

connects to GCP, AWS, Azure, Snowflake, = @ FEAST l ——
Stream fetches features
Sources
. . Validate %
Hive, Redis, Spark, etc Kata, Kineas ‘ Siore [} Trmosteon H Boe | i SO o
[] ACtive Community With 3k+ mem berS On E . ‘ Register and Discover ‘ .Model Prediction
Sources
Slack and bi-weekly community calls BigQuery Bl S— [Deﬂnefeamres N
f;‘t:ﬁyeesr transformations
e Goal: to simplify & reduce overhead of —
training set

managing features / data in ML systems

Data scientist

Teams running or contributing to Feast

ecton ®golek [shopify

YW Robinhood# ~Porch FARFETCH zZulify 39333 e sumatra fedibs

adyen Postmates

Background RecSys challenges

Feast

Building a framework for managing:

o Multiple data sources

o Multiple types of entities

o Sources of training / serving skew
Enforcing best practices on storage within
offline / online stores & batch / stream sources
Encouraging best practices for reducing error
across teams (e.g. feature reuse, feast plan)
Reducing effort to author features (e.g.
abstracting away point-in-time joins)

Pluggable (e.g. custom offline / online stores)

Low latency & freshness

@ FEAST

Credit Score Project v

Home

© Data Sources (3)
© Entities (3)

€ Feature Views (4)
Q Feature Services (5)

= Datasets (1)

Correctness

Project: credit_scoring_aws

Welcome to your new Feast project. In this Ul, you can see Data Sources,
Entities, Feature Views and Feature Services registered in Feast.

It look like this project already have some objects registered. If you are new
to this project, we suggest starting by exploring the Feature Services, as
they represent the collection of Feature Views serving a particular model.

Note: We encourage you to replace this welcome message with more

suitable content for your team. You can do so by specifying a
project_description in your feature_store.yaml file.

Registered in this Feast project are ...

5 4 3 3

Feature Services> Feature Views-> Entities> Data Sources->

Feast x RecSys

Explore this Project

Feature Views by "experiments"

Feature Views by "date_added"

RecSys challenges

Background Low latency & freshness Correctness Feast x RecSys

Deploying feature stores

e Airflow for scheduled materialization of

AWS Lambda Kubernetes

online features
St write_to_online_store T
i . t t 1 t @ F E A S T
o Stream processors push data to online — [—
Kafka, Kinesis Online Feature get_online_features Model
store directly _Store | Server 7| serving
Apache feast materialize A
Airflow
e Deployment of a feature server S— o
,| Offline o] Fenstspic get_historical_features Model
. N Store Training
o Serverless (e.g. Using Feast’s Lambda T r— —

Transformed
data

integration)

o Kubernetes (e.g. Feast Serving)

Snowflake, BigQuery,
Redshift, Synapse, S3, GCS

N dbt

e Versioning models with feature service

https://feast.dev/blog/feast-0-14-adds-aws-lambda-feature-servers/
https://feast.dev/blog/feast-0-14-adds-aws-lambda-feature-servers/
https://github.com/feast-dev/feast-java/tree/master/serving

Background RecSys challenges

Low latency & freshness Correctness Feast x RecSys

For batch recommender systems

Example: predict suggested items for users to purchase with matrix factorization

= VO: use only user ids and item ids with purchase patterns

User id + item id -> user embeddings + item ids -> dot product for purchase

= Store embeddings in Feast + do lookups

= V1. Mitigate cold start problems

= Use content-based model or other heuristic (e.g. bandit algorithms)

Use Feast to fetch other user features & item features as part of model to generate embeddings
= Key challenges solved by Feast
= Collaboration + sharing of features / pipelines.
= Future: Feast batch transformations
= Lineage: knowing which models depend on which features

Future: Data drift (when to retrain model, or when other upstream signals are changing)

Background RecSys challenges Low latency & freshness Correctness Feast x RecSys

Retrieval Model !
Training Data '

Ranking Model

Model Training & Vector Index Training Data

Retrieval model

' —

— ' —
Simple user |- ! P(transaction) - All user
features : Ranking model . features
e ' .

dot
- product Fetch all item . Al
imple item _..l?’_p F=="==- LR s ke dats 3 | embeddings : "" el

features 1User embeddings 1 ltem embedding from item features
' '

. —_— e ' tower ANN Index : ——r
For online —| B S LT =m
— . .
N ScaNN)
Transaction o o ! De| : Transaction
1 ploy
g [© || Meerkesanes it 7 aning || dam
recommender e ’ mosel s
' . ~—~
t : Deploy user Y
I’ l’ l . tower model 3. Fetch candidates . .
Sys e S : v with user embedding ’ Ranl:enrg\)/é\:odel :
User tower | :
: model server [5 Foteh user embedding 4. Fetch features ;
| from user tower for users + :
, candidate items .
. \ |
< »(API Server
' ’ 1. Fetch simple user \ 5. Rank each candidate .
: features A user-item pair .
. 6. Return .
! recommendations :
Serving Stack Retuest

. (user) .

Background RecSys challenges Low latency & freshness Correctness Feast x RecSys

For online recommender systems

Example: predict videos to watch, predict next piece of clothing to buy given previous purchases, generate search results

given a query

= Need access to data only available at request time (e.g. current time vs time of video, session data, etc)
= Feast: OnDemandFeatureView
= Freshness of features can matter (e.g. data in session)

= Feast: regular feature materialization & push based stream ingestion. Also: DQM for drift detection

Low latency is important. Often, this means we have a candidate generation model + a ranking model.
= Feast: simplifies fetching and monitoring features (+ versioning models with features)

= Environment difference between training environment (notebook) and serving environment (APl server)

= Feast: OnDemandFeatureView enables python logic from training to be re-used at serving

= Feast: manages differences in type systems across data sources vs online stores vs feature schemas

Sample features

e Binning
e Feature crossing
o (instead of e.g. using BQML’s
crossing functionality which can’t
be done at serving time)

e Time related features (e.g. time since last
event, how recently a video was
published)

e Batch features

o User/item metadata
o User/item history:

last_X_purchased_items

Feast x RecSys

session_fv = RequestFeatureView(
name="request_data",
request_data_source=RequestDataSource (
name="request_data",
schema=%
"video_category_one_hot": ValueType.INT64_LIST,
"last_purchase_time": ValueType.UNIX_TIMESTAMP,
"current_time": ValueType.UNIX_TIMESTAMP,

P
)
@on_demand_feature_view(
inputs={"request_data": session_fv, "user_features": user_fv},
features=[Feature(name="time_since_purchased", dtype=ValueType.INT64)]
)
def time_since_last_purchased(inputs: pd.DataFrame) -> ValueType.STRING:
from datetime import datetime
from keras.utils.np_utils import to_categorical
df = pd.DataFrame()
df["time_since_purchase"] = inputs['current_time"] - inputs["last_purchase_time"]
df["user_age_decade"] = inputs["user_age"].apply(lambda x : np.floor(x / 10))

df["user_age_x_item"] = df.apply(lambda x:

np.outer(to_categorical (x['user_age_decade'], num_classes=10, dtype='int32'),

x["video_cat_one_hot"]), axis=1)

return df

Takeaways

Recommender systems can quickly balloon in

complexity
o E.g.low latency (read vs write), batch reads, correctness /

bad data, type conversions
Feature stores can enforce best practices / abstract
some of this complexity away for both batch + online
recommender systems
o E.g. difference between offline / online store
o E.g.lineage via feature repository + Web Ul

Consistent + performant on demand transformations

are key to online recommender systems

Questions?

Useful resources

https://feast.dev/

https://qithub.com/feast-dev/feast

https://slack.feast.dev/

Engineer
—_—
==
= @ FEAST
> Build server that
) fetches features
Sources :
Validate 2
Kafka, Kinesis Store Transform Serve and -
Monitor p K, .) l
L]
—_— .) Predicti
Register and Discover — Model rediction
Batch N
Sources
BigQuery, Redshift,
S8, GCS, Parquet]
rq SZ?S'EQVZ’:" Define features and
features transformations
Generate
training set
A J

Data scientist

https://feast.dev/
https://github.com/feast-dev/feast
https://slack.feast.dev/

Scaling Al/ML Workloads with Ray Ecosystem

Jules S. Damiji, @2twitme

Lead Developer Advocate, Ray Team @ Anyscale
Data Council, Austin, TX March 23, 2022

Sh anyscale

Overview

e Why & What Ray & Ray Ecosystem
e Ray Architecture & Components

e Ray Core APIs

e Ray Native ML Libraries

o Ray Tune, XGBoost-Ray

Demo

o Scaling ML workloads

e Q&A

Why Ray?

- Machine learning is pervasive in every
domain

DOD anyscale

Why Ray?

- Distributed machine learning is becoming
a necessity

DOD anyscale

Specialized hardware is also not enough

10,000 /,

1,000
100
©
c
= 10 e TI7 Dota 1v1
‘© e Xception
=
- 1
§ D S h2 TPU
e DeepSpeech:
o 1 eResNets / ’GPU*
g 3
= 01 e GoogleNet —
@© .
D ®AlexNet talizing and Understanding Conv Nets
[a¥ —
001 ——— == === CPU
.0001
e DQN
.00001
o%;. RAY 2013 2014 2015 2016 2017 2018 2019 % anyscale

https://openai.com/blog/ai-and-compute/

https://openai.com/blog/ai-and-compute/

No way out but to distribute!

https://openai.com/blog/ai-and-compute/

Why Ray?

- Distributed systems and programming are
notoriously hard

DOD anyscale

Existing solutions have may tradeoffs

Serverless

A @

Stitch together
existing frameworks

r 4! §8 kafka Spar

e Fo
Limitations éFlink spring O

Clean slate

01. Cloud specific 02. Stateless only

.‘w

Ease of development

03. NoGPUs/TPUs 04. Runtime limit Tensor g -GO
docker
Hard to D @
-

01. Develop 02. Deploy

03. Manage

‘GRPG:

Expensive to develop

0l1. Time 02. People

Generality

DDD anyscale

Why Ray?

- Machine learning is pervasive in every domain
- Distributed machine learning is becoming a necessity
- Distributed systems are notoriously hard
Ray’s vision:
Make distributed computing accessible to every developer

o~§) RAY DOD anyscale

The Ray Layered Cake and Ecosystem

ng Datasets i 7, Library +
ANALYTICS mic B0
raj‘/%gd workflows + ine | 280 'an XGBoost =:MODIN dass@fwsion pAsK app
g ecosystem

1 i)
rlllb SRogServe @ MARS XCQ., RS,

Universal
o§a framework
for

distributed

Universal framework for .
Distributed computing computing

Run
anywhere

°§° RAY Sh anyscale

Rich ecosystem for scaling ML workloads

Data . . . Hyper. Reinforcement
Processing Training Serving Tuning Learning
Built-in
:‘batterles Ray Core + Ray Train g Ray Serve k 'b
included” Datasets tune I
libraries

2= MODIN

O PyTorchy (geaun
— I &, .. oo @

DASK SELDOV‘ PPPPPPPP

Only use the libraries you need!

Companies scalmg ML with Ra

I‘bl mfernatlonal {/ o b 18 h 00 d

><®

“\ shopify

Companies scaling ML with Ray

Data

. Hyper. Reinforcement
Processing SRl

Training , ;
Tuning Learning

\\\ _— i ~ —
amazon
L T~ L— — P //X\\\
_— —~

https://eng.uber.com/horovod-ray/

https://www.anyscale.com/blog/wildlife-studios-serves-in-game-offers-3x-faster-at-1-10th-the-cost-with-ray

https://www.ikigailabs.com/blog/how-ikigai-labs-serves-interactive-ai-workflows-at-scale-using-ray-serve

DDD anyscale

https://eng.uber.com/horovod-ray/
https://www.anyscale.com/blog/wildlife-studios-serves-in-game-offers-3x-faster-at-1-10th-the-cost-with-ray
https://www.ikigailabs.com/blog/how-ikigai-labs-serves-interactive-ai-workflows-at-scale-using-ray-serve

Ray’s approach for scaling ML

(Traditional, Ray-ified
non-parallelized . Python
vanilla Python) (with as few code changes as possible)
Runs Same Python code Runs
on runs on laptop as on
v infinite cloud!

SRS

CPU ~ CPU CPU ~ CPU

P00

GPUA GPUB GPUB GPUB

X

Ray Architecture & Components

What does Ray Cluster Looks Like ...

Head Node Worker Nodes Worker Nodes
Driver Worker Worker eee | \Worker Worker ece Worker
o Scheduler A N o Scheduler N o Schedum
3 | 3 N Y] | &)
(a'd o o
Object Store 1 N Object Store Object Stor
- 00 j ——— e Sl
\ /
\ /
Global Control Store
(ces) Unique to
Ray

Executes
actor/task

Object
Transfers

Global
Metadata

() R ()
e One per node e Centralized
Global
e Resource manager C Component
ontrOI h .
e Manages worker Store e Tracks cluster-wide
processes properties

Ray Distributed Design Patterns & APIs

5 : :
Ray Basic Design Patterns

. Roy Parallel Tasks

ctions as stateless units of execution
« Functions distributed across a clusters as tasks

. Roy Obijects or Futures

tributed (immutable) Object stored in cluster
« Retrievable when available
« Enable asynchronous execution of

. R.o;/ Actors

teful service on a cluster
« Message passing and maintains state

. Patterns for Parallel Programming
2. Ray Design Patterns
3. Ray Distributed Library Integration Patterns

°§D RAY anyscale

https://www.goodreads.com/book/show/85053.Patterns_for_Parallel_Programming
https://docs.google.com/document/d/167rnnDFIVRhHhK4mznEIemOtj63IOhtIPvSYaPgI4Fg/edit#heading=h.crt5flperkq3
https://www.anyscale.com/blog/ray-distributed-library-patterns

S .
Python — Ray Basic Patterns

Function Task
Class Actor

Object (Distributed

immutable) Object

anyscale

Function — Task Class — Actor

@ray.remote @ray.remote(num_gpus=1)
def read_array(file): class Counter(object):
def init (self):

self.value = 0

return a def inc(self):
@ray.remote self.value += 1
def add(a, b): return self.value

return np.add(a, b)

idl = read _array.remote(filel) € =
id2 = read array.remote(file2) 1id4
id = add.remote(idl, id2) id5
sum = ray.get(id)

Counter.remote()
= c.inc.remote()
= c.inc.remote()

DDD anyscale

Blue variables are ObjectRef IDs

Task API (similar to futures)

@ray.remote Node 1 Node 2

def read _array(file): 4 N I
return a '

@ray.remote

def add(a, b): _ NG J
return np.add(a, b) ?Hl

i
1dl = read array.remote(tilel)
1d2 = read_array.remote(tilel)

id = add.remote(idl, id2)
sum = ray.get(id)

Return id1 (future) immediately,
before read_array() finishes

= e

Task API

@ray.remote
def read array(file):

return a

@ray.remote
def add(a, b):
return np.add(a, b)

idl read array.remote(filel)
1d2 read array.remote(tile?)
1d = add.remote(1idl, 1d2)

sum = ray.get(id)

Blue variables are Object IDs
(similar to futures)

Node 1 Node 2

4 N I
ﬁbﬂ ﬁb4

- N
4 4
id1 id2
Dynamic task graph:

build at runtime

DDD anyscale

Task API Blue variables are Object IDs

(similar to futures)

@ray.remote Node 1 Node 2

def read _array(file): 4 N)
return a ' '

@ray.remote 6@ 6@

def add(a, b): \ AN 5)
return np.add(a, b) ;dl id2

idl = read _array.remote(filel) . ~

id2 = read array.remote(file2) ; g‘Ode

1d = add.remote(idl, 1d2) ‘

sum = ray.get(id)

Every task scheduled,
but not finished yet

id

DOD anyscale

Task API Blue variables are Object IDs
(similar to futures)

@ray.remote Node 1 Node 2

def read_array(file): a N O :Ej ™
file2

file

id = add.remote(idl, id2)
sum

return a
@ray.remote read_array read_array
def add(a, b): \)
return np.add(a, b) \\\\ ///
idl = read _array.remote(filel)
id2 = read array.remote(file2) [\\\ |i}2°de

ray.get(id)

L

Task graph executed to sum
compute sum 5h anyscale

Distributed Immutable obiect store

Node

Worker slots

Worker
process

Worker
process

X

Y

]

Shared-memory object store

External object store (disk, S3, etc)

Spill over to
external storage

e

— —

Distributed Immutable object store

Node 1

/45;;y.remote
def f():

Féturn X

@ray.remote
def g(a):

Féturn Y

f.remote()

id X
1d_Y = g.remote(1d_xX)

-

~

/
<

/

Node 2

Shared
objec/t store
/

/ id X

/\

X

N
\

\

—@

id X

/

Only X’s id (id_X) is
returned, not X’s value

/

DOD anyscale

Distributed object store

Shared
objec/t store
Node 1 Node 2 //
. . /
@y.pemote \ / id X id Yy \
def f():)(\/
return X "t

' Y|

@ray.remote Y)/
def g(a): \ /
\ /

... ,
return Y
id X I
id X f.remote() -

g.remote(1d_X) —;ﬁ id v

g(id_X) is scheduled on same node, so X is never transferred

Ray Ecosystem

e Ray Tune
e XGBoost-Ray

()

Ray Tune

Ray Tune - For distributed HPO

Efficient algorithms that enable running trials in parallel
Effective orchestration of distributed trials

Easy to use APIs

Interoperable with Ray Train and Ray Datasets

Saves cost (early stopping bad trials)

Minimal code changes to
work in distributed

Cutting edge settings
optimization algorithms

<

Compatible with ML
ecosystem

XX <

<

Ray

Trial Schedulers (tune.schedulers)

In Tune, some hyperparameter optimization algorithms are written as “scheduling algorithms”. These Trial Schedulers can
early terminate bad trials, pause trials, clone trials, and alter hyperparameters of a running trial.

All Trial Schedulers take in amet ric, whichis a value returned in the result dict of your Trainable and is maximized or
minimized according to mode.

tune.run(... , scheduler=Scheduler(metri

accuracy”, mode="max"))

Summary

Tune includes distributed implementations of early stopping algorithms such as Median Stopping Rule, HyperBand, and
ASHA. Tune also includes a distributed implementation of Population Based Training (PBT) and Population Based Bandits
(PB2).

Tip

The easiest scheduler to start with is the ASHAS chedu Le which will aggressively terminate low-performing trials.

When using ., you may face issues, as shown in the below compatibility matrix. Certain schedulers

cannot be used with Search Algorithms, and certain schedulers are require checkpointing to be implemented.

Schedulers can dynamically change trial resource requirements during tuning. This is currently implemented in
ResourceChangingScheduler, which can wrap around any other scheduler.

Scheduler Need C inti g C il Example
ASHA No Yes Link
Median Stopping Rule No Yes Link
HyperBand Yes Yes Link
BOHB Yes Only TuneBOHB Link
Population Based Training Yes Not Compatible Link
Population Based Bandits ~ Yes Not Compatible Basic Example, PPO example

. https://docs.ray.io/en/latest/tune/api_docs/schedulers.
https://docs.ray.io/en/latest/tune/api_docs/suggestion.html html#tune-schedulers

#tune-search-alg

o anyscale

https://docs.ray.io/en/latest/tune/api_docs/suggestion.html#tune-search-alg
https://docs.ray.io/en/latest/tune/api_docs/suggestion.html#tune-search-alg
https://docs.ray.io/en/latest/tune/api_docs/schedulers.html#tune-schedulers
https://docs.ray.io/en/latest/tune/api_docs/schedulers.html#tune-schedulers

Hyperparameters

Set before training
Hyperparameters

Model type and architecture
e Learning and training related
parameters

e Pipeline configurations
Number of trees, depth etc

Model
parameters Learn during training

Hyperparameter tuning

“choosing a set of optimal hyperparameters for a learning algorithm”

Example: what network structure is best for your binary classification problem?

How many layers? What kinds of layers? Learning rate
schedule?
Every number here is a hyperparameter!

HPO Challenges at scale

e Time Consumlnég and costly

e Use Resources PUs/CPUs) at lower costs
e Fault-tolerance and elasticity

[T\ [/

lllll -0 10100 0==0

lllll -0 10000 =0 +

||||| -0 10000 =0

Ray Tune - HPO algorithms

e Over 15+ algorithms natively provided or integrated
e Easy to swap out different algorithms with no code change

0] Exhaustive 02 Bayesian 03 Advanced
Search Optimization Scheduling

Exhaustive Search

e Easily parallelizable, easy to implement
e Inefficient, compute intensive

Grid Search Random Search

@) (@) @
Important parameter Important parameter

Unimportant parameter

Unimportant parameter

Bayesian optimization

Uses results from previous combinations (trials) to decide

which trial to try next

Inherently sequential
Popular libraries:

o hyperopt

o Optuna

o Scikit-optimize
o Nevergrad

1.0 ! LOIRRAIE B0 D .
X
0.8+ X x
X
X X &(;Exxxx
X— i
0.617/7 N\ H5255 X kx =
< O ': xx ;)%x”&x XX x =
0.4 4 _ x % X x:(x)§< B2 X x -
K %) %
X X X
0.2 X
X
0.0 T T ; .
0.0 0.2 0.4 0.6 0.8 1.0
X1

https://www.wikiwand.com/en/Hyperparamet

er_optimization

——

Advanced Scheduling - Early stopping

e Fan out parallel trials during the initial exploration phase

e Use intermediate results (epochs, trees, samples) to prune
underperforming trials, saving time and computing resources

e Median stopping, ASHA/Hyperband
e Can be combined with Bayesian Optimization (BOHB)

A

Validation
Metric (min)

Y

1
Resources per Trial max

Ray Tune - distributed HPO

from ray import tune Easily define your
trGInlng funCtlon

def train_func(config):

Head Node model = ConvNet(config)

for i in range(epochs):

, current_loss = model.train()
tune.run(train_func) tune.report(loss=current_loss)

DriverProcess

Orchestrator running HPO Just use
9 _ tune. run(/ tun.run(..)

algorithm train_func
config={“alpha”: tune.uniform(6.001

9.1)} Easily specify
num_samples=100 hyperparameter
« " ranges to search
scheduler="asha”, over

search_alg="optuna”)

Ray Tune - distributed HPO

Head Node

DriverProcess

tune.run(train_func)

Orchestrator running HPO

algorithm
Launch-=" —Launch_
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

Launch

Each actor performs one set of hyperparameter
combination evaluation (a trial)

Worker Node

Worker Node
Worker Node
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

Ray Tune - distributed HPO

Head Node

DriverProcess

tune.run(train_func)

Orchestrator running HPO

algorithm
—Report metrics S
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

Report metrics

Orchestrator keeps track of all the trials’
progress and metrics.

Worker Node

Report metrics/orkerProcess

Worker Node
Worker Node
[
WorkerProcess

Actor: Runs Actor: Runs
train_func train_func
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

Ray Tune - distributed HPO

Head Node

DriverProcess

tune.run(train_func)

Orchestrator running HPO

algorithm
Early stop— —Continue
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

Continu

Based on the metrics, the orchestrator
may stop/pause/mutate trials or launch
new trials when resources are available.

Worker Node

Worker Node
Worker Node

e WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

Ray Tune - distributed HPO

Head Node

DriverProcess

tune.run(train_func)

Orchestrator running HPO

algorithm
Launch a new trial—
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

Resources are repurposed to explore
new trials.

Worker Node

Worker Node
Worker Node
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

Ray Tune - distributed HPO

Head Node

DriverProcess

tune.run(train_func)

Orchestrator running HPO
algorithm
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

—Trials are
checkpointed to

Orchestrator also manages checkpoint state.

cloud storage
Worker Node g
Worker Node
Worker Node
Checkpoint

WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

Ray Tune - distributed HPO

Head Node

DriverProcess

tune.run(train_func)

Orchestrator running HPO

algorithm
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

Some worker process crashes.

Worker Node
Worker Node
Worker Node
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func
WorkerProcess WorkerProcess
Acto S Actor: Runs
train (] train_func

Load checkpoint
_from cloud storage-

Ray Tune - distributed HPO

Worker Nc
Hene Lok Worker Node
DriverProcess Worker Nod
orker Node
tune.run(train_func)
h) WorkerPrc .sS WorkerProcess
Orc gstrotor running HPO Actor: RU Actor: RUns
algorithm train_1 train_func
WorkerProcess WorkerProcess restore
Actor: Runs Actor: Runs WorkerProcess WorkerProcess
tra,’n_ func train_ func Actor: Runs Actor: Runs
train_func train_func
New actor comes up fresh and the

crashed trial is restored from remote
checkpoint.

XGBoost-Ray
e Design & Features

()

XGBoost-Ray

Distributed XGBoost-Ray -
Drop-in replacement for
XGBoost

Fault tolerance & Elastic
training

Integration with Ray
Datasets and Ray Tune

dmilc

°S» RAY
!

XGBoost [

Data shard 1

—

dmilc

XGBoost [

"

dmic

Data shard ...

Ve

A 4

XGBoost

Data shard n

Final model

e https://github.com/ray-project/xgboost_ray

e https://docs.ray.io/en/latest/xgboost-ray.html

DDD anyscale

https://github.com/ray-project/xgboost_ray
https://docs.ray.io/en/latest/xgboost-ray.html

Motivation

« There are existing solutions for distributed XGBoost
« E.g. Apache Spark, Dask, Kubernetes etc

« But most existing solutions have shortcomings:
« Dynamic computation graphs
« Fault tolerance handling
+ GPU support
 Integration with hyperparameter tuning libraries

XGBoost-Ray

Ray actors for stateful training workers
Advanced fault tolerance mechanisms
Full (multi) GPU support

Locality-aware distributed data loading
Integration with Ray Tune

Distributed XGBoost Architecture

DataShard1l |« - — - — .. R

tree-based allreduce

\

Data Shard 3 |< --

Worker 3

_ — - Worker1
s
—
7/
/
/
* tree-based allreduce
Tracker |= — __ (RABIT)
~—
~
A ~
~
= S—
\ —_—
\
X
N\
~ Worker 2 | «—tree-based allreduce

Data Shard 2 |+ - — .. _ .

Training
Dataset

Architecture

@ray.remote
Actors \ Driver
Worker 1 Worke/rz/\wker 3 Worker 4

gic?’fgtl)g(;il(ijng [load_data() J [load_data()] [load_data()] [load_data()]

Architecture

Driver
Worker 1 rker 2 Worker 4
Distributed | | | [|]
data loading (°¢ V gadidata) oad_datal) | oad_data()
Tree-based / \
allreduce xgb.train() xgb.train() xgb.train() xgb.train()]

(Rabit)

Architecture

[Driver
Worker 1 Work}/ Worker 3 Worker 4
Distributed [| J] |] [|]
data loading oad_data) d _data() oad_data() oad_data()

Checkpoints
Eval results

Tree-based

allreduce [xgb.train() }—{ xgb.train() }—»[xgb.train() }—{ xgb.train()]

(Rabit)

Distributed data loading

Distributed
dataframe
(e.g. Modin)

XGBoost-Ray
workers

Node 1

[Partition A]

Partition B]

Worker 1

[Partition A J

Partition B]

Node 2

[Partition C]

Worker 2

[Partition C]

[Partition F

Node 3

Node 4

Partition D

[Partition G]

Partition E

[Partition H]

Partition F

orker 3

Worker 4

[Partition D]

[Partition G]

Partition E]

[Partition H]

Fault tolerance strategies

In distributed training, some worker nodes are bound to fail
eventually
: Simple (cold) restart from last checkpoint
training (warm restart):
Only failing worker restarts
Elastic training: Continue training with fewer workers until
failed actor is back

Fault tolerance: Simple (cold) restart

C] Training - Failed
C] Paused C] Stopped

Worker 1 Worker 1 Worker 1 Worker 1

—
4 N\
- J
4 N\

Worker 1

Worker 2 Worker 2 Worker 2 Worker 2

-
(.
(
-
N)
—
(N\
& J
(N\

Worker 2

Worker 3 Worker 3 Worker 3

()
& J
4 N\
& J
4 N\
- J
4 N\

Worker 3

Worker 4 Worker 4 Worker 4 Worker 4

(N\
g J/
()
- J
)
—
4 N\
& J
(N\

Worker 4

Fault tolerance: Non-elastic training (warm restart)

C] Training - Failed
C] Paused C] Stopped

Worker 1 Worker 1 Worker 1 Worker 1 Worker 1

—
()
- J
()

Worker 2 Worker 2 Worker 2 Worker 2 Worker 2

-
(.
(
-
N)
—
()
(. J
(N\

Worker 3 Worker 3

()
& J
4 N\
& J
4 N\
- J
4 N\

Worker 3 Worker 3

(N\
g J/
()
- J
)

Worker 4 Worker 4

—
()
- J
()

Worker 4 Worker 4 Worker 4

Fault tolerance: Elastic training

C] Training - Failed
C] Paused C] Stopped

Time
Worker 1 Worker 1 [Worker 1 1 Worker 1 Worker 1
Worker 2 Worker 2 [Worker 2 1 Worker 2 Worker 2 ..
L) L) L) L) Finishes
earlier

Worker 3 Worker 3 Worker 3 Worker 3

(N\
g J/
()
- J
()
& J
(N\
. J

Worker 4 Worker 4 Worker 4 Worker 4 Worker 4

(N\
g J/
()
- J
)
—
()
- J
(N\
. J

Hyperparameter tuning

BN

. i'u ne Early stopping
Report checkpoints ~~ Searchers (e.g. BO, TPE)
and results
Trial 1 Trial ... Trial n
eta: 0.1 eta: 0.3 eta: 0.2
gamma: 0.2 gamma: 0.1 gamma: 0.0
| ! } | ! ! ! ! ! } } }
— N -— N : & -— o\
2] 2 gl gl 8|8 2] 2
o o o o o o o o
= = = = = = = =

Simple APl example

from sklearn.datasets import load_breast_cancer
from xgboost_ray import RayDMatrix, RayParams, train

train_x, train_y = load_breast_cancer(return_X_y=True)
train_set = RayDMatrix(train_x, train_y)

bst = train(
{"objective": "binary:logistic"},
train_set,
ray_params=RayParams(num_actors=2)

)

bst.save_model("trained.xgb")

Takeaways

e Distributed computing is a necessity &
norm

e Ray’s vision: make distributed

— programming simple
o Don’'t have to be distributed systems

expert. Just use

e Scale your ML workloads with Ray

Libraries

Sh anyscale

MARCH 29 - VIRTUAL - FREE

_Production i
R I- s u m m it Serge Levine Ben Kasper Sumitra Ganesh

A reinforcement learning T JPMorgan

event for practitioners

NS
/N

Adam Kelloway Marc Weber Volkmar Sterzing

ORGANIZED BY Sh anyscale @ SIEMENS SIEMENS

Register: https://tinyurl.com/mr9rd32h

MARCH 29 - VIRTUAL

HANDS-ON TUTORIAL
Contextual Bandits & RL with RLLib

Learn how to apply cutting edge RL in production with RLLib.

RL Summit

Tutorial covers:

o . e Brief overview of RL concepts.
A relnforcement /eamlng e Train and tune contextual bandits and SlateQ algorithm
event for practitioners e Offline RL using cutting-edge algos
o Deploy RL models into a live service
Register: https://tinyurl.com/mr9rd32h $75 $30 (use code DCRL2022)

S30
Use code DCRL2022

ORGANIZED BY Sh anyscale

Instructor:

Sven Mika, Lead maintainer, RLLlib

PON'T wayr,

CFp C IOSes
April 11th

=

Start learning Ray and contributing ...

Getting Started: pip install ray

Documentation (docs.ray.io)
Quick start example, reference guides, etc

Join Ray Meetup

Revived in Jan 2022. Next meetup March 2nd.

Meetup each month and publish recording to the members
https://www.meetup.com/Bay-Area-Ray-Meetup/

Forums (discuss.ray.io)
Learn / share with broader Ray community, including core team

Ray Slack
Connect with the Ray team and community

Social Media (@raydistrtibuted, @anyscalecompute)
Follow us on Twitter and linkedIn

GitHub
Check out sources, file an issue, become a contributor, give us a Star:)
https://github.com/ray-project/ray

https://www.meetup.com/Bay-Area-Ray-Meetup/
https://github.com/ray-project/ray

Thank you!

Let's stay in touch:

jules@anyscale.com
https://www.linkedin.com/in/dmatrix/

W @2twitme

VIDEO

Sh anyscale

C 8 sesvonydmedyslitonirdesetl Lasyscannriets comi e

= + [+] : C
-/

o Name -
@ images

E:‘} &= lightgbm_ray
[model.xgb

% " xgboost_demo.ipynb

File Edit View Run Kernel Tabs

Settings

Help

% xgboost_demo.ipynb X

a8

+

ES

DB » = Cc »

Ve erowmy
2. Hyperparameter tuning
3. Inference

First, we try on a local node with a data set, time it, and then try on a Ray cluster with multiple nodes and multiple cores.

Markdown +

We should observe noticiable difference.

Local
Machine

=)

Node

Cloud
Computing

Python 3 (ipykernel) O

https://docs.google.com/file/d/1RAGKa7Uahw3ufIkit85mpwG94kIxhfq5/preview

(e
Making Humans & Code
GPU-Capable

Emily May Curtin
Senior ML Ops Engineer, Mailchimp/Intuit
@emilymaycurtin

e

Howdy,I'm
Emily

¢ ATLien (don’t call it Hotlanta)

X #NotADataScientist

¢ Oil painter by passion

4 MLOps by day job (btw we’re hiring!)
@ Big fan of Ryan Curtin

107

https://ratml.org/

Our Goal:

Help Data Scientists
produce higher quality
work faster

MLOps

is a hyper-technical field that is

all about people

Inherent Design
Tradeoft

Hyper-Technical H Used by people

Other Design Tradeoff
Friendly for Efficient for
Developers Computers
Solid in prod .
but awful to Shgky in prod but
easier to develop

develop

Too Opinionated H Too Configurable

@ 2022

Let’stalk
about ML
taéks

Typical ML Tech Stack

Python

Pytorch, HuggingFace, Tensorflow

Docker

Cloud infrastructure (we happen to use GCP)

Kubernetes either directly or indirectly

Benefits

® Good scalability, reproducibility

® Cloud infra good for spiky ML workloads (vs. more consistent,
predictable web service)

@ 2022

Let’stalk
about GPUs

GPUs Can Be Really Awesome

o<

grafanacloud-prometheus v

Model Run Distribution (GKE)

Ons
14:50 14:55 15:00 15:05 15:10 15:15 15:20 15:25 15:30 15:35 15:40 15:45 15:50 15:55 16:00 16:05 16:10 16:15 16:20 16:25 16:30 16:35 16:40

GPUs...

® Are optional hardware peripherals
® Require special drivers
® Rely on system buses for /O

GPUs... Are Printers

GPUs... Are Printers

That are very good at linear algebra

Call Stack
on aplain
server

My Amazing Service w/n MC’s service framework

My Super Awesome Service Library

ML Library (PyTorch, etc.)

CUDA libs

GPU device drivers

0OS

A physical server

An actual, real, not virtual GPU

Call Stack
on aplain
server

My Amazing Service w/n MC’s service framework

My Super Awesome Service Library

ML Library (PyTorch, Tensorflow, XGBoost, etc.)

CUDA libs

GPU device drivers

0OS

A physical server

An actual, real, not virtual @\/

Call Staék My Amazing Service

in the My Super Awesome Service Library
ephemeral ML Library (PyTorch, etc.)
world
Container
Pod
Kubernetes

Nodes (virtual servers)

Probably like some hypervisors or whatever idk it's the cloud this layer doesn’t tend to bother me

Physical Servers

An actual, real, not virtual GPU

What you need to
talk toa GPU

e GPU
e Drivers

o nvidia.ko-Kernel mode GPUdriver

o libcuda.so -User mode GPU driver (akalow-level APD
e CUDA Toolkit

o libcudart.so-Runtime API(aka high-level APD

o cuBLAS, cuRAND, cuSOLVER, and other toolkit libs

GPUs and

Device
Drivers

These come
from your
k&8s service
provider,
GKE in my

CcasSc

€

GKE Provides
- Configurable GPUs and GPU
pools
- DaemonSet for device drivers

2 Google Cloud Why Google Solutions

Google Kubernetes Engine (GKE) Overview

Kubernetes Engine
Product overview

Anthos GKE home

Quickstarts
GKE quickstart

Deploying a language-specific app

Samples
All Kubernetes Engine code samples

All code samples for all products

How-to guides
All how-to guides

» Creating clusters

Products Pricing Getting Started Q Dc

Guides

About the CUDA libraries

Reference Samples Support Resources

CUDA® [7 is NVIDIA's parallel computing platform and programming model for GPUs. The NVIDIA device drivers you
install in your cluster include the CUDA libraries [4.

CUDA libraries and debug utilities are made available inside the container at /usr/local/nvidia/1lib64 and
/usr/local/nvidia/bin, respectively.

CUDA applications running in Pods consuming NVIDIA GPUs need to dynamically discover CUDA libraries. This requires
including /usr/local/nvidia/1ib64 inthe LD_LIBRARY_PATH environment variable.

You should use Ubu €d CUDA Docker base images (4 for lications in GKE, where LD_LIBRARY_PATH is
already set apprdpriately. The latest supported CUDA versionis 11.8 on botf) COS (1.18.6-gke.3504+) and Ubuntu
(1.19.8-gke.1200+).

Manitarina (GPl | nndec

Various
CUDA APIs

and other libs

Some Python ML Libs ship with binaries in the wheels
o Dependent on Python package manager (pip, anaconda, etc)
o Usually does not include 1ibcuda. so
Might be made available via your device driver Daemonset
o SetLD LIBRARY PATH to access
o Usually only API binaries, not other toolkit libs
Might have to DIY via base container or custom install step

Might have to combine all of the above

Matching CUDA
Versions Matters

® CUDA version supported by your ML library of choice
® CUDA version in your base docker image

® CUDA version available on your k8s nodes, exposed through
Daemonset

Matching CUDA
Versions Matters*

Matching CUDA
Versions Matters*

*Sometimes. Depending. Maybe not.

Matching CUDA
Versions Matters*

*Sometimes. Depending. Maybe not.

YMMYV depending on your library
e PyTorch does a lot of stuff to support 10.x and 11.x
e Tensorflow is very picky about everything

CUDA has complex forward and backward compatibility scenarios

e

https://docs.nvidia.com/deploy/cuda-compatibility/index.html

ltraceand strace rock

DESCRIPTION top

ltrace is a program that simply runs the specified command until
it exits. It intercepts and records the dynamic library calls
which are called by the executed process and the signals which
are received by that process. It can also intercept and print
the system calls executed by the program.

Its use is very similar to strace(l).

ltrace shows parameters of invoked functions and system calls.

To determine what arguments each function has, it needs external
declaration of function prototypes. Those are stored in files
called prototype libraries--see ltrace.conf(5) for details on the
syntax of these files. See the section PROTOTYPE LIBRARY
DISCOVERY to learn how ltrace finds prototype libraries.

root@python39-torch111-cull3:/# strace python test_cuda_torch.py 2>&1 | grep -E '~open(at)?\(.*\.so' | grep 'cuda’

openat(AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/1lib/libtorch_cuda.so", O_RDONLY|0_CLOEXEC) = 3

openat (AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libtorch_cuda_cpp.so", O_RDONLY|O_CLOEXEC) = 3

openat (AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/1ib/1ibc10_cuda.so", O_RDONLY|O0_CLOEXEC) = 3

openat (AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libtorch_cuda_cu.so", O_RDONLY|O_CLOEXEC) = 3

openat (AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libcudart-a7b20f20.s0.11.0", O_RDONLY|O_CLOEXEC) = 3

openat(AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/1lib/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/1ib/x86_64-1inux-gnu/tls/haswell/avx512_1/x86_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/1lib/x86_64-1linux—-gnu/tls/haswell/avx512_1/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/1ib/x86_64-1inux-gnu/tls/haswell/x86_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/1lib/x86_64-1linux—gnu/tls/haswell/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/1ib/x86_64-1inux—-gnu/tls/avx512_1/x86_64/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/1ib/x86_64-1inux-gnu/tls/avx512_1/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/1ib/x86_64-1inux-gnu/t1s/x86_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/1ib/x86_64-1inux-gnu/tls/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/1ib/x86_64-1inux—-gnu/haswell/avx512_1/x86_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/1ib/x86_64-1inux—-gnu/haswell/avx512_1/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/1ib/x86_64-1inux-gnu/haswell/x86_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/1ib/x86_64-1inux-gnu/haswell/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/1ib/x86_64-1inux-gnu/avx512_1/x86_64/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/1ib/x86_64-1inux-gnu/avx512_1/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/1ib/x86_64-1inux-gnu/x86_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/lib/x86_64-1inux-gnu/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/usr/1lib/x86_64-1linux-gnu/tls/haswell/avx512_1/x86_64/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/usr/lib/x86_64-1inux—-gnu/tls/haswell/avx512_1/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/usr/lib/x86_64-1inux—-gnu/tls/haswell/x86_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/usr/1lib/x86_64-1linux-gnu/tls/haswell/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/usr/lib/x86_64-1linux-gnu/tls/avx512_1/x86_64/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/usr/1lib/x86_64-1inux—gnu/tls/avx512_1/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/usr/1lib/x86_64-1inux—gnu/tls/x86_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/usr/1lib/x86_64-1inux-gnu/tls/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat(AT_FDCWD, "/usr/lib/x86_64-1inux-gnu/haswell/avx512_1/x86_64/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/usr/lib/x86_64-1inux—-gnu/haswell/avx512_1/1libcuda.so", O_RDONLY|O0_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/usr/lib/x86_64-1inux-gnu/haswell/x86_64/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/usr/lib/x86_64-1inux—gnu/haswell/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/usr/lib/x86_64-1inux-gnu/avx512_1/x86_64/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/usr/1lib/x86_64-1linux-gnu/avx512_1/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/usr/lib/x86_64-1inux-gnu/x86_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/usr/lib/x86_64-1inux-gnu/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat(AT_FDCWD, "/lib/tls/haswell/avx512_1/x86_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/lib/tls/haswell/avx512_1/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat(AT_FDCWD, "/lib/tls/haswell/x86_64/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

gpena it i " i "0 RDON 0 0 = _ i i

root@python39-torch111-cull3:/# strace python test_cuda_torch.py 2>&1 | grep -E '~open(at)?\(.*\.so' | grep 'cuda’

openat(AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/1lib/libtorch_cuda.so", O_RDONLY|0_CLOEXEC) = 3

openat (AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libtorch_cuda_cpp.so", O_RDONLY|O_CLOEXEC) = 3

openat (AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/1ib/1ibc10_cuda.so", O_RDONLY|O0_CLOEXEC) = 3

openat (AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libtorch_cuda_cu.so", O_RDONLY|O_CLOEXEC) = 3

openat (AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libcudart-a7b20f20.s0.11.0", O_RDONLY|O_CLOEXEC) = 3

openat(AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/1lib/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/1ib/x86_64-1inux-gnu/tls/haswell/avx512_1/x86_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/1lib/x86_64-1linux—-gnu/tls/haswell/avx512_1/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/1ib/x86_64-1inux-gnu/tls/haswell/x86_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/1lib/x86_64-1linux—gnu/tls/haswell/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/1ib/x86_64-1inux—-gnu/tls/avx512_1/x86_64/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/lib/x86_64-1linux-gnu/tls/avx512_1/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

opena DCWD, "/1lib/x86_64 nux-gnu/tls/x86_64/1ibcuda.so", O_RDONLY|O_CLC EC -1 ENO such file or directory)

openat(FDCWD, "/1ib/x86_64—-Jnux—gnu/tls/libcuda.so", O_RDONLY|O_CLOEXEC) 1 ENFENT (No Much file or director

openat(FDCWD, i p DON I i irectory)
openat(FDCWD, i * i - 2CL i i tory)

openat(FDCWD, i i LOE

opena _ o/ 1l X—gn s A

openat (AT_FDCWD, "/1ib/x86_64-1inux-gnu/avx512_1/x86_64/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/1ib/x86_64-1inux-gnu/avx512_1/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/1ib/x86_64-1inux-gnu/x86_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/lib/x86_64-1inux-gnu/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/usr/1lib/x86_64-1linux-gnu/tls/haswell/avx512_1/x86_64/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/usr/lib/x86_64-1inux—-gnu/tls/haswell/avx512_1/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/usr/lib/x86_64-1inux—-gnu/tls/haswell/x86_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/usr/1lib/x86_64-1linux-gnu/tls/haswell/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/usr/lib/x86_64-1linux-gnu/tls/avx512_1/x86_64/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/usr/1lib/x86_64-1inux—gnu/tls/avx512_1/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/usr/1lib/x86_64-1inux—gnu/tls/x86_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/usr/1lib/x86_64-1inux-gnu/tls/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat(AT_FDCWD, "/usr/lib/x86_64-1inux-gnu/haswell/avx512_1/x86_64/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/usr/lib/x86_64-1inux—-gnu/haswell/avx512_1/1libcuda.so", O_RDONLY|O0_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/usr/lib/x86_64-1inux-gnu/haswell/x86_64/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/usr/lib/x86_64-1inux—gnu/haswell/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/usr/lib/x86_64-1inux-gnu/avx512_1/x86_64/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat (AT_FDCWD, "/usr/1lib/x86_64-1linux-gnu/avx512_1/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/usr/lib/x86_64-1inux-gnu/x86_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat (AT_FDCWD, "/usr/lib/x86_64-1inux-gnu/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat(AT_FDCWD, "/lib/tls/haswell/avx512_1/x86_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/lib/tls/haswell/avx512_1/libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

openat(AT_FDCWD, "/lib/tls/haswell/x86_64/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

gpena it i " i "0 RDON 0 0 = _ i i

s/torch/1ib/1libtorch_cuda.so", O_RDONLY|0_CLOEXEC) = 3
s/torch/1lib/libtorch_cuda_cpp.so", O_RDONLY|O_ CLOEXEC)

s/torch/1ib/1ibc10_cuda.so", O_RDONLY|O_CLOEXEC) =
s/torch/lib/libtorch_cuda_cu.so", O_RDONLY|O_CLOEXEC) —
s/torch/lib/libcudart-a7b20f20.s0.11.0", O0_RDONLY|O0_CLOEXEC) = 3
s/torch/1ib/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
512_1/x86_64/1ibcuda.so", O0_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
512_1/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
_64/1libcuda.so", O_RDONLY|O0_CLOEXEC) = -1 ENOENT (No such file or directory)
cuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
6_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
bcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

uda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

s/torch/1ib/1libtorch_cuda.so", O_RDONLY|0_CLOEXEC) = 3
s/torch/1lib/libtorch_cuda_cpp.so", O_RDONLY|O_ CLOEXEC)
s/torch/1ib/1ibc10_cuda.so", O_RDONLY|O_CLOEXEC) =
s/torch/lib/libtorch_cuda_cu.so", O_RDONLY |0_ CLOEXEC) —
s/torch/1lib/libcudart-a7b20f20.s0.11.0", O_RDONLY |O0_ CLOEXEC =

s/tor 1] E}bcuda.so“
512 1/ " 64 4 1. a.
21/ ds@',

O RDON |0_ CLOEXEC = —1 ENOENT such flle or directory)
‘Z’lrectory)
o su ct

_64/1libcuda.so", 0 RDONLYIO CLOEXEC = =1 ENOENT No such flle or dlrectory
cuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
6_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
bcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
uda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

s/torch/1ib/1libtorch_cuda.so", O_RDONLY|0_CLOEXEC) = 3
s/torch/1lib/libtorch_cuda_cpp.so", O_RDONLY|O_ CLOEXEC)

s/torch/1ib/1ibc10_cuda.so", O_RDONLY|O_CLOEXEC) =
s/torch/lib/libtorch_cuda_cu.so", O_RDONLY|O_CLOEXEC) —
s/torch/lib/libcudart-a7b20f20.s0.11.0", O0_RDONLY|O0_CLOEXEC) = 3
s/torch/1ib/1libcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
512_1/x86_64/1ibcuda.so", O0_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
512_1/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
_64/1libcuda.so", O_RDONLY|O0_CLOEXEC) = -1 ENOENT (No such file or directory)
cuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
6_64/1ibcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)
bcuda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

uda.so", O_RDONLY|O_CLOEXEC) = -1 ENOENT (No such file or directory)

MLOps

is a hyper-technical field that is

all about people

Typical Data H Typical Data

Scientist systems Scientist systems

needs knowledge and
experience

Where we (MLOps) come in

Typical Data H Typical Data

Scientist systems Scientist systems

needs knowledge and
experience

Systems Abstraction

Providing a good enough encapsulation of the system so Data

Scientists can focus on the application layers.
It’s really hard.

Most MLOps systems are full of leaky abstractions.

Data My Amazing Service

SCientiStS My Super Awesome Service Library
focus Oon ML Library (PyTorch, etc.)
the top
layers Container
Pod
Kubernetes

Nodes (virtual servers)

Probably like some hypervisors or whatever idk it's the cloud this layer doesn’t tend to bother me

Physical Servers

An actual, real, not virtual GPU

Design Tradeofts

Too Opinionated H Too Open Ended

Design Tradeofts

Too Opinionated H Too Open Ended

Doesn’'tdowhat I Howonearthdol
need it todo make itdowhatl
need it todo

@ 2022

To enable high
tech,
go low tech

GPUs for ML V|a repo templatlng

___1

@lowcost_cosplay

Repo
templating is
not cool.

And it works.

Repo Templating

e Provide a good enough, general enough base for the majority
e Includes

o Base container to encapsulate the runtime environment

o Places to integrate custom Python code

o Basic run scripts for applications

o Basic CI/CD stuff (ex: Jenkinsfile)

e GPU capability built in via base container(s)

e

Challenges

e Is your base container general enough? Will it match prod?
e Differences between libraries, batch jobs, live services, etc.
e How do children of a template get updates from the parent?

e How do we provide general GPU capability to everything using
the template(s)?

Some Hard-Won Wisdom

e One template per project type (library, batch job, etc.) with
shared base containers.

e Allow massive flexibility in ML lib choice within your language

e One base container is probably not good enough. Have
curated options. (ex: tensorflow breaks everything)

e Design for the 90% cases, don’t generalize the other 10%

In Conclusion

@emilymaycurtin

e

MLOps is a super technical
role that’s all about people

strace is your friend

Repo templating is your
friend

Be uncool to do cool stuff

Thank you.

The Modern Stack
for ML Infrastructure

Ville Tuulos

outerbounds

The modern stack?

‘
=y

o9

-

The stack?

o=y
o9
:]

“ /

The Evolution of Web Stacks

A Linux

APACHE

HTTP SERVER PROJECT

™,

MySol

LAMP (1998)

The Evolution of Web Stacks

Web cache

Squid
Polipo
Traffic server

Web server
pache
Cherokee
Lighttpd
Nginx

CGI scripting
erl
HP
ython

Database

ariaDB

ySQL
Drizzle

LAMP (1998)
Environment: CCC
AppArmor
SELinux
ToueHo CPU Cra.c kers
Process Scheduler & Sacking setempts
Netfilter RAM AtEaau?«ks)
Linux network stack & Competlto rs
- compete for customers
Network scheduler Req uests

NIC Networking
device

w | hardware

kmod-fs-ext4

Responses \

kmod-fs-btrfs [v Customers
Lustre want attendance
Storage

SATA

NAS Bothets
DDoS-Attacks

Figure by Shmuel Csaba Otto Traian / Wikipedia

The Evolution of Web Stacks

A Linux

APACHE

HTTP SERVER PROJECT

™,

MySol

LAMP (1998)

‘ mongoDB.
8

EXOress | Js

EYNGULAR

nede

MEAN (2013)

The Evolution of Web Stacks

A Linux

APACHE

HTTP SERVER PROJECT

™,

MySol

LAMP (1998)

‘ mongoDB.
Javascript
=XPress | Js
APIs
EYNGULAR
Markup

nede

MEAN (2013) JAM (2015)

The Evolution of Web Stacks

The stack becomes less technical, more buman-centric (>

£ ., Linux ‘ mongoDB.
— Javascript
J APACHE Soress s
APIs
Musa EYNGULAR
Markup

nede

LAMP (1998) MEAN (2013) JAM (2015)

The Evolution of Web Stacks

The stack becomes simpler, more capable over time

£ ., Linux ‘ mongoDB.
— Javascript
J APACHE Soress s
APIs
Musa EYNGULAR
Markup

nede

LAMP (1998) MEAN (2013) JAM (2015)

The stack for ML infrastructure will become

simpler, more capable
&
more human-centric (&

The Evolution of ML Stack

The stack becomes less technical, more buman-centric (<

[} Linux

The AW[(\

Pr ing
ngammll ng
4\ MATLAB

CLAM (1998)

AAAAAA

% Kubeflow

MLOps (2018) Future?

Let’s design
a modern ML stack
from the ground up

Here’s a data scientist

A modern data scientist uses a cloud workstation

workstation

Data flows seamlessly from the data warehouse to the workstation

workstation

Data

Experiments run at scale on a cloud-based compute cluster

Compute resources

Compute

workstation

Data

Complete workflows are developed and tested locally

Compute resources

Workflow
workstation orchestrator

%

Orchestration

Compute

Data

Code, models, logs, and metrics gets stored and versioned automatically

Compute resources

Versioning &

WE’ R metadata
|
\
|

C(g;() | Versioning

Orchestration

Workflow Compute
workstation orchestrator

Data

Data Scientist can develop, test, and iterate on projects rapidly

Example

>,

METAFLOW

Define workflows with a human-friendly syntax

class MyFlow(FlowSpec

@step

def start(self)
import pandas as pd
pd.DataFrame(big_one
self next(self.end

@step
def end(self)
pass

python myflow.py run

Experiments run at scale on a cloud-based compute cluster

@step
def start(self
self params list(range(160
self . next(self.train, foreach-'params'

//‘k @resources(memory-128000

@step
def train(self —
self model = train 1]
self next(self.join
N4 ==ls=
@step

def join(self, inputs L

python myflow.py run -with kubernetes

Everything gets versioned automatically

<
class MyFlow(FlowSpec
@step
def start(self): ... E @
self.alpha = 0.5---""" " .
self next(self.train e Y,

@step
def train(self): ..
self.model = train_model(self.alpha)

Comes with tools for fast data access

class QueryFlow(FlowSpec):

@step

def query(self):
self.ctas = "CREATE TABLE %s AS %s" % (self.table, self.sql)
query = wr.athena.start_query_execution(self.ctas)
output = wr.athena.wait_query(query)
loc = output['ResultConfiguration']['OutputLocation']
with metaflow.S3() as s3:

results = [obj.url for obj in s3.list_recursive([loc])

gb__:)
0N
.

«

Data Scientist can develop, test, and iterate on projects rapidly

http://www.youtube.com/watch?v=YSJXn6KLzXg

From prototype to
Production

Real-world ML comes in many shapes and sizes

Decision-support systems Product features

On-device ML Data enrichment

There is not a single production but many
Provide architectural blueprints to support various deployment patterns

Architecture
Versioning

: N ‘O/\‘E?O Orchestration
QV ’ y Compute

Data

Metaflow Example
Single-click deployment (and back)

python myflow.py step-functions create

<"III'JI L3 0
Prototype Production R

python myflow.py resume --origin-run-id sfn-199874

Continuous deployment, continuous experimentation

Operations
Architecture
Versioning

Orchestration

Compute

Data

Metaflow example
Deploy parallel models for A/B testing

@project(name="'LTV'
class TrainingFlow(FlowSpec

@step
def start(self):

@project(name="'LTV'
class TrainingFlow(FlowSpec

@step
def start(self):

Project: LTV

@project(name="'LTV'
class PredictFlow(FlowSpec

@step
def start(self

python myflow.py —branch a deploy

@project(name="'LTV'
class PredictFlow(FlowSpec

@step
def start(self

python myflow.py —-branch b deploy

Data scientists can experiment with features flexibly...

Relational data

Streaming events

Semi-structured data

Features
Operations
Architecture
Versioning
Orchestration

Compute

Data

...as well as iterate on various modeling approaches...

Decisions trees Model Ensembles

Models
Features
Operations
Architecture
Versioning

Orchestration

Compute

Deep neural networks Embeddings Data

because that’s what data scientists are mostly supposed to do!

Models
How much

data scientist Features

carcs

Operations
Architecture
Versioning

Orchestration
How much
Compute infrastructure

is needed
Data

The full stack as a single, coherent, user-friendly package

METAFLOW

Models

Operations
Architecture
Versioning
Orchestration

Compute

The Evolution of ML Stack

The stack becomes simpler, more capable over time

@ Airflow QWS
N\ T mliflow
[\' Linux f P User-friendly

e

T A R r\ . Coherent
Pr Ogram\’ V.Ing;\} YA J@r Full stack
Langiage ML
4\ MATLAB % Kubeflow

CLAM (1998) MLOps (2018) Future!

Shameless plug: New book!
E ﬁ”ectz’ve Data Science In fmstmcm re

Effective

Data Scie
Infrastru

Thank you

Curious to learn more about open-source Metaflow?
Join 1000+ data scientists and engineers at

http://slack.outerbounds.co

outerbounds

Get Ready for ML!
Level Up Your Data Lake
With Delthcee@FS

Data Council — Austin
March 2022

& Speakers

Adi Polak

Vice President of Developer Experience | Treeverse

Adi is an open-source technologist who believes in communities and is passionate about building a better world through open
collaboration. As Vice President of Developer Experience at Treeverse, Adi helps build lakeFS, git-like interface for

the data lakehouse. In her work, she brings her vast industry research and engineering experience to bear in educating and
helping teams design, architect, and build cost-effective data systems and machine learning pipelines that emphasize scalability,
expertise, and business goals.

Adi is a frequent worldwide presenter and the author of O'Reilly's upcoming book, "Machine Learning With Apache Spark." Adi
is also a proud Beacon for Databricks! Previously, she was a senior manager for Azure at Microsoft, where she focused on
building advanced analytics systems and modern architectures.

Paul Singman

Developer Advocate | Treeverse

Paul is a developer advocate for the lakeFS project, after several years on the analytics team at Equinox Fitness. His goal is to
democratize big data analytics through explaining data architectures that are both user-friendly and cost-effective. He's spoken
at various conferences and meetups, including the Postgres Conference NYC and AWS re:Invent. When not working you can find
him drinking tea and playing golf

) Narrative Flow

Level 0: Basic Data Lake

) Narrative Flow

e

g
N7 IS Lot
RAidiE 2 4

¥ S
Level 1: Table-Format Enhanced A
e ¥ ¥ Tascton agf)
~ NG
MINIO A |‘&| gnazon ... Object Store

fuueeereennns Date-separated .csv files

Level 0: Basic Data Lake

Object Store

) Narrative Flow

Branches of
tables within a

Level 2: Full Data Version Control

repository

T
Data Repo

MINIO 2 il

Tables comprised of
optimized datafiles +
transaction log(s)

Level 1: Table-Format Enhanced

MINIO A |‘&l amazon ... Object Store

. Date-separated .csv files

MINIO

Level 0: Basic Data Lake -

-~ Object Store

) LO: Basic Data Lake

) LO: Basic Data Lake

MINIO e an * ggnazon R Object Store

Google Cloud Azure
Storage

) LO: Basic Data Lake

o HE Objects being stored

MINIO e an * ggnazon R Object Store

Google Cloud Azure
Storage

) LO: Basic Data Lake

& Taaaas Date-separated .csv files

MINIO e an * ggnazon R Object Store

Google Cloud Azure
Storage

) LO: Basic Data Lake

Data-Intensive APIs
ML .

& Taaaas Date-separated .csv files

MINIO e an * ggnazon R Object Store

Google Cloud Azure
Storage

é&» Why Object Storage?

mino @ A *gg,“am"

Google Cloud AZUre
Storage

é&» Why Object Storage?

MING @ A *amazon are awesome in terms of
S3

Google Cloud AZU re
Storage

é&» Why Object Storage?

are awesome in terms of
mino @ A amazon

Google Cloud AZUre
Storage

« Performance
* Cost
« Developer Experience

« Connectivity

é&» Why Object Storage?

A
&=
MINIO @ A amazon
I I Goo;Ie Cloud AZU re 83
Storage

Performance
Cost
Developer Experience

Connectivity

are awesome in terms of

Achieve 3.5k PUT requests per
second per prefix

5.5k GET requests per

second per prefix

Auto-scales to this

limit automatically and overall
capacity is limitless
"something like 11 '9's of
availability"

é&» Why Object Storage?

are awesome in terms of

mino © A pfg g
« Performance
e Cost e Storage: $.023 per GB vs $.10 for
. : RDS or $.12 for EBS
Developer Experien . Netmorn:
o Connectivity * S5 per milllion PUT, $.40 per

million GET requests,
* SO transfer datain, 5.09 per GB
for data transfer out
* ~5-8x times cheaper than block
storage

é&» Why Object Storage?

are awesome in terms of

A amazon
Azure S3

« Performance
 (Cost

Developer Experience + Mature client SDKs

Vi e St Consist
Connectivity orrong Consstency
* AWS Storage Lens (2020)

* Feature-rich (events,
permissions, inventories,
replication...)

é&» Why Object Storage?

MiINO @& A

Google Cloud Azure

amazon
S3

Storage
Top 3 buckets /
Bucket Total storage % of total 9% change Trend from Sep 19 - Oct 19, 2020
39.9T8 58.30% 0.45% I R
19578 28.52% 0.48% —— P S]
9.0TB 13.18% 0.45% — e \
Prefix Total storage % of total % change Trend from Sep 19 - Oct 19, 2020
7.54% -55.58% hbde. 6 -fe ode o =
7.04% 15012% _o ASED o an. addd
5.41% 3164% o N :\/\w/: _4 '\/,: A\ o

are awesome in terms of

Mature client SDKs
Strong Consistency
(2020)

AWS Storage Lens
(2020)

Feature-rich (events,
permissions, inventories,
replication...)

&5 Why Object Storage?

MINIO ’ s amazon are awesome in terms of
e Performance
 Cost
« Developer Experience
e Connectivity § A‘E“'.':‘éf.‘.’p“#
4
20 snowflake

PySporK

&= Why Object Storage?

MINIO ’ s amazon are awesome in terms of
e Performance
 Cost
« Developer Experience
e Connectivity § A‘E“'.':‘éf.‘.’p“#
4
20 snowflake

&

PySporK

) LO: Basic Data Lake

Data-Intensive APIs
ML .

& Taaaas Date-separated .csv files

MINIO e an * ggnazon R Object Store

Google Cloud Azure
Storage

LO: Basic Data Lake

Data-Intensive APls
ML -

. Date-separated .csv files

I =:| g?r)nazon ...« Object Store
[}

Now let's make object store-specific improvements

&9 LO.5: Parquet File Format

&9 LO.5: Parquet File Format

X X
Q’b* &0 &Q
4 D
/Qg 5 093 = omm .
o X & Taeau Date-separated .csv files
F P S
¥ ¥ ¥

MINIO e an * ggnazon R Object Store

Google Cloud Azure

Storage

&9 LO.5: Parquet File Format

Benefits of parquet:
1. Columnar
2. Compressible
3. Complex

o?é X X
Q’b‘ ’b‘&Q/ &Q
@ R égo R
) A} ,)3 " oEm
& & & e Date-separated .csv files
g Py s
¥ ¥ &

MINIO e an * ggnazon BT Object Store

Google Cloud Azure

Storage

&9 LO.5: Parquet File Format

Challenges with parquet:
1. Operates at the object

level
X
00
& o?e’}' &)e"
g S
@ P P
@ o>
0\ \\ &%‘f) " o= oEm
o - N
K & & R Date-separated .csv files
,,'é* 09,,_ ,,0" .
¥ ¥ ¥

MINIO e A * g;nazon BT Object Store

Google Cloud Azure

Storage

& L1: Modern Table Formats

g \ A
o S &
& & & &S
g 0 9
f \5"4 vid g 2 N
#, 7 ?, q')' " = omm]

\ ¥ RN Tables comprised of
\76 (> optimized datafiles +
}o \}U transaction log(s)

~ No’

MINIO e an * ggnazon R Object Store

Google Cloud Azure

Storage

& L1: Modern Table Formats

New Operations at the table level
* Define schema

* Traverse versions {{ ,{“J& f{j ;’”

e Upsert atomically

e A
S P
70 g«”q #709 i'§ ?{qu ,;)9& -
,\ (} ¥ I Tables comprised of
)} optimized datafiles +
Implementations: i~ \}U transaction log(s)

* Apache Hudi b 5
e Apache Iceberg
* Delta Lake

MINIO e an * ggnazon R Object Store

Google Cloud Azure
Storage

Control

ion

Data Vers

e L2

&,
0,
a <. i %, Y
» KON U\w«.n
.ﬁﬁz o%\v
NN
S8 .,
@,
& x»\m.om. * \w\\w
’ \&\/Jv > 13 B
P~ \wJ

Control

ion

Data Vers

e L2

© o
C
4= = (@]
o <)
SHW by
]
2328 ©
QO vV »n ()
c Y o o—
T o Q 0
o 8 ¢ (@]

amazon

S3

1

o Q
g <
™
"0
@)
b —
sqr‘ m

Storage

) L2: Data Version Control

New Operations at the branch Ievel@f{'bxf g/ {@ﬁ{j P é.&“{‘; p
)\

R P DO @ @ s N ,{éﬁ {é’b‘
* Traverse among commits N N g @ @@@
;S »)’\ A):\ -f\ >)j$4)
N

* Merge two branches DA N X ¢
g ;5' 4"9 :)9{’ ‘l“'a> 090— & ‘l“") 0907 o'i? ~z~»"/ 0&? ’?;s"'
* Create a new branch ¥y ¥ ¥ & ¥ ¥ & ¥ P
. ¥
¢ Take a commit \}é L} 3 N
NS
" R 5 oo
S ’

Implementations: 0: \ Branches of
e lakeFS L) » Lo tables within a
* Proj Nessie L f repository

|
Data Repo

Google Cloud AZU re
Storage

MINIO e A * goeon "7 'L ObjectStore

&9 L2: Data Version Control Applications

A ol i A 3
5 & '’ S T
Y *,'v FS ¥ &
& ¥ ¢ L Y
7 3 $ b
« < f
} -------- Branches of
g .
& S\ tables within a
L) repository
T
Data Repo
raie 9 o *2&“’“" R Object Store

New Operations at the branch level
Traverse among commits
Merge two branches
Create a new branch

Take a commit

&9 L2: Data Version Control Applications

o & A ap R
¥ &S & & N
¥ f,«? 75’7 pay y(;? #,,v" & f}$ y\,&
) ¥ ¥ ¥y
S F F g
} & < 7
c N Branches of
g .
& S\ tables within a
L) repository
T
Data Repo
raie mam o *2&“‘““ T Object Store

New Operations at the branch level lakeFS CLI Example

Traverse among commits $ lakectl revert main"1

Merge two branches $ lakectl merge my-branch-main

Create a new branch $ lakectl branch create my-branch

. $ lakectl commit -m "new commit"
Take a commit my-branch

&9 L2: Data Version Control Applications

o & q*g & & ‘A,;‘”'A & AP j
L 7{7 & 7 fg ¢ 5 f) e
. J 3 >
} & & 3
g A T e whtin
L N repository
Data'Repo
MINIO 9 A *g;“m" " Object Store
New Operations at the branch level lakeFS CLI Example Useful for...
Traverse among commits $ lakectl revert main™1 Instant recovery from issues

$ lakectl merge my-branch-main

Merge two branches Atomic updates (cross-coll)

$ lakectl branch create my-branch

Create a new branch Dev Environment creation

. $ lakectl commit —m "new commit" . .
Take a commit my-branch Reproducing ML experiments

Stop operating at
the file level

Start operating at the table

and repository level

&9 Leveling Up Data Lake Takeaways

&
& L b .
G99 6e” 09 0ok
N\ & N
& & & \d\\ j\\ K § P fé\\\ &
o & & & & & S & AR
¥ < 7 ¥ F S 3 S & & F
¥ ¥ Y¢ & Y& S
¥ ¥ g
AN #
Y '> A} (>
1;'9 ‘}U ‘}U Y
g < R
'3
£ N
J
I
Data Repo
e A amazon
MINIO o Azure S3

lakeFS..

THANK YOU!

Type-safe Machine Learning
Orchestration with Flyte and
Pandera

@ Data Council Austin 2022

Niels Bantilan, ML Engineer @ Union.ai
03/23/2022

Type-safety is a critical feature of
orchestration tools that deal with data
and machine learning

Types define the set of values that data can take, but they
also define the domain of operations that we can perform on
that data.

integers € {1, 2,-1, 5,1000, ... }
strings € {“a", "xyz", “hello’, “foobar”, ...}

L1+1-52
X 1+"a" — undefined

L4 mean([1,2,3]) - 2
X mean([a’, "b’, “a”, “c"]) — undefined

Types can be simple:

int, float, str

Or more complex:

list[int]
dict[str, float]
dict[str, list[float]]

Let’s talk about housing &

7.2.7. California Housing dataset

Data Set Characteristics:

Number of 20640

Instances:
Number of 8 numeric, predictive attributes and the target
Attributes:
Attribute ¢ MedInc median income in block group
Information: ¢ HouseAge median house age in block group
¢ AveRooms average number of rooms per household
¢ AveBedrms average number of bedrooms per household
* Population block group population
¢ AveOccup average number of household members
¢ Latitude block group latitude
¢ Longitude block group longitude
Missing None
Attribute
Values:

Source: https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset

https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset

Let’s talk about housing &

pandas.DataFrame({

'"Latitude': [37.88,
"Longitude': [-122.23,
"AveBedrms': [1.0238,
"AveOccup': [2.5555,
"AveRooms': [6.9841,
'HouseAge': [41.0, .],
'MedInc': [8.3252, ..],
'Population': [322.0,
'MedHouseVal': [4.526,

})

-],

-],

-l)

} float
-],

.
.l
vl

> positive float

Source: https://www.dcc.fc.up.pt/~Itorgo/Regression/cal_housing.html

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html

Enforcing and maintaining data quality is challenging

Production machine learning has a complexity problem

How do | know if these components are compatible?

Machine
Resource Monitoring
; Management
Configuration Data Collection S
Infrastructure

Analysis Tools

Feature

. Process
Extraction

Management Tools

source: https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf

https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf

Input — Program — Output

A A

(Features, Labels) Learning Algorithm Model

Predictions oot

Input — Program — Model

/

Features o

program

ut

Strongly-typed interfaces unlock static analysis capabilities
that push many potential errors from the runtime context
iInto the compile-time context.

Reliability

component needs as input and what it produces as output.

Reproducibility: when a component fails 3% at its input/output boundaries, |
can be more confident that | can reproduce the error #&:.

Efficiency

Caching: if | want to determine whether | should hit the cache @ or
re-compute =4 the result of a component, | can first check for changes in a
function’s type signature before checking actual input values.

Parallelization: before | try to concurrently apply functions to a collection of
inputs JIl JIL 1, | can be confident that the elements in the collection are of

the correct type.

Auditability

Debugging: When a pipeline execution fails 3%, | can pinpoint the cause of
the error quickly and understand how to address it.

Data Lineage: | can understand how some downstream artifact) came to
be by looking at the upstream processes za, that produced it.

Flyte is a data- and machine-learning-aware orchestration
tool with type-safety built into multiple layers of the
software stack.

Flyte

Easily Compose
Workflows p
using Tasks as
Bwldmg Blocks

pip install flytekit

from flytekit import task, workflow

@task
get_data(): ...

@task
process_data(): ...

@task
train_model(): ...

@workflow
training_workflow():
data = get_data()
processed_data = process_data(data=data)
return train_model(processed_data=processed_data)

California House Price Regression

pandas.DataFrame({ .
'Latitude': [37.88, ..],
'Longitude': [-122.23, ..,
'AveBedrms': [1.0238, ..],
"AveOccup': [2.5555, ..],
‘AveRooms' : [6.9841, .],
'HouseAge': [41.0, .],
'MedInc': [8.3252, ..],
'Population’': [322.9, ..], J
‘MedHouseVal': [4.526, ..J, | target

> features

})

summarize_dataset

summarize_dataset

D end

p et dataset @
Pipeline
Overview

start @

python-task
9 train_model >\
>

evaluate_model

evaluate_model

Dataset = Annotated|
pd.DataFrame,
kwtypes (

Latitude=float,
Longitude=float,
AveBedrms=float,
AveOccup=float,
AveRooms=f loat,
HouseAge=f loat,
MedInc=float,
MedHouseVal=float,

What Types are |
We GOIﬂg 10 TARGET = "MedHouseVal
Use? DatasetSplits = NamedTuple(

"DatasetSplits", train=Dataset, test=Dataset

TrainingResult = NamedTuple(
"TrainingResult", model=Ridge, train_mse=float, test_mse=float

@dataclass_json
@dataclass
Hyperparameters:
alpha:
random_state: int = 42

Tasks are <
Containerized
Units of Work

Transparent
Interface

@task
get_dataset(test_size: float, random_state: int) -> DatasetSplits:
dataset = fetch_california_housing(as_frame=) . frame
return train_test_split(dataset, test_size=test_size, random_state=random_state)

@task
summarize_dataset(dataset: Dataset) -> pd.DataFrame:
return dataset.describe()

@task
train_model(dataset: Dataset, hyperparameters: Hyperparameters) -> Ridge:
model = Ridge(x*xasdict(hyperparameters))
return model.fit(dataset.drop(TARGET, axis="columns"), dataset[TARGET])

@task
evaluate_model(dataset: Dataset, model: Ridge) —> float:
features, target = dataset.drop(TARGET, axis="columns"), dataset[TARGET]
return mean_squared_error(target, model.predict(features))

Workflows are
Dynamic DAGS
that Compose
Tasks Together
to do Something
Useful [z

Create New Execution
california_housing_regression.simple_workflows.main

Workflow Version

bdc0462083afb8861d436d28301efcd4efde35402

Launch Plan

california_housing_regression.simple_workflows.main

Inputs
Enter input values below. Items marked with an asterisk(*) are required.

hyperparameters (struct)*

Auto-generate
Strongly Typed
Launch Forms .~

random_state (integer)

42

random_state (integer)

43

random_state

test_size (float)

0.2

test_size

ython:3.9-slim-buster

JRKDIR /root

NV VENV /opt/venv
ENV LANG C.UTF-8

ENV LC_ALL C.UTF-8
ENV PYTHONPATH /root

ARG config

RUN apt-get update &&
apt-get install -y
1ibsmé
libxext6

Guarantees i
Reproducibility

build-essential

RUN pip3 install awscli

ENV VENV /opt/venv

..as long as tasks are e
|dempotent ENV PATH="${VENV}/bin: $PATH

)PY requirements.txt /root
pip install -r /root/requirements.txt

COPY california_housing_regression /root/california_housing_regression
Y $config /root/flyte.config

image
FLYTE_INTERNAL_IMAGE $image

@task
train_model(dataset: Dataset, hyperparameters:
model = | je (x*asdict(hyperparameters))
return model.fit(dataset.drop(TARGET, axis="columns"), dataset[TARGET])

) =R

@task
train_model_type_error(dataset: dict, hyperparameters: Hyperparameters) —>
model = Ridge(x*asdict(hyperparameters))

return model.fit(dataset.drop(TARGET, axis="columns"), dataset[TARGET])

Flyte Statically
Analyzes “ the

DAG to catch
Type Errors

@task
get_dataset(test_size: float, random_state: int) -> DatasetSplits:
dataset = fetch_california_housing(as_frame=). frame
training_set, test_set = train_test_split(
dataset, test_size=test_size, random_state=random_state

Catch Value

test_set = test_set.drop("Latitude", axis="columns')

Errors * v\/hen return training_set, test_set
Testing Locally

TypeError: Failed to convert return value for var test for function _ _main__.get_dataset with
error <class 'pandera.errors.SchemaError'>: column 'Latitude' not in dataframe
MedInc HouseAge AveRooms AveBedrms Population AveOccup Longitude MedHouseVal

7310 2.4516 36.0 3.606232 1.073654 1398.0 3.960340 -118.19 1.478
4402 2.4677 49.0 3.793855 1.186323 2862.0 2.836472 -118.28 2.192
1929 4.6394 22.0 6.806691 1.018587 813.0 3.022305 -121.07 1.734
11551 3.3438 37.0 4.630037 1.003663 783.0 2.868132 -117.98 1.996

9882 3.0608 22.0 4.750515 1.039863 3794.0 2.607560 -121.79 1.683

n0 X

california_housing_regression.runtime_error_workflows.get_dataset

FAILED

TYPE
1 python-task

4 Executions Inputs Outputs Task

4 __—0
P4 1 Attempt 01
failed

python Lask

€ get_dataset <
\ R Traceback (most recent call last):
Kn OW W h e re \ AN File "/opt/venv/lib/python3.9/site-pa

ckages/flytekit/exceptions/scopes.py", line

. . X . | 165, in system entry point
yO U r PI pe I n e start @~ =@ train_model @<= return wrapped(*args, **kwargs)

Hide Error

3 e\ N | File "/opt/venv/lib/python3.9/site-pa
=¥ ~ 9 ckages/flytekit/core/base_task.py", line 52
B | eW U : \ 5, in dispatch_execute
p ») \ \‘ | raise TypeError(
\ Message:

| Failed to convert return value for var

\ test for function california_housing regres
sion.runtime_error workflows.get dataset wi
th error <class 'pandera.errors.SchemaErro

\ r'>: column 'Latitude’ not in dataframe

\ MedInc HouseAge AveRooms ... Ave
Occup Longitude MedHouseVal

17310 2.4516 36.0 3.606232 ... 3.9
~@ 60340 -118.19 1.478

| 4402 2.4677 49.0 3.793855 ... 2.8

36472 -118.28 2.192

1929 4.6394 22.0 6.806691 ... 3.0

22305 -121.07 1.734

11551 3.3438 37.0 4.630037 ... 2.8

@task(cache= , cache_version="1.0")
get_dataset(test_size: float, random_state: int) -> DatasetSplits:
dataset = fetch_california_housing(as_frame=) . frame
return train_test_split(dataset, test_size=test_size, random_state=random_state)

@task(cache= , cache_version="1.0")
summarize_dataset(dataset: Dataset) —> pd.DataFrame:

Cache the return dataset.describe()
Out U-tS Of a @task(cache= , cache_version="1.0")
p train_model(dataset: Dataset, hyperparameters: Hyperparameters) -> Ridge:

ge(x*asdict(hyperparameters))

model = Ridg
TaSk return model.fit(dataset.drop(TARGET, axis="columns"), dataset[TARGET])

@task(cache= , cache_version="1.0")
evaluate_model(dataset: Dataset, model: Ridge) —>
features, target = dataset.drop(TARGET, axis="columns"), dataset[TARGET]

£

features = features.drop("Latitude", axis="columns")
return mean_squared_error(target, model.predict(features))

Errors at the
End of a
Long-running
Training
Pipeline got you
Down £27?

Domain Version Chister Time
development 8c4d6213ade5d6339cc7431d497b665c465b99f1 3/21/2022 5:46:50 PM UTC

Traceback (most recent call last):

File "/opt/venv/lib/python3.9/site-packages/flytekit/exceptions/scopes.py",
return wrapped(*args, **kwargs)

File "/root/california housing regression/caching runtime error workflows.p
return mean_squared error(target, model.predict(features))

File "/opt/venv/lib/python3.9/site-packages/sklearn/linear model/ base.py",
return self. decision_function(X)

File "/opt/venv/lib/python3.9/site-packages/sklearn/linear model/ base.py",
X = self. validate data(X, accept sparse=["csr", "csc", "coo"], reset=Fal

File "/opt/venv/lib/python3.9/site-packages/sklearn/base.py"”, line 585, in
self. check n features(X, reset=reset)

File "/opt/venv/lib/python3.9/site-packages/sklearn/base.py", line 400, in
raise ValueError(

Message:
X has 7 features, but Ridge is expecting 8 features as input.

User error.

@task(cache= , cache_version="1.0")
evaluate_model(dataset: Dataset, model: R
features, target = dataset.drop(TARGET, axis="columns"), dataset[TARGET]

features = features.drop("Latitude", axis="columns")
return mean_squared_error(target, model.predict(features))

Don't
Re-compute,
H |t t h e C aC h e l get dakasek Python-Task SUCCEEDED

california_housing_regression

Recover Relaunch

ﬁ summgrlze_dgtaset . Python-Task SUCCEEDED
california_housing_regression

summarize_dataset Python-Task SUCCEEDED
california_housing_regression

trqln_model , _ Python-Task SUCCEEDED
california_housing_regression

Workflows
Execute Tasks

with Built-in
Parallelism

@workflow

main

hyperparameters: Hyperparameters,
test_size: float = 0.2,
random_state: int = 43,
TrainingResult:

train_dataset, test_dataset = get_dataset(
test_size=test_size, random_state=random_state

summarize_dataset(dataset=train_dataset)
summarize_dataset(dataset=test_dataset)

model = train_model(dataset=train_dataset, hyperparameters=hyperparameters)
train_mse = evaluate_model(dataset=train_dataset, model=model)

test_mse = evaluate_model(dataset=test_dataset, model=model)

return model, train_mse, test_mse

@task
summarize_dataset(dataset: Dataset) -> pd.DataFrame:
return dataset.describe()

@task
summarize_dataset(dataset: dict) -> pd.DataFr
return dataset.describe()

Static Type
C heC kl ﬂg *-/Q @workflow

main(

Applies to test_size: float = 0.2, |

random_state: int = 43,

Parallelized
train_dataset, test_dataset = get_dataset(test_size=test_size, random_state=random_state)

summarize_dataset(dataset=train_dataset)

| nvocatlo n S Of a summarize_dataset(dataset=test_dataset)
Task

TypeError: Cannot convert from scalar {
schema {
uri: "/tmp/flyte/20220321_133605/raw/abeld6d3bf9e88288a5ce4dleld44b55"
type {
}
}

}
to <class 'dict'>

Trace Model
Artifacts to the
Data and
Downstream
Processes that
Produced it

~—

Executions Inputs Outputs Task
Aython-tazk
€ get_dataset @

start @~

>

Executions Inputs Outputs Task

uri: s3://my-s3-bucket/o0/yvuexdgahf-n0-0/39
5891a1d8f2d749f693fbael3c5d657
ameters: {

e: 42

summarize_dataset

summarize_dataset

evaluate_model

Executions Inputs Outputs Task
o0: 0.5281455395571228

r
Executions Inputs Outputs Task

5891a1d8f2d749£693fbael3c5d657

: single (PythonPickle)
s3://my-s3-bucket/g5/yvuexdgahf-n3-0/9d

uri: s3://my-s3-bucket/o0/yvuexdgahf-n0-0/39

e361b7172e8ae036ec67971b3ce994/e8e45029
Oeb8blace7a27704£3e40585

But wait, what about data types for machine learning?

is a statistical typing and data testing library for
dataframes, providing tools for defining complex data types
and unit testing your pipelines with them.

Statistical Typing: Specifying the properties of collections
of data points

Primitive data types
Value range
Allowable values
Regex string match
Nullability

Single data point

Statistical Typing: Specifying the properties of collections

of data points

Collection of data points

Apply atomic checks at scale
Uniqueness

Monotonicity

Mean, median, standard deviation
Statistical distributions

Fractional checks, e.g. “90% of data
points are not null”

Statistical properties, by definition, can only be verified at
runtime, but we can also define functions that use statistical
type annotations that verify valid operations on those types.

Data Testing: Validating not only real data...

apply

.......
. "

(=

transformed data

S

Real world & [e transform function

validations .

.. but also the functions that produce them

....... apply
TR validations

Real world & raw data Bl transform function]r —>

transformed data
Unit tests » test case 1 =[transform function }
mock transformed
data
Generate test test case 2 \

cases

@ﬂ)ﬂ)

Define

Statistical
Types for your
DataFrame-like
Objects y,, &

pip install pandera

import pandera as pa

from pandera.typing import Series,

MySchema(pa.SchemaModel) :
coll: Series[float]
col2: Series[int]
col3: Series[str]

@pa.check_types

func(df: DataFrame[MySchemal):

DataFrame

and

Flyte Play Well
Together

pip install flytekitplugins-pandera

import

import pander

from flytekit i

from pandera.typing import Series, DataFrame

MySchema(pa.SchemaModel) :
colll:nS 1

col2: Series

CONZIS

@task
func(df: DataFrame[MySchema]):

Defining a
Statistical Type

for California
Housing
Dataset &

CaliforniaHousingData(pa.SchemaModel):
Latitude: Series[float] = pa.Field(in_range={"min_value": -90, "max_value": 90})
Longitude: Series[float] = pa.Field(in_range={"min_value": -180, "max_value": 180})
AveBedrms: Series[float] = pa.Field(in_range={"min_value": @, "max_value": 1_000_000})
AveOccup: ;] a.Field(in_range={"min_value": @, "max_value": 1_000_000})
AveRooms: t] = pa.Field(in_range={"min_value": @, "max_value": 1_000_000})
1

HouseAge: as [float] = pa.Field(in_range={"min_value": @, "max_value": 1_000_000})
MedInc: Series[float] pa.Field(in_range={"min_value": @, "max_value": 1_000_000})
MedHouseVal: Series[float] = pa.Field(
mean_eq={
"value": 2.0685,
"alpha": le-3,
"error": "MedHouseVal mean value is not equal to 2.0685 [alpha=le-3]",

Config:

coerce =

2500
2000

Frequency

log(MedHouseVal)

mean_eq(pandas_obj, *, value, alpha):

i

Null hypothesis: the mean of data is equal to the value argument.

If pvalue is greater than alpha, we can't reject the null hypothesis
_, pvalue = stats.ttest_lsamp(pandas_obj, value)
return pvalue >= alpha

mean_eq_strategy (
pandera_dtype: pa.DataType,
strategy: Optionall[st.SearchStrategy] = ’

Custom Checks S
are Just...

alpha,

if strategy:
raise pa.errors.BaseStrategyOnlyError(

"mean_eq_s is a base strategy. You cannot specify the

to chain it to a parent strateg

&, FU n C'l'_ | O n S &,‘r return pandas_d‘;;/pe_;t rategy(

pandera_dtype,
strategy=st.builds(! np.random.normal(loc=value, scale=0.01))

extensions.register_check_method(
mean_eq,
statistics=["value", "alpha"],
strategy=mean_eq_strategy,
supported_types=[pd.Series],
check_type="vectorized",

Know When
Your Data Has
Missing
Columns f

TASK NAME NODE ID

get_dataset

california_housing_regression

[3/3] currentAttempt done. Last Error: SYSTEM::

TYPE

Python-Task

STATUS

FAILED

START TIME

3/21/2022 6:45:38 PM UTC
3/21/2022 2:45:38 PM EDT

Traceback (most recent call last):

LOGS

View Logs

File "/opt/venv/lib/python3.9/site-packages/flytekit/exceptions/scopes.py"”, line 165, in system entry poi

nt

return wrapped(*args, **kwargs)

File "/opt/venv/lib/python3.9/site-packages/flytekit/core/base task.py"”, line 525, in dispatch_execute

raise TypeError(

Message:

Failed to convert return value for var test for function california_housing regression.pandera_column_error

_workflows.get_dataset with error <class 'pandera.errors.SchemaError'>: column 'Latitude' not in dataframe
MedHouseVal
s
2.192
1.
1
1

MedInc
7310 2.4516
4402 2.4677
1929 4.6394
11551 3.3438
9882 3.0608

HouseAge

36.
49.
22.
37.
22,

[5 rows x 8 columns]

oo o oo

AveRooms

3

.606232
3.793855
6.806691
4.

4.750515

630037

AveOccup Longitude

NN W N W

.960340
.836472
.022305
.868132
.607560

-118

-117

.19
-118.
-121.
.98
-121.

28
07

79

478

734

.996
.683

DURATION

TASK NAME NODE ID TYPE STATUS START TIME LOGS
Queued Time

get_dataset Python-Task FAILED 3/21/2022 6:51:21 PMUTC

n0 5 - 44s View Logs
california_housing_regression 3/21/2022 2:51:21 PM EDT g

[3/3] currentAttempt done. Last Error: SYSTEM::Traceback (most recent call last):

Kn OW W h e n File "/opt/venv/lib/python3.9/site-packages/flytekit/exceptions/scopes.py", line 165, in system entry poi

nt

return wrapped(*args, **kwargs)
O U r a a a S File "/opt/venv/lib/python3.9/site-packages/flytekit/core/base_task.py", line 525, in dispatch_execute
raise TypeError(
the Wrong

Failed to convert return value for var test for function california housing regression.pandera_dtype error
workflows.get dataset with error <class 'pandera.errors.SchemaError'>: Error while coercing 'Latitude' to type
ype float64: Could not coerce <class 'pandas.core.series.Series'> data container into type float64:

index failure case

0 7310 N/A
1 4402 N/A
2 1929 N/A
3 11551 N/A
4 9882 N/A

DURATION

TASK NAME NODEID TYPE STATUS START TIME LOGS
Queued Time

get_dataset 0 Python Task FAILED 3/21/2022 6:52:01 PMUTC

n . 45s View Logs
california_housing_regression 3/21/2022 2:52:01 PM EDT wioe

[3/3] currentAttempt done. Last Error: SYSTEM::Traceback (most recent call last):

K n OW W h e n File "/opt/venv/lib/python3.9/site-packages/flytekit/exceptions/scopes.py", line 165, in system entry poi
nt

return wrapped(*args, **kwargs)

File "/opt/venv/lib/python3.9/site-packages/flytekit/core/base_task.py”, line 525, in dispatch_execute
our vala mas s

Message:

-tl Ie VVrOI Ig Failed to convert return value for var test for function california housing_regression.pandera value_error_

workflows.get_dataset with error <class 'pandera.errors.SchemaError'>: <Schema Column(name=Latitude, type=DataT
ype(float64))> failed element-wise validator 0:
\/a ueS H . <Check in_range: in_range(-90, 90)>
failure cases:
index failure case

0 7310 -1000.
1 4402 -1000.
2 1929 -1000.
3 11551 -1000.
4 9882 -1000.

c oo oo

Know When
Your Data Has
the Wrong
Statistical
Distribution

DURATION
TASK NAME NODE ID TYPE STATUS START TIME . r LOGS
Queued Time

3/21/2022 6:52:04 PMUTC
45s

3/21/2022 2:52:04 PM EDT ViewLogs

get_dataset no Python-Task FAILED

california_housing_regression
[3/3] currentAttempt done. Last Error: SYSTEM::Traceback (most recent call last):

File "/opt/venv/lib/python3.9/site-packages/flytekit/exceptions/scopes.py”, line 165, in system entry poi

nt
return wrapped(*args, **kwargs)
File "/opt/venv/lib/python3.9/site-packages/flytekit/core/base_task.py", line 525, in dispatch_execute
raise TypeError(
Message:

Failed to convert return value for var test for function california_housing_ regression.pandera_ stats_error
workflows.get dataset with error <class 'pandera.errors.SchemaError'>: <Schema Column(name=MedHouseVal, type=Da
taType(float64))> failed series or dataframe validator 0:
<Check mean_eq: MedHouseVal mean value is not equal to 2.0685 [alpha=le-3]>

CaliforniaHousingData(pa.SchemaModel):
Latitude: Series[float] = pa.Field(in_range={"min_value": -9@0, "max_value": 90})
Longitude: Series[float] = pa.Field(in_range={"min_value": -180, "max_value": 180})
AveBedrms: Series[float] = pa.Field(in_range={"min_value": 0, "max_value'": 1_000_000})
AveOccup: Series[float] pa.Field(in_range={"min_value": @, "max_value": 1_000_000})
AveRooms: Series[float] pa.Field(in_range={"min_value": @, "max_value": 1_000_000})
HouseAge: Series[float] = pa.Field(in_range={"min_value": @, "max_value": 1_000_000})
MedInc: Series[float] = pa.Field(in_range={"min_value": @, "max_value": 1_000_000})
MedHouseVal: Series[float] = pa.Field(
mean_eq={
"value": 2.0685,

Synthesize Valid

yn eSlze a | irrprj\?‘ ”;cdHouseVal mean value is not equal to 2.0685 [alpha=le-3]",
}

Data Under)

Config:
coerce =

In [4]: CaliforniaHousingData.example(size=10)

Out[4]:

Latitude Longitude AveBedrms AveOccup AveRooms HouseAge MedInc MedHouseVal
0 79.860317 -148.351836 617031.632900 430128.971850 443742.477199 406612.645892 131667.872588 2.086141
1 -83.911119 -152.615588 787734.901377 913864.745456 829602.617830 588931.710189 625756.218540 2.072502
2 -80.177753 45.788823 587724.138773 200528.372483 394840.357825 521478.101969 426340.773699 2.078287
3 -14.809506 -38.640055 243580.951957 684329.660363 606582.209433 999449.778528 630028.219752 2.090909
4 -27.059190 -151.681259 864490.359815 389024.206781 916451.018379 909982.137180 931783.406294 2.087176
5 -10.783020 -43.581889 215860.187036 894330.091919 8619.707035 454911.557053 334877.131920 2.058727
6 64.063853 110.388789 467241.509949 893325.190377 915692.697615 648908.833563 413997.494038 2.078001
7 -65.360114 -148.623687 516877.114701 832633.647027 223950.545425 617144.879712 712547.371572 2.066986
8 -43.119623 61.017426 311425.228971 86337.978370 213803.011351 282039.522190 884250.395130 2.067468
9 -74.311844 -86.239245 185285.958695 385889.718367 904564.855290 111351.354414 336936.792431 2.072606

Test Your Data...

® summarize_dataset @
))

—

D get dataset @

start ©

D evaluate_model @

end

n0 X

california_housing_regression.pandera_workflows.get_dataset

TYPE
python-task

Executions Inputs Outputs Task

: s3://my-s3-bucket/z1/cxb3yzp73j8-n0-0/5¢c
9363c2404e7e2ebecOfel62fde98de
columns: [
0: Latitude (float)
1: Longitude (float)
2: AveBedrms (float)
3: AveOccup (float)
4: AveRooms (float)
5: HouseAge (float)
6: MedInc (float)
7: MedHouseVal (float)
1
train:
: s3://my-s3-bucket/z1/cxb3yzp7j8-n0-0/b7
3££c5079c07d0al5081ec8d22516c6
columns: [
0: Latitude (float)
1: Longitude (float)
2: AveBedrms (float)
3: AveOccup (float)
4: AveRooms (float)
5
6
7

uri

: HouseAge (float)
: MedInc (float)
: MedHouseVal (float)

.. the Functions

That Produce
Them...

test_dataset():
kwargs = {"test_size": 0.2, "random_state": 100}
"a_W(ws.get_dataset (*kkwargs)

r get_dataset_fn, error_regex in [

(

pandera_column_error_workflows.get_dataset,
)s
(

era_dtype_error_workflows.get_dataset,

)s
(

pandera_value_error_workflows.get_dataset,

\ (

)s
(

pandera_stats_error_work /s.get_dataset,

\ [\]

)

with pytest.raises(TypeError, match=error_regex):
get_dataset_fn(xkxkwargs)

\)

@settinc
@given(pz

a nd the test_train_model(dataset):
oo model = pandera_workflows.train_model(

dataset=dataset,
hyperparameters=pandera_workflows.Hyperparameters(alpha=0.1, random_state=100)

5 (max_examples=10)

ra.strategy(size=30))

a_workflows.CaliforniaHousin

Artifacts They
H el p C reate features = dataset.drop(pandera_wo

«f lows.TARGET, axis="columns")
predictions = model.predict(features)
ssert all(isinstance(x, float) for x in predictions)

Takeaway 1

Flyte is an orchestration and distributed execution platform where
type-safety is deeply integrated with other features, which together provide
strong reliability, efficiency, and auditability guarantees.

Takeaway 2

With , YOu can ensure the quality of data flowing through your
machine learning pipelines and the correctness of those pipelines
themselves by expressing statistical types directly in your codebase.

Takeaway 3

With Flyte and combined, you can build, deploy, and scale these
ML pipelines while enjoying the guarantee that, when things go wrong,
you'll know where exactly the error occurred to help you fix it.

Flyte Roadmap

Flyte Decks: A Customizable Reporting API for
your Pipeline Artifacts

ML-awareness: Intra-task model checkpointing,
data labeling.

Serving Integrations: support for model serving,
low latency batch workflows, model monitoring.

Roadmap

Extensibility: support for xarray, jsonschema,
pyarrow, and more!

User Experience: more built-in checks, statistical
hypothesis checks

Interoperability: tighter integrations with the
python ecosystem, e.q. fastapi, pydantic, pytest

Where do | learn more?

Flyte Pandera
website: www.flyte.org docs: pandera.readthedocs.io
docs: docs flyte.org repo: github.com/pandera-dev/pandera

repo: github.com/flyteorg/flyte

Contact

email: niels@union.ai

twitter: @cosmicbboy

linkedin: linkedin.com/in/nbantilan

https://twitter.com/cosmicBboy
http://www.linkedin.com/in/nbantilan/
http://www.flyte.org
https://docs.flyte.org/
https://github.com/flyteorg/flyte
https://pandera.readthedocs.io/en/stable/
https://github.com/pandera-dev/pandera

SODA

Don’t Let Your Models Decay!

SODA..

Bastien Boutonnet,
Lead Data Scientist

Bastien joined Soda last year and before that he was at
TripActions and Travelbird, once he decided that the
Postdoctoral Fellow wasn't half the fun ;-). He's a die hard

q . : dbt fan, DJ, and French person living in Amsterdam.

https://www.bastienboutonnet.com

https://www.bastienboutonnet.com

Zillow: A Cautionary Tale

$500m

Zillow overestimated
the value of the houses it
purchased in Q3 and Q4
of 2021 by over $500m

Coincided with a strong
change in housing
market conditions

which causes housing
prices to fall

~25%
Q3 losses of $304m,

leading into a ~25%
workforce reduction

Strong evidence that their
models were trained on
the, then “old” situation
which indicated growing
prices, which caused their
unattended models to
work under a different
“assumption” or concept

290

- Their models were rigorously tested during
development

Did they d O - Their models were released to production

gradually and KPIs were closely monitored.

eve ryth I n g - When those were deemed satisfactory, humans

derived decisions to aggressively expand their
bad Iy? purchasing programme.

No!

their job

291

- Some phenomena in nature are likely to change,
and can do so drastically. When it comes to
pricing, that’s definitely true.

CO u Id it - This is commonly referred to as “data drift” and it

can be detected by:

have been - Tracking and alerting on drift.
avo i ded ? - Tracking and altering on accuracy.
| |

Yes!

Is not their job or core

292

A Detour Into Data Drift

Mean: 500

distribution
initial_dist

L (LI UIETE DR TR LR L TUTHER)
400 50 600
order_price

So what is data drift?

Mean: 500 Mean: 650

distribution
initial_dist
prod_distribution

M N N1 01 tu
400 500 600
order_price

When the distribution of one or more of
your input features has changed between,
for example training time and deployment.

“Freeze” a reference distribution

How do you

detect it? Compare distribution at time t+n
and reference distribution

Simple right? (=)

On the Importance of A Data Quality
Framework, Whichever It Is

Why data quality monitoring
Is “hard”.

- Simply put: you have to write a bunch more code

- Choose your methods from a sometimes large pool
- Orchestrating the checks

- Make it reusable

- Maintain and extend

- Thelist goes on... m

\ L

© Soda Data NV. Proprietary and Confidential. 297

Data quality should not add
time to release.

- Developing ML automation takes time and
resources

- Data quality monitoring, isn’t an internal data
team’s core product.

- Implementing data quality monitoring can easily
increase the scope of any data product’s
feature set with no direct value add.

- It often ends up “on the backlog”

© Soda Data NV. Proprietary and Confidential. 298

Wouldn’t it Be Nice If...

Wouldn’t it be nice if you
could to the following:

ile: ./orders_order_price_distrib_ref.yml

€ oBS Fie Edn View Docks

+ 4

+ 4

+

4

Profile Scene Collection

distribution_checks
distribution_checks

distribution_checks
distribution_checks
distribution_checks
distribution_checks

distribution_checks

rde scal

100, size=1000),

ax()

: ['pr

. @+ # Sun20Mar 1655321

executed in 28ms, finished 15:39:45 2022-03-20

sns.displot(both_distribut

order

executed in 207ms, finished 15:40:46 2022-03-20

.FacetGrid

https://docs.google.com/file/d/1d5TNMMq5eRb5_qOY8Kj71OUMzbgAMo5K/preview

What’s Next?

Why stop there?

- Connect to Soda Cloud (to avoid inconvenience of
experimental file-based experimental feature)

- Rich visualisation in Cloud/and OSS
- More user control over algos + more algos to choose from

- Entirely data based solution (store reference sample instead
of object in cloud/s3)

- Bespoke drift wrappers (monitor for both concept and label
drift over one or several datasets)

Give it a try!

- docs.soda.io
- 'pip install soda-core-[datasource_type] soda-core-scientific

- https://github.com/sodadata/soda-core - Bastien Boutonnet

(find me on the socials)

- www.bastienboutonnet.com

mailto:bastien@soda.io

“Drinkbelgian
Eat Iexan

) ~ L] ~ :
be FHa DY h
_Wedneday, March 23rd

~ Mortsubite | 7:50pm =12 viidnight

Thank You!

