
Scaling up your pandas workflows
with Modin

Devin Petersohn

Co-founder and CTO, Ponder

2

About me

● Active Duty U.S. Marine
○ Korean Crypto-Linguist
○ 3d Radio BN (2008-2012)

● BS - University of Missouri (2016)
● MS - UC Berkeley (2018)
● PhD - UC Berkeley (2021)

○ NSF Graduate Research Fellow
○ Chancellor’s Fellow
○ Modin started as my PhD project

● Currently: Cofounder and CTO of Ponder

3

A dataframe built from first

principles

4

Data Science Organization problems

What problems do data science teams face?

5

Data Science has a scalability problem

6

Data Science has a scalability problem

7

Data Science Teams* have a scalability problem

8

Data Science Teams* have a scalability problem

MORE DATA SCIENTISTS != MORE INSIGHTS

9

Data Science Teams* have a scalability problem

MORE DATA SCIENTISTS != MORE INSIGHTS

MORE DATA SCIENTISTS != MORE PRODUCTION MODELS/JOBS

10

Many organizations look like this

Laptop/Workstation

Prototyping

Exploring

New Data Source

New spec

New
requirements

11

Many organizations look like this

Small ClusterLaptop/Workstation

Prototyping
Testing

Exploring

New Data Source

New spec

New
requirements

 Rewrite

Big Data Tool

12

Many organizations look like this

Large ClusterSmall ClusterLaptop/Workstation

Prototyping
Testing

Exploring

Production

New Data Source

New spec

New
requirements

 Rewrite Rewrite

Big Data Tool Big Data Tool

13

Many organizations look like this

Large ClusterSmall ClusterLaptop/Workstation

Prototyping
Testing

Exploring

Production

New Data Source

New spec

New
requirements

FeedbackRewrite

 Rewrite Rewrite

Big Data Tool Big Data Tool

14

15

Data Science scalability is

human scalability

There is no service that can spin up more Data Scientists,
so we must treat them like the finite resource they are

16

Data Science scalability is a

human scalability issue

There is no service that can spin up more Data Scientists,
so we must treat them like the finite resource they are

But why?

17

?

18

?

19

Shifting the focus from the machine to the user

Tools should work for data
scientists

Data Scientists shouldn’t have
to work for their tools

20

Ponder’s work:

Transparently scale existing tools

Abstract away all of the components of the system that data scientists don’t
care about, only expose details they do care about.

21

Ponder’s work:

Transparently scale existing tools

Abstract away all of the components of the system that data scientists don’t
care about, only expose details they do care about.

22

23

Let’s start from first principles!

24

But the Pandas API doesn’t scale!

The API is simply an expression of what to do

25

Solving dataframes from first principles

- Dataframe Data Model
- Dataframe Algebra
- Parallelism / Decomposition Rules
- Type System
- Operator Semantics
- Implementation

26

First Steps: Formalize the Dataframe

27

28

29

30

df.describe(..)

pd.concat(..)

df.drop(..)

df.groupby(..)

df.explode(..)df.pivot(..)

pd.merge(..)

600+ functions to clean, reshape, explore,
and summarize data spanning rel., linear,

& spreadsheet algebra

Dataframes: A New Data Model and API

Array

Column Labels

Column Domains

Row

Labe
ls

Dataframes: Mixed type-array, w/ row
and column labels

Convenience

Flexible

Versatility

Entire query at once

Strict schema

SFW or bust

Incremental + inspection

Mixed types, R/C and
data/metadata equiv.

600+ functions

Everybody loves pandas!

34

Inherited Data Model

1990 1995
2000 (stable) 2008

~70 operators >200 operators

Small group development Large community development

35

Let Σ∗ be the finite set of characters from alphabet Σ.

Let Dom be a finite set of domains {dom1,dom2, ...}.

Let each domi ∈ Dom have a mapping pi: Σ
∗ → domi.

A dataframe is a tuple (Amn, Rm, Cn, Dn), where Amn is an arrangement of entries in columns and rows

from the domain Σ∗, Rm is a vector of row labels from Σ∗, Cn is a vector of column labels from Σ∗, and

Dn is a vector of n domains from some finite set of domains Dom, one per column, each of which can

also be left unspecified. We call Dn the schema of the dataframe. If any of the n entries within Dn is

left unspecified, then that domain can be induced by applying a schema induction function S(·) to the

corresponding column of Amn. The schema induction function S: Σ∗ → Dom, assigns an arrangement

of m strings to a domain in Dom.

Dataframe formal definition (VLDB 2020)

36

Dataframe data model

● Ordered, but not necessarily sorted
○ Rows and columns

● No predefined schema necessary
○ Types can be induced at runtime

● Typed Row/column labels
○ Labels can become data

● Indexing by label or by row/column numeric index
○ “Named notation” or “Positional notation”

37

From a relational algebra perspective, dataframes contain:
● An ordered table

● Named rows of arbitrary type

● A lazily-induced schema

● Column names of arbitrary type

● Column and row symmetry

● Support for linear algebra operators (e.g. matrix multiply)

Dataframes from two perspectives

Ordered Relation
Named Rows

Lazy Schema

38

● Heterogeneous matrix-like data structure

● Both numeric and non-numeric types

● Explicit row and column labels

● Indexing by label in addition to position

● Support for relational algebra operators (e.g.

join)

From a linear algebra perspective:

Heterogeneous 2-d

matrix

Row Labels

Column Labels

Dataframes from two perspectives

39

- Dataframe Data Model ✔
- Dataframe Algebra
- Parallelism / Decomposition Rules
- Type System
- Operator Semantics
- Implementation

40

Next: What can a dataframe do?

First Principles next steps:

define an algebra

41

40+ APIs

280+ methods

280+ methodspd.DataFrame

pd.Series

Convenience methods (e.g. concat)

What can Pandas Do?

Total: 600+ operators in pandas

42

T
abs
add
all
corr
dropna
get
groupby
head
join
median
pivot
reindex
query
rolling
tail
where

Example
Pandas

APIs

t()
melt()
merge()
head()
slice()
distinct()
arrange()
rename()
summary()
group_by()
aggregate()
union()
with()
subset()
match()
sample_n()
row_labels()

Example
R

APIs

Proof by exhaustion that all pandas APIs are covered

44

- Dataframe Data Model ✔
- Dataframe Algebra ✔
- Parallelism / Decomposition Rules
- Type System
- Operator Semantics
- Implementation

Decomposition Rules -> Formalize parallelism

Cell wise: An operator can be applied

to a “unit dataframe” independently

Row-wise: An operator can be applied

to each row independently

Column-wise: An operator can be

applied to each column independently

46

- Dataframe Data Model ✔
- Dataframe Algebra ✔
- Parallelism / Decomposition Rules ✔
- Type System
- Operator Semantics
- Implementation

47

Order SemanticsType System

Formalization of other components of the dataframe

48

- Dataframe Data Model ✔
- Dataframe Algebra ✔
- Parallelism / Decomposition Rules ✔
- Type System ✔
- Operator Semantics ✔
- Implementation

49

So now we know:

● What a dataframe is (formally)

● What operators a dataframe supports

● How these operators map back to pandas

● How to handle dataframe types

● How to decouple logical and physical order

● How to maximally parallelize each operator

50

A dataframe built from first

principles

51

Modin
Accelerate your pandas workloads by changing one line of code

pip install modin

To use Modin:

To install Modin:

52

What can we do with the formalism?

● Data model
○ Expose the “feel” of pandas without

the baggage

● Dataframe Algebra
○ Smaller surface to implement

○ Map operators to other systems

53

Compute Engine

Pandas on everything with Ponder

Databases Infrastructure

PostGresSQL

RAY

Your DB Here!

by

54

Many organizations look like this

Large ClusterSmall ClusterLaptop/Workstation

Prototyping
Testing

Exploring

Production

New Data Source

New spec

New
requirements

FeedbackRewrite

 Rewrite Rewrite

Big Data Tool Big Data Tool

55

How Modin is being used in practice:

Large ClusterSmall ClusterLaptop/Workstation

Prototyping

Testing

Exploring

Production

New Data Source

New spec

New
requirements

Feedback

56

Modin Open Source Impact

🔥 2.5+ Million Downloads
🤝 100+ contributors
🚀 Used by 30+ companies

Used by 10% Fortune 100 companies & more!

7k

 90+

57

Current State

E-Commerce Case Study

150M Events
Streamed Daily

50k Records
Pandas Limit

1000X
More Data with Modin

 < 20 Sec.
Faster with Modin

Pricing + Recommendation

Pipelines in Production

With Ponder

Modin

58

Current State

Finance Case Study

10k+ Lines
Of Code to change est.

2k+ Hours
Human time to rewrite

est.

100X
Reduction in code

reduction w/ Modin

100X
Reduction in human

time with Modin

Regulatory Reporting

Pipelines Migration

With Ponder

Modin

59

Compute Engine

Bring your database!

Databases Infrastructure

PostGresSQL

RAY

Your DB Here!

by

60

• Formal dataframe data model & algebra

• Dataframes are newly defined structures with a lot of

open problems!

• Dataframe algebra can express all of pandas

• Reference implementation: Modin

• High impact -> problems are real and pressing need

• Deep technical problems still exist!

• It is an exciting time to be working on dataframes

In summary…

61

Thank you!

Devin Petersohn
devin@ponder.io

62

Backup

63

Current state of affairs

64

Current state of affairs

● Coverage of pandas API

○ pandas.DataFrame - 83% (93% based on usage)

○ pandas.Series - 77% (86% based on usage)

○ pandas.read_* - 42% (>90% based on usage)

●

65

API Vision - 5 years

● More complete pandas API - 95%

● All common interactive data processing modalities

○ Spreadsheet API

○ SQL API

○ New Modin API

● Hooks for SQL systems to implement parts of the API

○ A partial pandas API for relational systems

● Preliminary numpy API - more implementation proof that dataframes can act as matrices

○ Plug in to sklearn

66

Engineering Vision - 5 years

● Query planning/optimization

○ Optimize for user’s time

○ Some research involved here (more later)

○ Extending Calcite?

● GPU integration

● MPI, other compute engines

● Serverless

67

Case study: Pivot
transpose +
groupby + map

Transpose + map

68

Large ClusterSmall ClusterLaptop/Workstation

Current Machine Learning Lifecycle

Prototyping

Testing

Exploring

Production

New Data Source

New spec

New
requirements

FeedbackRewrite

69

Large Cluster &
CloudSmall Cluster

Laptop &
Workstation

One API, all scales (think SQL)

Prototyping Testing

Exploring

Production
New Data

Source

New spec

New
requirements

FeedbackIncorporate*

70

Data Science Landscape: Today

Tools efficient for O(1MB) Tools efficient for O(100s GB+)

Usable but not
scalable

Scalable but not
usable

71

● Difficult to debug

● Requires distributed computing
knowledge

○ Must understand partitioning
○ Lazy evaluation - hated

● Designed by systems people for
systems people

○ New APIs that do the same thing

Data Science Landscape: Today

Tools efficient for O(1MB) Tools efficient for O(100s GB+)
● Follow typical programming styles

● Tools are widely used and
understood - in production

● The majority of college graduates
will already know these tools

● No scalability

72

Data Science Landscape: Today

Tools efficient for O(1MB) Tools efficient for O(100s GB+)

Usable and
scalable

Scalable and
usablepandas++

73

Dataframe Algebra

Columns become rows/rows
become columns

df.T

74

Dataframe Algebra

User defined function across all
rows

df.apply(f, axis=1)

75

Dataframe Algebra

Elevating data into metadata, or
moving metadata into the data

df.set_index(df[“col”])
df.reset_index(drop=False)

76

Working with tabular

data

A (very) brief history

77

Relational Databases

● Invented in the 1970’s by Edgar F. Codd

○ Defined a data model for structured data

○ Schema must be known before input into DBMS

○ Decoupling of the physical representation from logical

● Popularized in the 1980’s

○ Data model has stood the test of time, still in use!

○ SQL

78

Census - the original “Big Data”

● 1880’s - Seaton Device, manual intervention and counting - took almost

10 years

● 1890’s - Herman Hollerith’s machine, punch cards - took 18 months

● 1940’s - First use of electronic computers

79

Dataframes

● Emerged from a real-world need at the time
○ No way of handling unstructured or semi-structured data

○ Matrices and Tables did not fit their need, something new needed

● Not formalized!

● Dataframes have an origin in S

80

Focus: pandas

81

pandas success

● 23 million installs/month

● Over 300 million total installs

● Used by over 209k projects in GitHub

● 24.6k GitHub stars

82

40+ APIs

280+ methods

280+ methods

Pandas API

pd.DataFrame

pd.Series

Convenience methods (e.g. concat)

83

40+ APIs

280+ methods

280+ methods

pandas API is huge and expressive

pd.DataFrame

pd.Series

Convenience methods (e.g. concat)

84

What do people use within pandas API?

https://github.com/modin-project/study_kaggle_usage

https://github.com/modin-project/study_kaggle_usage

85

Definition: Dataframes

86

Definition: Dataframes

87

Definition: Dataframes

88

Modin architecture

89

Modin architecture

90

Modin architecture

91

Modin architecture

92

Modin architecture

93

Modin architecture

94

Modin architecture

95

Dataframes emerged from a need to hybridize

Matrix Relational Table Spreadsheet

96

Dataframes

Dataframes emerged from a need to hybridize

Matrix Relational Table Spreadsheet

97

Dataframe Algebra

“Position notation”
or

“Named notation”

df.iloc[row_pos, col_pos]
df.loc[row_lab, col_lab]

98

Dataframe Algebra

Ordered union

df.append(df2)

99

Dataframe Algebra

Ordered Joins bring
fundamentally new

challenges

df.merge(df2, how=”inner”)
df2.merge(df, how=”inner”)

10
0

Dataframe Algebra

This is a generalized
definition of groupby

df.count()
df.groupby(df.columns).count()

10
1

Dataframe Algebra

Conceptually a rolling function,
can output same table shape or

smaller (groupby)

df.cumsum()
df.rolling

10
2

Dataframe Algebra

Insert the row labels into the data
and reset the row labels to the

positional notation

df.reset_index(drop=False)

10
3

Modin architecture

10
4

Data Science Landscape: Today

Tools efficient for O(1MB) Tools efficient for O(100s GB+)

Usable but not
scalable

Scalable but not
usable

10
5

Data Science Landscape: Today

Tools efficient for O(1MB) Tools efficient for O(100s GB+)

Usable and
scalable

Scalable and
usable

10
6

Dataframe origin

10
7

A (not so) long time ago, at Bell Labs

Chapter 3: Data for Models

“Dataframes are more general than
matrices in the sense that matrices in S
assume all elements to be of the same
mode—all numeric, all logical, all
character string, etc.”

“... data frames support matrix-like
computation, with variables as columns
and observations as rows,
and, in addition, they allow computations in
which the variables actas separate objects,
referred to by name.”

10
8

Modin partitioning - logical column partitioning

10
9

Modin partitioning - logical row partitioning

11
0

Modin architecture

● Highly flexible

● Layered architecture
○ New optimizations can be implemented as they are developed

● Support for dataframe algebra

● Partitioning approach lends itself to allowing us to use optimizations

from multiple domains

11
1

Data Science LifeCycle

Dirty Data

Exploration

Testing

Cleaning

Database

● Static

● Defined a data model for

structured data

● Schema must be known before

input into DBMS

● Decoupling of the physical

representation from logical

The focus of this
dissertation
(EDA)

Important, but not the focus

● Iterative

● Unstructured data model

● Schema is lazily induced

● No decoupled physical

representation from logical

(Production)

11
2

Data Science LifeCycle

Dirty Data

Exploration

Testing

Cleaning

Database

● Static

● Defined a data model for

structured data

● Schema must be known before

input into DBMS

● Decoupling of the physical

representation from logical

The focus of this
dissertation
(EDA)

Important, but not the focus

● Iterative

● Unstructured data model

● Schema is lazily induced

● No decoupled physical

representation from logical

(Production)

Dataframes
Databases

