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About me

● Active Duty U.S. Marine
○ Korean Crypto-Linguist
○ 3d Radio BN (2008-2012)

● BS - University of Missouri (2016)
● MS - UC Berkeley (2018)
● PhD - UC Berkeley (2021)

○ NSF Graduate Research Fellow
○ Chancellor’s Fellow
○ Modin started as my PhD project

● Currently: Cofounder and CTO of Ponder
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A dataframe built from first 

principles
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Data Science Organization problems

What problems do data science teams face?
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Data Science has a scalability problem
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Data Science has a scalability problem
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Data Science Teams* have a scalability problem



8

Data Science Teams* have a scalability problem

MORE DATA SCIENTISTS != MORE INSIGHTS
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Data Science Teams* have a scalability problem

MORE DATA SCIENTISTS != MORE INSIGHTS

MORE DATA SCIENTISTS != MORE PRODUCTION MODELS/JOBS
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Many organizations look like this

Laptop/Workstation

Prototyping

Exploring

New Data Source

New spec

New 
requirements
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Data Science scalability is 

human scalability

There is no service that can spin up more Data Scientists,
so we must treat them like the finite resource they are
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Data Science scalability is a 

human scalability issue

There is no service that can spin up more Data Scientists,
so we must treat them like the finite resource they are

But why?
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Shifting the focus from the machine to the user

Tools should work for data 
scientists

Data Scientists shouldn’t have 
to work for their tools
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Ponder’s work: 

Transparently scale existing tools

Abstract away all of the components of the system that data scientists don’t 
care about, only expose details they do care about.
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Let’s start from first principles!
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But the Pandas API doesn’t scale!

The API is simply an expression of what to do
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Solving dataframes from first principles

- Dataframe Data Model
- Dataframe Algebra
- Parallelism / Decomposition Rules
- Type System
- Operator Semantics
- Implementation 
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First Steps: Formalize the Dataframe
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df.describe(..)

pd.concat(..)

df.drop(..)

df.groupby(..)

df.explode(..)df.pivot(..)

pd.merge(..)

600+ functions to clean, reshape, explore, 
and summarize data spanning rel., linear,  

& spreadsheet algebra

Dataframes: A New Data Model and API

Array 

Column Labels

Column Domains

Row
 

Labe
ls

Dataframes: Mixed type-array, w/ row 
and column labels





Convenience

Flexible

Versatility

Entire query at once

Strict schema

SFW or bust

Incremental + inspection 

Mixed types, R/C and 
data/metadata equiv.

600+ functions



Everybody loves pandas!
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Inherited Data Model

1990 1995
2000 (stable) 2008

~70 operators >200 operators

Small group development Large community development
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Let Σ∗ be the finite set of characters from alphabet Σ. 

Let Dom be a finite set of domains {dom1,dom2, ...}. 

Let each domi ∈ Dom have a mapping pi: Σ
∗ → domi.

 
A dataframe is a tuple (Amn, Rm, Cn, Dn), where Amn is an arrangement of entries in columns and rows 

from the domain Σ∗, Rm is a vector of row labels from Σ∗, Cn is a vector of column labels from Σ∗, and 

Dn is a vector of n domains from some finite set of domains Dom, one per column, each of which can 

also be left unspecified. We call Dn the schema of the dataframe. If any of the n entries within Dn is 

left unspecified, then that domain can be induced by applying a schema induction function S(·) to the 

corresponding column of Amn. The schema induction function S: Σ∗ → Dom, assigns an arrangement 

of m strings to a domain in Dom.

Dataframe formal definition (VLDB 2020)
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Dataframe data model 

● Ordered, but not necessarily sorted
○ Rows and columns

● No predefined schema necessary
○ Types can be induced at runtime

● Typed Row/column labels
○ Labels can become data

● Indexing by label or by row/column numeric index
○ “Named notation” or “Positional notation”
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From a relational algebra perspective, dataframes contain:
● An ordered table

● Named rows of arbitrary type

● A lazily-induced schema

● Column names of arbitrary type

● Column and row symmetry

● Support for linear algebra operators (e.g. matrix multiply)

Dataframes from two perspectives

Ordered Relation
Named Rows

Lazy Schema
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● Heterogeneous matrix-like data structure

● Both numeric and non-numeric types

● Explicit row and column labels

● Indexing by label in addition to position

● Support for relational algebra operators (e.g. 

join)

From a linear algebra perspective:

Heterogeneous 2-d 

matrix

Row Labels

Column Labels

Dataframes from two perspectives
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- Dataframe Data Model ✔
- Dataframe Algebra
- Parallelism / Decomposition Rules
- Type System
- Operator Semantics
- Implementation 
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Next: What can a dataframe do?

First Principles next steps: 

define an algebra
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40+ APIs

280+ methods

280+ methodspd.DataFrame

pd.Series

Convenience methods (e.g. concat)

What can Pandas Do?

Total: 600+ operators in pandas
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T
abs
add
all
corr
dropna
get
groupby
head
join
median
pivot
reindex
query
rolling
tail
where

Example
Pandas

APIs

t()
melt()
merge()
head()
slice()
distinct()
arrange()
rename()
summary()
group_by()
aggregate()
union()
with()
subset()
match()
sample_n()
row_labels()

Example
R

APIs



Proof by exhaustion that all pandas APIs are covered
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- Dataframe Data Model ✔
- Dataframe Algebra ✔
- Parallelism / Decomposition Rules
- Type System
- Operator Semantics
- Implementation



Decomposition Rules -> Formalize parallelism

Cell wise: An operator can be applied 

to a “unit dataframe” independently

Row-wise: An operator can be applied 

to each row independently

Column-wise: An operator can be 

applied to each column independently
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- Dataframe Data Model ✔
- Dataframe Algebra ✔
- Parallelism / Decomposition Rules ✔
- Type System
- Operator Semantics
- Implementation
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Order SemanticsType System

Formalization of other components of the dataframe
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- Dataframe Data Model ✔
- Dataframe Algebra ✔
- Parallelism / Decomposition Rules ✔
- Type System ✔
- Operator Semantics ✔
- Implementation
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So now we know:

● What a dataframe is (formally)

● What operators a dataframe supports

● How these operators map back to pandas

● How to handle dataframe types

● How to decouple logical and physical order

● How to maximally parallelize each operator
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A dataframe built from first 

principles
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Modin
Accelerate your pandas workloads by changing one line of code

pip install modin

To use Modin:

To install Modin:
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What can we do with the formalism?

● Data model
○ Expose the “feel” of pandas without 

the baggage

● Dataframe Algebra
○ Smaller surface to implement

○ Map operators to other systems
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Compute Engine

Pandas on everything with Ponder

Databases Infrastructure

PostGresSQL

RAY

Your DB Here!

by
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Many organizations look like this

Large ClusterSmall ClusterLaptop/Workstation

Prototyping
Testing

Exploring

Production

New Data Source

New spec

New 
requirements

FeedbackRewrite

     Rewrite      Rewrite

Big Data Tool Big Data Tool
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How Modin is being used in practice:

Large ClusterSmall ClusterLaptop/Workstation

Prototyping

Testing

Exploring

Production

New Data Source

New spec

New 
requirements

Feedback
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Modin Open Source Impact

🔥 2.5+ Million Downloads
🤝 100+ contributors
🚀 Used by 30+ companies

Used by 10% Fortune 100 companies & more!

7k

  90+
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Current State

E-Commerce Case Study

150M Events
Streamed Daily

50k Records 
Pandas Limit

1000X
More Data with Modin 

   < 20 Sec.
Faster with Modin 

Pricing + Recommendation  

Pipelines in Production 

With Ponder

Modin 
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Current State

Finance Case Study

10k+ Lines
Of Code to change est.

2k+ Hours
Human time to rewrite 

est.

100X
Reduction in code 

reduction w/ Modin

100X 
Reduction in human 

time with Modin 

Regulatory Reporting  

Pipelines Migration

With Ponder

Modin 
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Compute Engine

Bring your database!

Databases Infrastructure

PostGresSQL

RAY

Your DB Here!

by
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• Formal dataframe data model & algebra

• Dataframes are newly defined structures with a lot of 

open problems!

• Dataframe algebra can express all of pandas

• Reference implementation: Modin

• High impact -> problems are real and pressing need

• Deep technical problems still exist!

• It is an exciting time to be working on dataframes

In summary…
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Thank you!

Devin Petersohn
devin@ponder.io
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Backup
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Current state of affairs
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Current state of affairs

● Coverage of pandas API

○ pandas.DataFrame - 83% (93% based on usage)

○ pandas.Series - 77% (86% based on usage)

○ pandas.read_* - 42% (>90% based on usage)

●
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API Vision - 5 years

● More complete pandas API - 95%

● All common interactive data processing modalities

○ Spreadsheet API

○ SQL API

○ New Modin API

● Hooks for SQL systems to implement parts of the API

○ A partial pandas API for relational systems

● Preliminary numpy API - more implementation proof that dataframes can act as matrices

○ Plug in to sklearn
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Engineering Vision - 5 years

● Query planning/optimization

○ Optimize for user’s time

○ Some research involved here (more later)

○ Extending Calcite?

● GPU integration

● MPI, other compute engines

● Serverless
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Case study: Pivot
transpose + 
groupby + map

Transpose + map
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Large ClusterSmall ClusterLaptop/Workstation

Current Machine Learning Lifecycle

Prototyping

Testing

Exploring

Production

New Data Source

New spec

New 
requirements

FeedbackRewrite
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Large Cluster & 
CloudSmall Cluster

Laptop & 
Workstation

One API, all scales (think SQL)

Prototyping Testing

Exploring

Production
New Data 

Source

New spec

New 
requirements

FeedbackIncorporate*
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Data Science Landscape: Today

Tools efficient for O(1MB) Tools efficient for O(100s GB+) 

Usable but not 
scalable

Scalable but not 
usable
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● Difficult to debug

● Requires distributed computing 
knowledge 

○ Must understand partitioning
○ Lazy evaluation - hated

● Designed by systems people for 
systems people

○ New APIs that do the same thing

Data Science Landscape: Today

Tools efficient for O(1MB) Tools efficient for O(100s GB+) 
● Follow typical programming styles

● Tools are widely used and 
understood - in production

● The majority of college graduates 
will already know these tools

● No scalability
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Data Science Landscape: Today

Tools efficient for O(1MB) Tools efficient for O(100s GB+) 

Usable and 
scalable

Scalable and 
usablepandas++
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Dataframe Algebra

Columns become rows/rows 
become columns

df.T
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Dataframe Algebra

User defined function across all 
rows

df.apply(f, axis=1)
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Dataframe Algebra

Elevating data into metadata, or 
moving metadata into the data

df.set_index(df[“col”])
df.reset_index(drop=False)



76

Working with tabular 

data

A (very) brief history
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Relational Databases

● Invented in the 1970’s by Edgar F. Codd

○ Defined a data model for structured data

○ Schema must be known before input into DBMS

○ Decoupling of the physical representation from logical

● Popularized in the 1980’s

○ Data model has stood the test of time, still in use!

○ SQL
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Census - the original “Big Data”

● 1880’s - Seaton Device, manual intervention and counting - took almost 

10 years

● 1890’s - Herman Hollerith’s machine, punch cards - took 18 months

● 1940’s - First use of electronic computers
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Dataframes

● Emerged from a real-world need at the time
○ No way of handling unstructured or semi-structured data

○ Matrices and Tables did not fit their need, something new needed

● Not formalized!

● Dataframes have an origin in S
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Focus: pandas
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pandas success

● 23 million installs/month

● Over 300 million total installs

● Used by over 209k projects in GitHub

● 24.6k GitHub stars
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40+ APIs

280+ methods

280+ methods

Pandas API

pd.DataFrame

pd.Series

Convenience methods (e.g. concat)
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40+ APIs

280+ methods

280+ methods

pandas API is huge and expressive

pd.DataFrame

pd.Series

Convenience methods (e.g. concat)
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What do people use within pandas API?

https://github.com/modin-project/study_kaggle_usage

https://github.com/modin-project/study_kaggle_usage
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Definition: Dataframes
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Definition: Dataframes
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Definition: Dataframes
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Modin architecture
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Modin architecture
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Modin architecture
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Modin architecture
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Dataframes emerged from a need to hybridize

Matrix Relational Table Spreadsheet
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Dataframes

Dataframes emerged from a need to hybridize

Matrix Relational Table Spreadsheet
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Dataframe Algebra

“Position notation”
or 

“Named notation”

df.iloc[row_pos, col_pos]
df.loc[row_lab, col_lab]
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Dataframe Algebra

Ordered union

df.append(df2)
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Dataframe Algebra

Ordered Joins bring 
fundamentally new 

challenges

df.merge(df2, how=”inner”)
df2.merge(df, how=”inner”)
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Dataframe Algebra

This is a generalized 
definition of groupby

df.count()
df.groupby(df.columns).count()
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Dataframe Algebra

Conceptually a rolling function, 
can output same table shape or 

smaller (groupby)

df.cumsum()
df.rolling
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Dataframe Algebra

Insert the row labels into the data 
and reset the row labels to the 

positional notation

df.reset_index(drop=False)
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Modin architecture
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Data Science Landscape: Today

Tools efficient for O(1MB) Tools efficient for O(100s GB+) 

Usable but not 
scalable

Scalable but not 
usable
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Data Science Landscape: Today

Tools efficient for O(1MB) Tools efficient for O(100s GB+) 

Usable and 
scalable

Scalable and 
usable
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Dataframe origin
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A (not so) long time ago, at Bell Labs

Chapter 3: Data for Models

“Dataframes are more general than 
matrices in the sense that matrices in S 
assume all elements to be of the same 
mode—all numeric, all logical, all 
character string, etc.”  

“...  data frames support matrix-like 
computation, with variables as columns 
and observations as rows,
and, in addition, they allow computations in 
which the variables actas separate objects, 
referred to by name.”
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Modin partitioning - logical column partitioning
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Modin partitioning - logical row partitioning
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Modin architecture

● Highly flexible

● Layered architecture
○ New optimizations can be implemented as they are developed

● Support for dataframe algebra

● Partitioning approach lends itself to allowing us to use optimizations 

from multiple domains
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Data Science LifeCycle

Dirty Data

Exploration

Testing

Cleaning

Database

● Static

● Defined a data model for 

structured data

● Schema must be known before 

input into DBMS

● Decoupling of the physical 

representation from logical

The focus of this 
dissertation
(EDA)

Important, but not the focus

● Iterative

● Unstructured data model

● Schema is lazily induced

● No decoupled physical 

representation from logical

(Production)
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Data Science LifeCycle

Dirty Data

Exploration

Testing

Cleaning

Database

● Static

● Defined a data model for 

structured data

● Schema must be known before 

input into DBMS

● Decoupling of the physical 

representation from logical

The focus of this 
dissertation
(EDA)

Important, but not the focus

● Iterative

● Unstructured data model

● Schema is lazily induced

● No decoupled physical 

representation from logical

(Production)

Dataframes
Databases


