PONDER

Scaling up your pandas workflows
with Modin

Devin Petersohn

Co-founder and CTO, Ponder

About me |-

e Active Duty U.S. Marine

PONDER

o Korean Crypto-Linguist

o 3d Radio BN (2008-2012)
BS - University of Missouri (2016)
MS - UC Berkeley (2018)
PhD - UC Berkeley (2021)

o NSF Graduate Research Fellow

o Chancellor’s Fellow

o Modin started as my PhD project
Currently: Cofounder and CTO of Ponder a

2 MODIN
A dataframe built from first

. e AT
b o]

. principles

PONDER

Data Science Organization problems

What problems do data science teams face?

al
Data Science has a scalability problem 10

PONDER

al
Data Science has a scalability problem 10

PONDER

o]
Data Seienee Teams™* have a scalability problem 10

PONDER

al
Data Seienee Teams™* have a scalability problem 10

PONDER

78

J"ii /A ;..\"J i e ¢ !4'!
1 _ ’i\ 1“ be\!h,,'»”f‘ o
Y - . a ‘

4

Data Seienee Teams™* have a scalability problem 10

PONDER

o]
Many organizations look like this 10

PONDER

New Data Source

Prototyping

New
requirements

|:E| pandas

Laptop/Workstation

o]
Many organizations look like this 10

PONDER

New Data Source

New
requirements

Prototyping
Testing

:!| pqndqs Big Data Tool
1

Laptop/Workstation Small Cluster

o]
Many organizations look like this 10

PONDER

New Data Source
Prototyping
» Testing Production

New -

requirement
equirements |:E| pandas Big Data Tool Big Data Tool

Laptop/Workstation Small Cluster Large Cluster

o]
Many organizations look like this 10

PONDER

PN ; PN _
Prototyping
l » Testing Production
-
requirements

I::l pandas Big Data Tool Big Data Tool

Laptop/Workstation Small Cluster Large Cluster

2
@ Rewite L | Feedback

-— ‘a
PPPPPP

PONDER

Data Science scalability is

human scalability

There is no service that can spin up more Data Scientists,
so we must treat them like the finite resource they are

"-""i"‘.‘

PONDER

Data Science scalabilit* ‘s a

human scal-’
‘“\\\\‘J

There is n. .an spin up more Data Scientists,
SO we mL .. them like the finite resource they are

>

c

?. Q

S

@ &

c g

© o

£ S

.............. e - 3
1 O Ne)

| e =

z e =
To! : 3
- ‘ kS,
O . S
Q . 7

A2111B6D A3111q1x9)4 ‘SSouUdAISSaIdXd

osSn JO asej

=8
a
PONDER

ol &
0

PONDER

......

big data
frameworks

Ease of use
expressiveness, flexibility, agility

Performance

scalability, robustness, efficiency

ol
Shifting the focus from the machine to the user 10

PONDER

Tools should work for data
scientists
Data Scientists shouldn’t have [
to work for their tools

Ponder’s work: PONDER

Transparently scale existing tools

Abstract away all of the components of the system that data scientists don’t
care about, only expose details they do care about.

Ponder's work: PONDER

Transparently scale existing tools

|E:| pandas

EII andas -2 MODIN
il P

P L L L D R

Abstract away all of the components of the system that data scientists don’t
care about, only expose details they do care about.

PONDER

os
S PONDER

(powered by Modin) Sty

......

big data
frameworks

Ease of use
expressiveness, flexibility, agility

Performance

scalability, robustness, efficiency

] &
10

PONDER

' o

(powered by Modin)

, flexibility, agility

» of use

Performance

scalability, robustness, efficiency

ol
But the Pandas API doesn’t scale! 10

|5:| was

The APl is simply an expression of what to do

Solving dataframes from first principles

- Dataframe Data Model

- Dataframe Algebra

- Parallelism / Decomposition Rules
Type System

Operator Semantics
implementation

First Steps: Formalize the Dataframe

Towards Scalable Dataframe Systems

Devin Petersohn, William Ma, Doris Lee, Stephen Macke, Doris Xin, Xiangxi Mo
Joseph E. Gonzalez, Anthony D. Joseph, Joseph M. Hellerstein, Aditya Parameswaran
UC Berkeley

{devin.petersohn, williamma, dorislee, smacke, dorx, xmo, jegonzal, adj, hellerstein, adityagp} @berkeley.edu

are a popular and convenient abstraction to represen
and analyze data during explorator)

ite the success of dataframe libraries in R and Python (pan-
taframes face performance issu 0 xderately large

In this vision paper, we take the first steps towards formally
acterizing their properties, and outlining
genda towards 1 tafr: nore interactive at
raw on tools and techniques from the database com-
munity, an scribe ways they may be adapted to serve dataframe
1s, as well as the new challenges therein. We also d ibe
ess toward a scalable dataframe system, MODIN,

which is already up to 30 faster than pandas in preliminary cas

fified pandas code to run as-

DIN 18 already used by over 60 downstream
s on GitHub, indicating

Characteristics such as these have helped dataframes become in-
credibly popul ; for instance, the dataframe abstraction
provided by pan

on GitHub more r Python's
attnibuted to the su s of panc ta exploration and data sci-
15 on pandas for

of contributors to satisfy
rabilities th

distinct operators [14]. R, which
carefully curated than pandas, has only 70 operators—but this is
still far more than, say, relational and linear

attractiveness set of operators has significant redundancies, of-
ten with different performance implications. redundanci

PONDER

THE |RENC'H IAUNDRY

TASTING OoF VEGETAEBLES

May 2021

28

ROAST MEATLOAF"
La Ratte Potato Purée, Crispy Cipollini Onions, Smoked Tomato Glaze,
Watercress Leaves and Whole Grain Mustard Gravy

“GOUGERE”
Andante Dairy “Etude” and Preserved Australian Black Winter Truffle “Fondue”

!l pandas

Dataframes: A New Data Model and API

Column Domains

Column Labels

Labe Array
1s

Dataframes: Mixed type-array, w/ row
and column labels

df.groupby(..)

df.drop(..)

pd.merge(..) =

df.describe(..)

pd.concat(..)

df.pivot(..) df.explode(..)

600+ functions to clean, reshape, explore,
and summarize data spanning rel., linear,
& spreadsheet algebra

PONDER

Convenience
Flexible

Versatility

Entire query at once

Strict schema

SFW or bust

Incremental + inspection

Mixed types, R/C and
data/metadata equiv.

600+ functions

.......

Everybody loves pandas!

C & dataschool.io/future-of-p

December 12,

What's the future of the pandas library?

I ul, open source hon library for data analysis, manipulation, and visualization. |'ve been
teaching data scientists to use pandas since 2014, and in the years since, it has grown in popularity to an estimated 5 to
10 million users and become a "must-use" tool in the Python data science toolkit

&

A& SIGNIN

{* DEVOPS *}

Python explosion blamed on pandas

Data science fad just won't die

Thomas Claburn in San Francisco Thu 14 Sep 2017 // 20:02 UTC

340 Not content to bait developers by declaring that Python is the fastest-growing

major programming language, coding community site Stack Overflow has

li] revealed the reason for its metastasis. C @ qz.com/1126615/the-story-of-the-most-important-tool-in-data M % * A 1 » % :

[new]

Q DISCOVER LATEST OBSESSIONS Q U A R T Z FEATURED EMAILS BECOME A MEMBER A

PANDAS

Meet the man behind the most

important tool in data science

o] |
Inherited Data Model 10

PONDER

Small group development Large community development

~70 operators >200 operators

pandas

1995
2000 (stable)

”nu' Dataframe formal definition (VLDB 2020)

PONDER
D, Column Domains S
Let X" be the finite set of characters f
Cn Column Labels
Let be 1

Dom a finite set of domai

Let each dom, € Dom have a mapping p: Z*— dom.. Amn

Array of Data

A dataframeis a tuple (A_ ,R_, C, D) where A_ is an arrangement of entries in columns and rows

mn’
from the domain Z*, R_is a vector of row labels from %%, C_is a vector of column labels from Z*, and
D is a vector of n domains from some finite set of domains Dom, one per column, each of which can
~=. also be left unspecified. We call D, the schema of the dataframe. If any of the n entries within D is
Jleft unspecified, then that domain can be induced by applying a schema induction function 5(:) to the

';f'.';;fji.?icorresponding column of A_ . The schema induction function S: £* — Dom, assigns an arrangement

Ofm strings to a domain in Dom.

=]
Dataframe data model 10

PONDER

e Ordered, but not necessarily sorted R, D, Column Domains
o Rows and columns Row Labels| C,, Column Labels

e No predefined schema necessary
o Types can be induced at runtime Amn

e Typed Row/column labels Array of Data
o Labels can become data

e Indexing by label or by row/column numeric index
o “Named notation” or “Positional notation”

Dataframes from two perspectives

From a relational algebra perspective, dataframes contain:

e Anordered table

e Named rows of arbitrary type

e Alazily-induced schema

e Column names of arbitrary type
e Column and row symmetry

e Support for linear algebra operators (e.g. matrix multiply)

D, Column Domains }Lazy Schema
S C, Column Labels

-’y e,

il > .
v e AN

Ry AT I Amn — Ordered Relation
Named:Rows. 4"~

Array of Data

37

38

Dataframes from two perspectives

From a linear algebra perspective:
Heterogeneous matrix-like data structure

Both numeric and non-numeric types

Explicit row and column labels

Indexing by label in addition to position

Support for relational algebra operators (e.g.

D, Column Domains
C, Column Labels

join)

<

il

.. ._“:’t"f.'ﬁ--"-_
. ..' . ‘\

Row Labels -"‘."('

Amn

Array of Data

}Column Labels

— Heterogeneous 2-d

matrix

- Dataframe Data Model /

- Dataframe Algebra

- Parallelism / Decomposition Rules
Type System
Operator Semantics
Implementatlen

: s 5
G.‘
-.-'? e'.--.....

;‘,’:; ..

Next: What can a dataframe do?

First Principles next steps:

_define an algebra

-’
BT X s S Cat -
B DY ol SR R

.....

o]
What can Pandas Do? 10

PONDER

ﬂlpandas

pd.DataFrame 280+ methods

Convenience methods (e.g. concat) 40+ APlIs

Total: 600+ operators in pandas

PONDER

T

abs

add

=l

corr

dropna

get

groupby

head

join

median

pivot

reindex

query

rolling

tail

where

Operator |

" SELECTION |

“PROIECTION |
UNION |
“DIFFERENCE |
“DROPDUPLICATES |
GROUPBY |
SORT |
RENAME |
WINDOW |
TRANSPOSE |
MAP |
“TOLABELS |
FROMLABELS |

Proof by exhaustion that all pandas APIs are covered

Operator Pattern | Modin Syntax tof pandas public APT
Applying a user- | map (df, X e, clip, eva
defined function

uniformly element- , unary version of (

wise, column-wise, or c.}, string manipulations (datetime manipulation (d
row-wise

Binary function be-

tween two dataframes

Tndexing: Querics on
the row labels

metadata as
metadata manipu-
lation, and querying
transpos-
ing, pivot
One-hot (dummy) en-
coding

User-defined ag-
gregation of values
per-column

Aligning and joming
two dataframes on row

or column labels

Window user-defined
functions (window
size < length of
dataframe)
Conditional filter
Queries on the schema
of the dataframe
Type Inference and in-
duction
. ; g Column/row insertion
« Ve and assignment, ap-
: pending columns/rows

Groupby with a_user-
’ defined aggregation or
: function
. Join on an attribute

Sorting on_labels
column values
Expand the number
rows or columns

- Dataframe Data Model
- Dataframe Algebra

......

Decomposition Rules -> Formalize parallelism

Cell wise: An operator can be applied

Column labels

to a “unit dataframe” independently

C-Label-A C-Label-B C-Label-C

< decomposition _ |[SEEEE
Row-wise: An operator can be applied [egllesss Ridnts

&
to eaCh row |ndependent|y decomposition T

row-wise

decomposition .. ClLabel-B
C-Label-A I

] C-Label-A C-Label-B C-Label-C R_;;el'_;
Column-wise: An operator can be N o | oo | oo [B :

: |I-C R-Label-B data
o R Nl i

applied to eachcolur?nfn‘,lndependently rusere S E ReLabeiC

Dataframe Data Model
Dataframe Algebra
Parallelism / Decomposition Rules

.....

PONDER

Formalization of other components of the dataframe

Type System Order Semantics

) der tmn Output Order & Position
- I S——— Parameter-Dependent
UnspeCIfled Inherited | Updated
_— Inherited from Inputs
Inherited | Updated
_ © Inherited | Updated

Y Inherited
Inherited

5
E
z|z|z|z|z
b

z

I
lH

Category Datetime User-
Defined

Type

z
5
=
a

H
z
=]
]
g

2
=
@

=3
i
a

Inherited*
Inherited
Inherited

z|z

Floating

Boolean .
Point

N
N
N
N

z|z| =<z

Dataframe Data Model

Dataframe Algebra

Parallelism / Decomposition Rules
Type System

Operator Semantics

.....

So now we know:

What a dataframe is (formally)

What operators a dataframe supports
How these operators map back to pandas
How to handle dataframe types

How to decouple logical and physical order

How tq,.m’-a;fx:_~i‘mally parallelize each operator

I A TR

PR RT L ko T A
O S ‘..4'.1"

.....

2 MODIN
A dataframe built from first

. e AT
b o]

. principles

Modin uﬂl

Accelerate your pandas workloads by changing one line of code PONDER

To use Modin;

import pandas as pd

To install Modin:

pip install modin

What can we do with the formalism? 10
PONDER

Data model

Expose the “feel” of pandas without I::I pandas

the baggage
=22 MODIN
. Dataframe Algebra

Smaller surface to implement

Map operators to other systems '
= 8 8 8 B

=]
Pandas on everything with Ponder 10

PONDER

mlpandas

=32 MODIN

PONDER

' st snowflake o§, L@DASK Sp(.)l"l’(\Z

PostGresSQL

I I amazon RAY
REDSHIFT Compute Engine
a =
— aWsS /A Azure
Google BigQuery Your DB Here! N 2)

Databases Infrastructure

o]
Many organizations look like this 10

PONDER

PN ; PN _
Prototyping
l » Testing Production
-
requirements

I::l pandas Big Data Tool Big Data Tool

Laptop/Workstation Small Cluster Large Cluster

2
@ Rewite L | Feedback

Lo . . o
How Modin is being used in practice: 10

PONDER

New Data Source Prototyping

e MO

c Laptop/Workstation Small Cluster Large Cluster
Feedback

requirements

444

o]
!0 Modin Open Source Impact

PONDER
Used by 10% Fortune 100 companies & more! @ 2.6M+)
Downloads to date o
BOSCH vmware " U Bristol Myers Squibb oenon

. afean]n @ @ 7k
L09M9® Intel CISCO T Github stars

TESLA

Allianz @) VOXMEDIA NOKIA

US. Department of Defense

& 90+

- 222 Open Source
A ATLASSIAN | UK FLOORING DIRECT /A Azure “Ifl BERKELEY LAB kevala* Contributors

ol
E-Commerce Case Study 0

PONDER

Current State

Pricing + Recommendation 150M Events 50k Records

Pipelines in Production Streamed Daily Pandas Limit
v
With Ponder
22
$4- 1000X < 20 Sec.

Modin More Data with Modin Faster with Modin

ol
Finance Case Study 0

PONDER

Current State

Regulatory Reporting 10k+ Lines 2k+ Hours
Pipelines Migration Of Code to change est. Human time to rewrite
est.

v

With Ponder
-
$4- 100X 100X
Modin Reduction in code Reduction in human

reduction w/ Modin time with Modin

o]
Bring your database! 10

PONDER

mlpandas

=32 MODIN

PONDER

' st snowflake o§, L@DASK Sp(.)l"l’(\Z

PostGresSQL

I I amazon RAY
REDSHIFT Compute Engine
a =
— aWsS /A Azure
Google BigQuery Your DB Here! N 2)

Databases Infrastructure

as
In summary... 10

PONDER

Formal dataframe data model & algebra
- Dataframes are newly defined structures with a lot of
open problems!
- Dataframe algebra can express all of pandas
Reference implementation: Modin
* High impact -> problems are real and pressing need
Deep technical problems still exist!

* Itis an exciting time to be working on dataframes

PONDER

IMEL L UL

Devin Petersohn
devin@ponder.io

62

o000l

*adel,

63

v oo
CRR Y

'd 20 %00e

12000

Current state of affairs

] ol
Current state of affairs 10

PONDER

e Coverage of pandas API

o pandas.DataFrame - 83% (93% based on usage)
o pandas.Series - 77% (86% based on usage)

pandas.read_* - 42% (>90% based on usage)

. . as
APl Vision - 5 years 10

PONDER

e More complete pandas API - 95%

e All common interactive data processing modalities
o Spreadsheet API
o SQLAPI

o New Modin API

e Hooks for SQL systems to implement parts of the API

o A partial pandas API for relational systems

e Preliminary numpy API - more implementation proof that dataframes can act as matrices

o Plugin to sklearn

o]
Engineering Vision - 5 years 10

PONDER

Query planning/optimization

o Optimize for user's time
o Some research involved here (more later)

o Extending Calcite?

GPU integration

MPI, other compute engines

Serverless

U :
%se study: Pivot

PONDER

transpose +
groupby + map

Narrow Table (SALES)

Wide Table of MONTHS

Month

2001

2002

2003

Year

Month

Sales

Jan

100

150

300

2001

Jan

100

Feb

110

200

310

2001

Feb

110

Mar

120

250

NULL

2001

Mar

120

Pivot —

2002

Jan

150

2002

Feb

200

2002

Mar

250

2003

Jan

300

2003

Feb

310

<— Unpivot

Year

Jan

Feb

Mar

2001

100

110

120

2002

150

200

250

2003

300

310

NULL

Transpose + map

Wide Table of YEARS

: : : as
Current Machine Learning Lifecycle 10

PONDER

Prototyping
m
requ:::vr:lents APACHE
pendes i g Spark’

Laptop/Workstation Small Cluster Large Cluster

 Rewie L | Feedback

, o]
One API, all scales (think SQL) |-

PONDER

New Data
Source

New
requirements -
Large Cluster &
Workstation Small Cluster Cloud

Data Science Landscape: Today |uu'

PONDER

B t{}i’il\? 7 / '
Tools efficient for O(1MB) [jm. i
(P T .,.' |

{
I A
U I'f-

Usable but not | ¥ Scalable but not
scalable usable

¥ Tools efficient for O(100s GB+)

2 f 1\

' ; sl

f i\l WA\ il .Iv,,l"‘ Y

pandas Y L seach
‘ f ey g
‘/_/ [y il ‘ ;" ‘f\ “,;. ‘;‘v“\“:j‘ ;" Sp Qrkw
‘I A AN : "“. “," ‘\‘b ¢
{) ! o N & \
A [W
& 'w‘\", “\ /‘
Il \ 1 7 |

Data Science Landscape: Today |uu'

PONDER

Follow typical programming styles

Tools are widely used and
understood - in production

The majority of college graduate
will already know these tools

No scalability

Data Science Landscape: Today |uu'

PONDER

Tools efficient for O(1MB) Tools efficient for O(100s GB+)

Usable and Scalable and
scalable usable

pandas++

pandas pandas

ﬂ;tafra me Algebra

PONDER
SELECTION

PROJECTION

UNION

| TRANSPOSE

VIAF

5 TOLABELS
R FROMLABELS

D, Column Domains
Cn Column Labels

Amn

Array of Data

| omane R
Domains SXei Ve
C,, Column i

Labels e

Amn
Array of
Data

B
%tafra me AIgEbra D, Column Domains

C, Column Labels
PONDER

Amn

Operator
SELECTION
PROJECTION
UNION
DIFFERENCE

CROSS-PRODUCT / JOIN
DROP DUPLICATES

Array of Data

D, Column Domains

C, Column Labels .
n u D, Column Domains .

Amn

Cp Column Labels |8

A
Array of Data

D, Column Domains

Array of Data

3
3

/|\

GROUPBY
SORT
RENAME
WINDOW

TRANSPOSE

Cn Column Labels

[7]
>
3

Array of Data

“TOLABELS
FROMLABELS

ﬂ;tafra me Algebra

PONDER

Operator
SELECTION
PROJECTION
UNION
DIFFERENCE
CROSS-PRODUCT / JOIN
DROP DUPLICATES
GROUPBY

SORT

RENAME

WINDOW
TRANSPOSE

MAP

TOLABELS
FROMLABELS

D, Column Domains
Cn Column Labels

Amn

Array of Data

Working with tabular
data

A (very) .ri:_'e'f'-history

O]
S

......

) ol
Relational Databases 10

PONDER

e Invented in the 1970's by Edgar F. Codd

o Defined a data model for structured data

o Schema must be known before input into DBMS

o Decoupling of the physical representation from logical
e Popularized in the 1980’s

o Data model has stood the test of time, still in use!

o SQL

Census - the original “Big Data”

. 1880's - Seaton Device, manual intervention ¢
10 years
. 1890's - Herman Hollerith’s machine, punch ¢

. 1940's - First use of electronic computers

ol
Dataframes 10

PONDER

. Emerged from a real-world need at the time

- No way of handling unstructured or semi-structured data

- Matrices and Tables did not fit their need, something new needed

. Not formalized!

. Dataframes have an originin S

Focus® pandas

o] |
pandas success 10

PONDER

23 million installs/month
Over 300 million total installs

Used by over 209k projects in GitHub
24.6k GitHub stars

ﬂndas API

PONDER

pd.DataFrame 280+ methods e

Convenience methods (e.g. concat) 40+ APlIs

ndas APl is huge and expressive

PONDER

pd.DataFrame 280+ methods e

Convenience methods (e.g. concat) 40+ APlIs

ol
What do people use within pandas API? 0

PONDER
Top 30 most used pandas APIs by count - Kaggle notebooks dataset

12500

https://qgithub.com/modin-project/

apply
reset_ind

read_csv
sort_valu

[}
o
)
=
©
>

https://github.com/modin-project/study_kaggle_usage

"-""i"‘.‘

ﬂ;finition: Dataframes

PONDER

Amn

Array of Data

ﬂ;finition: Dataframes

PONDER

Amn

Array of Data

ﬂ;finition: Dataframes

PONDER

C, Column Labels

Amn

Array of Data

PONDER

I I'I. \ M %Q[.ite =:: MODIN API

(Experimental) (Coming Soon™)

it A =25 MODIN Query Compiler

== MODIN
Layer 227

DataFrame S

DataFrame

Middle ~

AF DASK ﬁ pgthon Bring yozl?r?backend

pandas \I-I>“| A

%Ql.ite

(Experimental)

=:% MODIN API

(Coming Soon™)

PONDER

PONDER

CS;‘E,?L{ =:5 MODIN Query Compiler

PONDER

=:: MODIN

=

DataFrame

PONDER

???
Bring your backend

PONDER

2??
Bring your
Distributed
DataFrame

PONDER

I I'I. \ M %Q[.ite =:: MODIN API

(Experimental) (Coming Soon™)

it A =25 MODIN Query Compiler

== MODIN
Layer 227

DataFrame S

DataFrame

Middle ~

AF DASK ﬁ pgthon Bring yozl?r?backend

ﬂ;taframes emerged from a need to hybridize

PONDER

—

Jane

-
o Jscor |3 el] 526
Hovard [shemp |4 45] 5359

a;taframes emerged from a need to hybridize

PONDER

Relational Table

W =

1
0
2
3
2
4
1
1
3

— A NDDNDWROOIN
W N O VAN X
O O O = == =N
R = = W aAaANON

N — N —= O U D W W

\9)

Dataframes

0
ﬂ:taframe Algebra
PONDER

| SELECTION
| PROJECTION

UNoN |
DIFFERENCE |
CROSS-PRODUCT/JOIN |
“DROP DUPLICATES |
GROUPBY |
SORT |
RENAME |
WiNDOW |
CTRANSPOSE |
CTOLABELS |

ﬂ;tafra me Algebra

PONDER
Operator

SELECTION |
| PROJECTION |
| UNION

DIFFERENCE

RENAME
WINDOW
TRANSPOSE

s TOLABELS
FROMLABELS

E—

ﬂ;tafra me Algebra

PONDER
Operator |

SELECTION \
PROJECTION \

UNON |
| DIFFERENCE |

| CROSS-PRODUCT /JOIN [~ =
DROP DUPLICATES |
GROUPBY |
SORT___ |
RENAME |
WiNDOW |
TRANSPOSE |
(TOLABELS |

ﬂ;tafra me Algebra

PONDER

Operator

SELECTION

l
| PROJECTION |
(UNON |
| DIFFERENCE |
|
|
|

CROSS-PRODUCT / JOIN
DROP DUPLICATES

| GROUPBY

RENAME |
“WINDOW |
TRANSPOSE |
TOLABELS |
FROMLABELS |

I

ﬂ;tafra me Algebra

PONDER

Operator

Operator |
CSELECTION |
PROJECTION |
UNoN |

DIFFERENCE |
CROSS-PRODUCT /JOIN |
"DROP DUPLICATES |
GROUPBY |

SORT |
RENAME |

R — —
TRANSPOSE |
CTOLABELS |

ﬂ;tafra me Algebra

PONDER

Operator

“Operator |

|
|
|
l
| CROSS-PRODUCT/ JOIN_|
| DROPDUPLICATES |
|
|
|
|
|
|
|

TOLABELS

PONDER

I I'I. \ M %Q[.ite =:: MODIN API

(Experimental) (Coming Soon™)

it A =25 MODIN Query Compiler

== MODIN
Layer 227

DataFrame S

DataFrame

Middle ~

AF DASK ﬁ pgthon Bring yozl?r?backend

Data Science Landscape: Today |uu'

PONDER

B t{}i’il\? 7 / '
Tools efficient for O(1MB) [jm. i
(P T .,.' |

{
I A
U I'f-

Usable but not | ¥ Scalable but not
scalable usable

¥ Tools efficient for O(100s GB+)

2 f 1\

' ; sl

f i\l WA\ il .Iv,,l"‘ Y

pandas Y L seach
‘ f ey g
‘/_/ [y il ‘ ;" ‘f\ “,;. ‘;‘v“\“:j‘ ;" Sp Qrkw
‘I A AN : "“. “," ‘\‘b ¢
{) ! o N & \
A [W
& 'w‘\", “\ /‘
Il \ 1 7 |

Data Science Landscape: Today |uu'

PONDER

Tools efficient for O(1MB) Tools efficient for O(100s GB+)

Usable and Scalable and
scalable = usable

pandas pandas

Dataframe origin

A (not so) long time ago, at Bell Labs D
PONDER
L Chapter 3: Data for Models

MODELS IN

“Dataframes are more general than

matrices in the sense that matrices in S
assume all elements to be of the same
mode —all numeric, all logical, all
character string, etc.”

“.. data frames support matrix-like

computation, with variables as columns
and observations as rows,
oA anc_j, in add|t|<?n, they allow computatlgns in
Trevor J. Hastie which the variables actas separate objects,
referred to by name.”

. Lo : L Qs
Modin partitioning - logical column partitioning 0

PONDER

pandas Index pandas Index

x x
())
© ©
= =
%) %)
1Y))
© ©
c c
© ©
Qo Q.

pandas DataFrame modin.pandas DataFrame

. Lo : L Qs
Modin partitioning - logical row partitioning I0
PONDER

pandas Index pandas Index

x x
())
© ©
= £
%) %)
1Y))
© ©
c c
© ©
Qo Q.

pandas DataFrame modin.pandas DataFrame

)) ol
Modin architecture 10

PONDER

Highly flexible
Layered architecture
New optimizations can be implemented as they are developed
. Support for dataframe algebra
Partitioning approach lends itself to allowing us to use optimizations

from multiple domains

: : as
Data Science LifeCycle 10

PONDER

The focus of this Important, but not the focus
dissertation Exploration (Production)
(EDA)

Database

Dirty Data |:> Cleaning Static
Defined a data model for

Ilterative structured data
Unstructured data model Schema must be known before

Schema is lazily induced input into DBMS

No decoupled physical Decoupling of the physical

representation from logical

representation from logical

: : ol
Data Science LifeCycle 10

PONDER

The focus of this Important, but not the focus
dissertation Exploration (Production)
(EDA)

Dirty Data

lterative

Unstructured data model
Schema is lazily induced
No decoupled physical

representation from logical

