privacy dynamics

Preserving Data Insights with State-of-the-Art Privacy Protection

WILL THOMPSON, DIRECTOR OF ENGINEERING MARCH 24, 2022

PRIVACY DYNAMICS Product Goals

Privacy switch for the modern data stack

Dataset sharing

- Data scientist/engineer-focused workflows
- Varying degrees of trust between 3rd parties
- Analysts want to use their own analytics tooling

INTRODUCTION What is data privacy?

This talk

Concepts

Data release

Protecting identities of individuals represented in data, i.e. *not* data security or governance.

- Pseudonymization phone number
- Re-identification

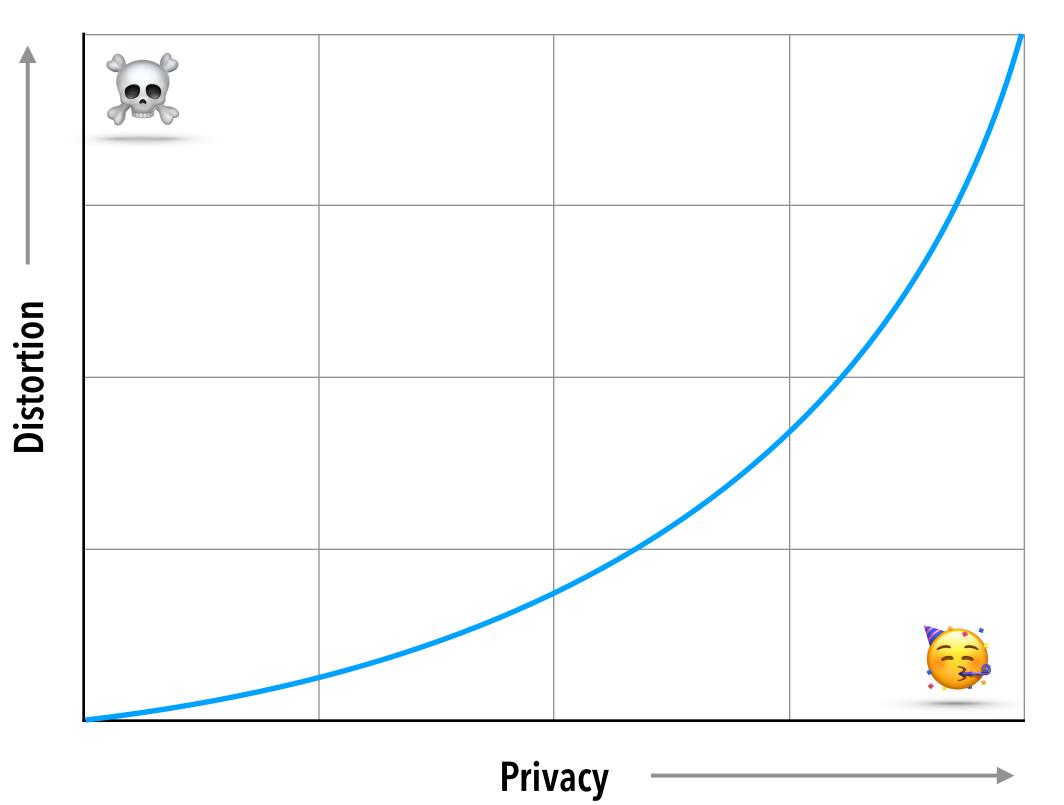
Remove or replace direct identifiers (DIDs), e.g. name, address,

Use indirect/quasi-identifier (QIDs) - e.g. age, zipcode, gender -or personal attributes to match an individual in an external dataset or learn new info using inference attacks.

Anonymization (de-identification)

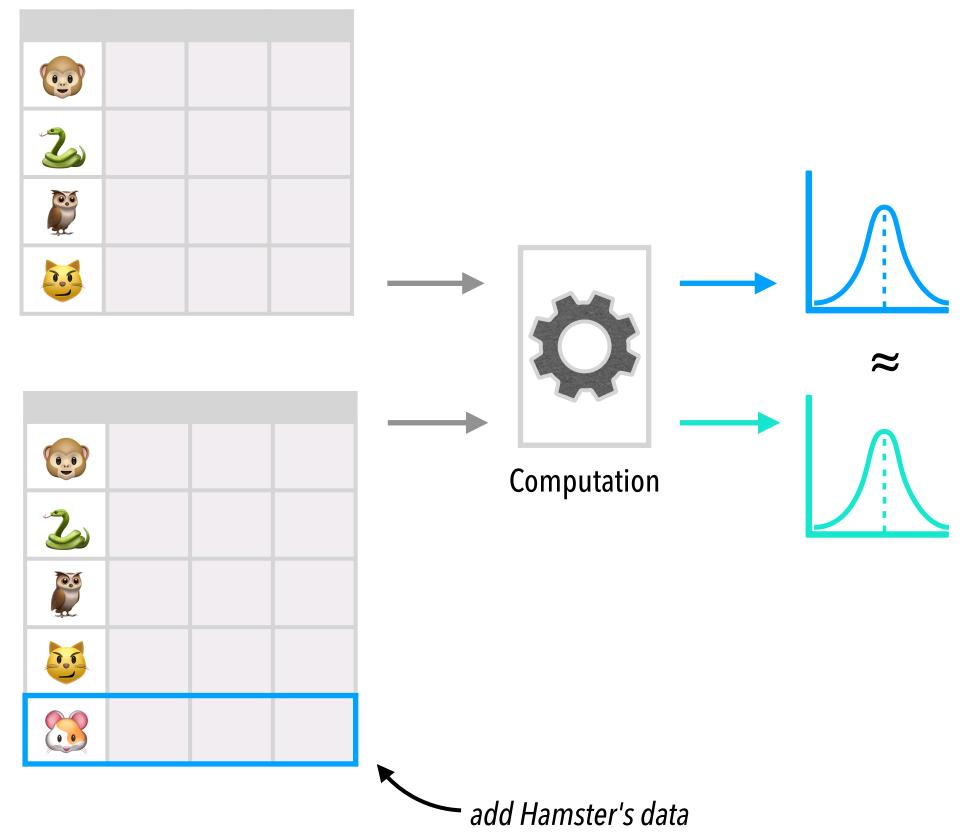
Change QIDs or personal attribute values to mitigate risk.

INTRODUCTION Privacy vs Utility



METHODS EXPLORED Global Differential Privacy

- Indistinguishability of computation output **D** when input differs by one individual's data
- Differentially private output is roughly the \approx same, with or without Hamster's data
- ε (epsilon) measures "how roughly"
- \sim Smaller ε is more private



METHODS EXPLORED Global Differential Privacy

Makes no assumptions about attacker

High utility

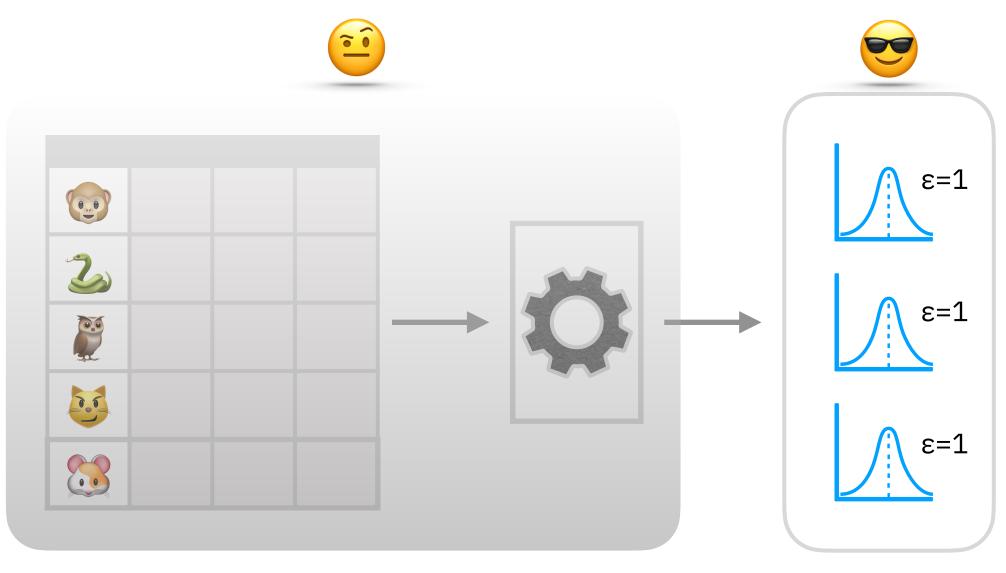
ε is an upper-bound / worst-case

ε is cumulative across multiple releases.

Attacker's motives or background knowledge don't affect privacy guarantee

METHODS EXPLORED Global Differential Privacy

- Analysts use centralized DP system
- Centralized DP system requires trust
- Protects statistics, not datasets
- Bounded ε: each query contributes to "privacy budget"

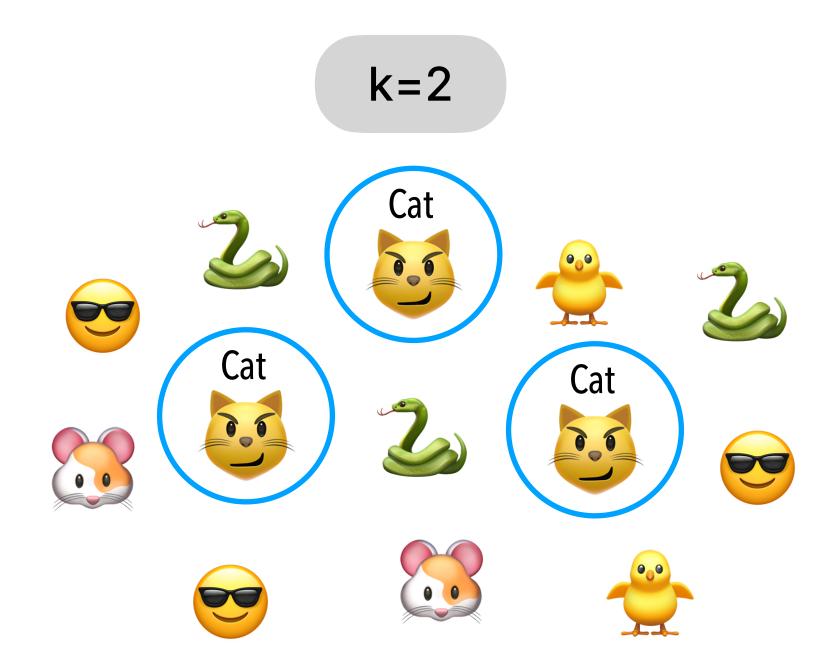


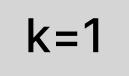
 ϵ budget = 3

What is k?

k=1

Each record's quasi-identifiers match at least k-1 other records





Age	Zipcode	Sex	Hispanic	Condition
39	78745	male	no	seizure
39	78745	male	no	wheezing
37	78704	male	yes	obesity
38	78745	male	no	C.H.F.
37	78704	male	yes	chest pain
37	78745	female	yes	fever
37	78745	female	yes	fever
38	78745	female	yes	newborn
38	78745	female	yes	vomiting
37	78701	female	no	hypertension
38	78701	male	no	pneumonia
38	78701	male	no	fever

k=2

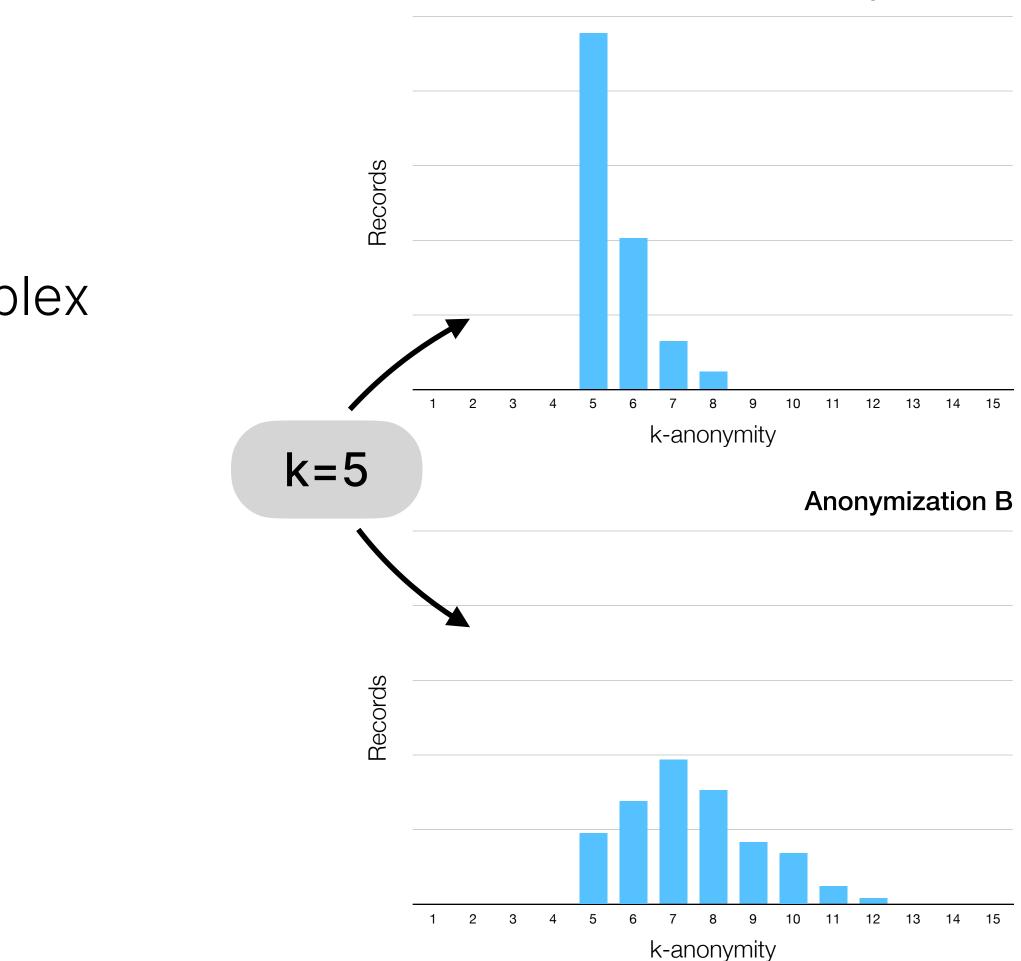
Age	Zipcode	Sex	Hispanic	Condition
30-39	78745	male	no	seizure
30-39	78745	male	no	wheezing
37	78704	male	yes	obesity
30-39	78745	male	NO	C.H.F.
37	78704	male	yes	chest pain
37	787**	female	*	fever
37	787**	female	*	fever
38	78745	female	yes	newborn
38	78745	female	yes	vomiting
37	787**	female	*	hypertension
38	78701	male	no	pneumonia
38	78701	male	no	fever

Only generalize/suppress values needed to
Minimizes information loss, good utility achieve k-target

Data can easily be shared

king Individuals "blend" with other individuals, providing plausible deniability

- K-anonymity is only a threshold metric
- Precise re-identification risk is more complex
 - Depends on an attack model
 - Probabilistic
- ≇ Not composable
- Computationally expensive optimization algorithms



Anonymization A

METHODS EXPLORED Local Differential Privacy

Randomized response

Survey interview anonymity

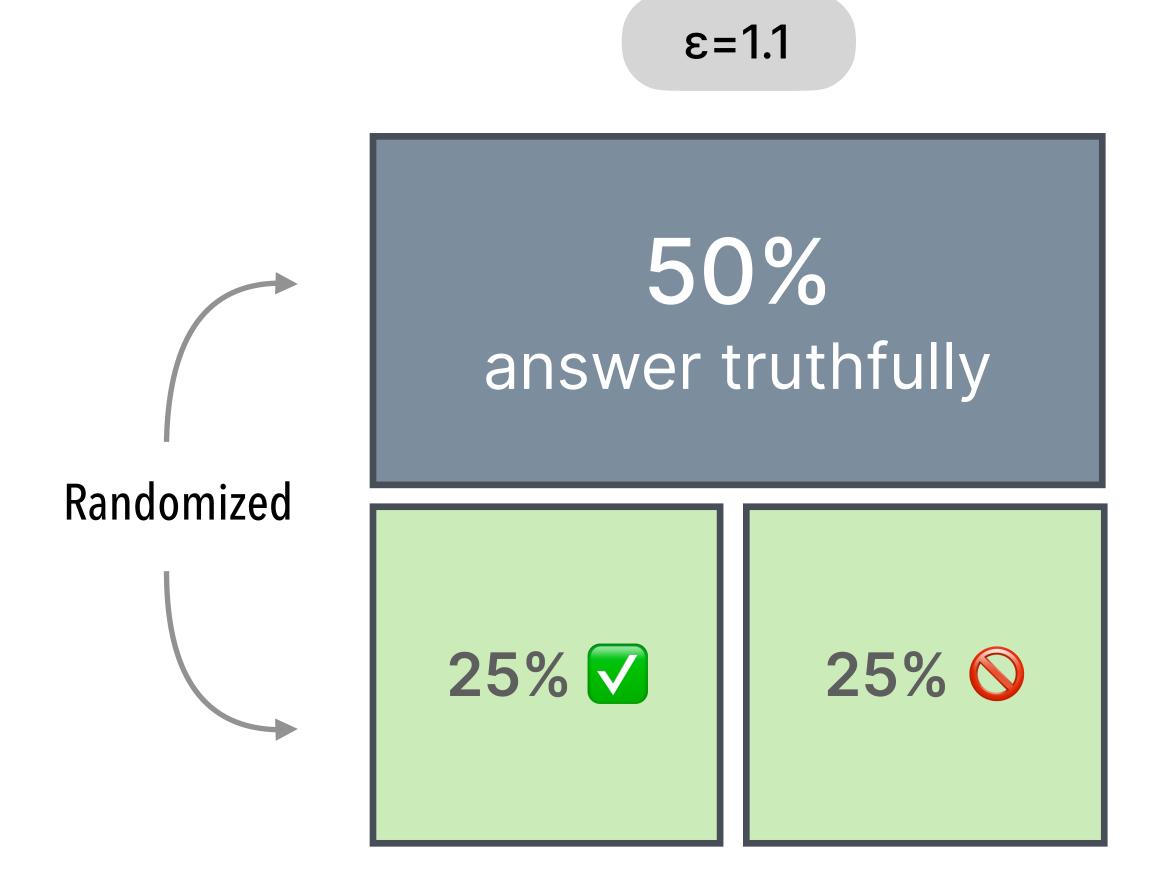
 $\mathbf{\mathfrak{S}} F(x)$ is ε -differentially private if

$$\frac{P[F(x) = S]}{P[F(x') = S]} \le e^{\epsilon}$$

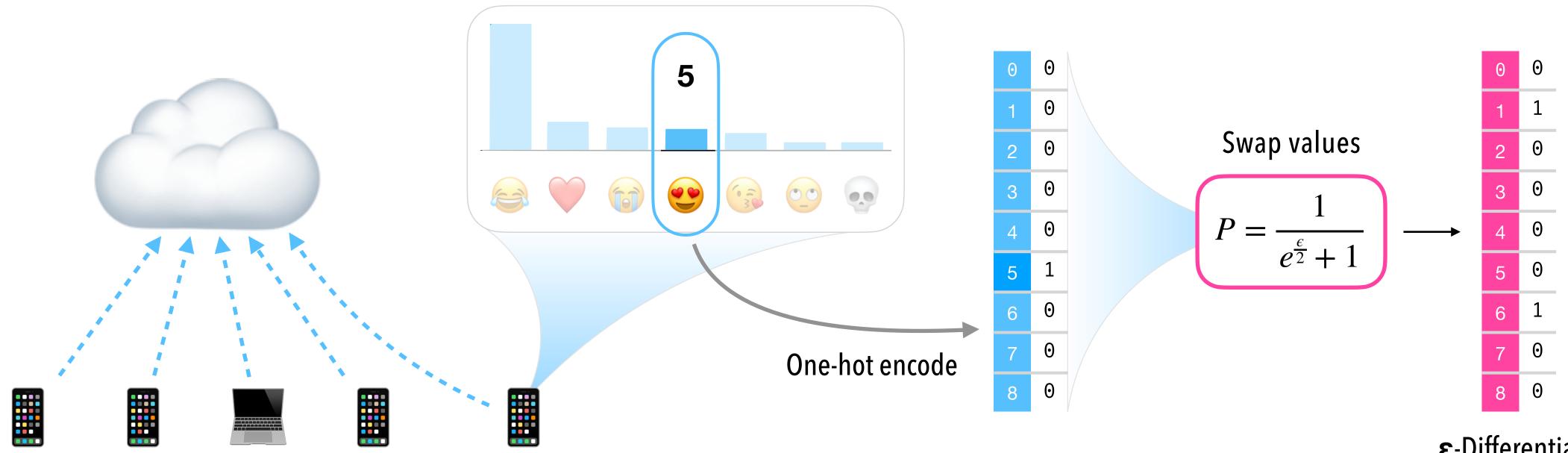
P[Correct answer] $< e^{\epsilon}$ *P*[Incorrect answer]

$$\frac{0.75}{0.25} \le e^{\epsilon}$$

$$3 \leq e^{\epsilon}$$



METHODS EXPLORED Local Differential Privacy



ε-Differentially Private vector

METHODS EXPLORED Local Differential Privacy

Protects whole datasets (like k-anonymity)

- Strong privacy guarantees (like global DP)
- \checkmark Composable ϵ (like global DP)

- We have to reconcile ϵ with re-id risk
 - Re-id risk models not well established
 - Re-id risk may be small, even with large ε

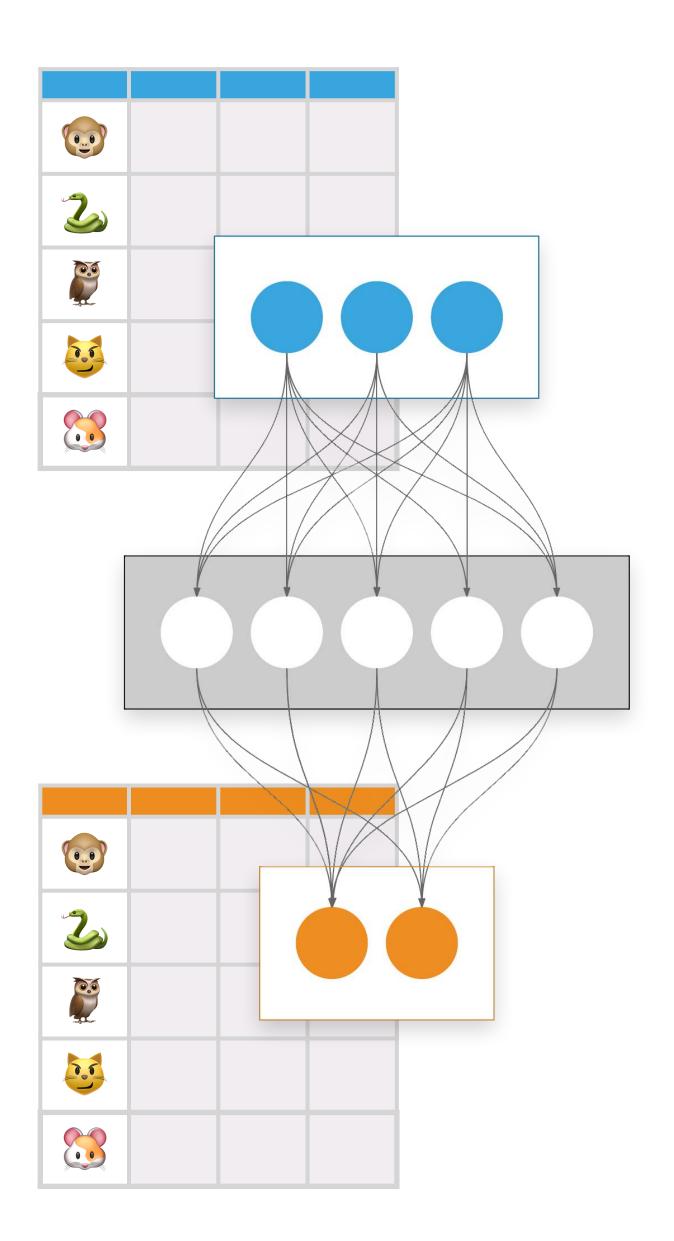
Typically orders of magnitude more utility loss vs global DP

METHODS EXPLORED Synthetic data

Learning model is trained on unprotected data

Model captures statistical properties of original data

Model produces new dataset that "behaves like" original



METHODS EXPLORED Synthetic data

Synthetic does not equate to private

- Privacy-utility tradeoff doesn't outperform other methods
- Model training phase is computationally expensive

Models can be attacked

- Synthesized data can be attacked
- Noise still needed to protect synthetic data

Privacy gain / utility loss is hard to predict

Impractical for large or highly dynamic data

Potential for increased utility when addressing re-id risk

PRIVACY DYNAMICS Elimination Round

Global differential privacyHigh utility, StrK-anonymityGood utility, ReLocal differential privacyStrong privacySynthetic dataTBD

trong privacy	Interactive model
Reasonable privacy	Expensive compute, mixed types
У	Low utility, Hard to quantify re-id risk
	Even more expensive compute

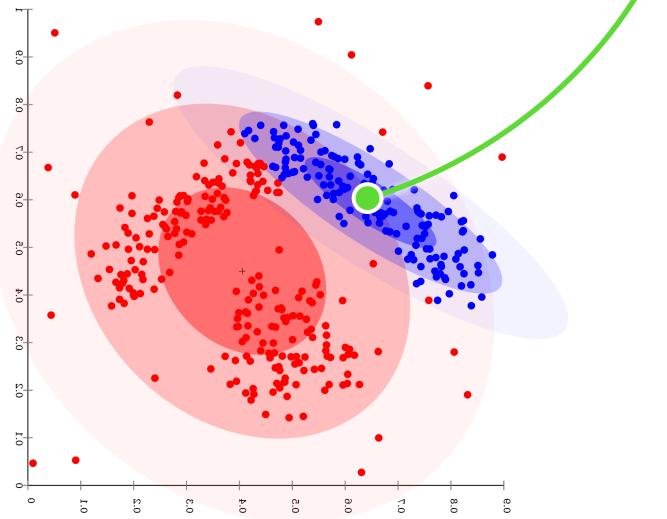
💼 Classical K-Anonymity

- Optimizes for predefined generalization hierarchy
- Constraints of hierarchy limit precision
- Generalization results in mixed type data
 - Numeric values mixed with category values
 - Categories mixed with other categories



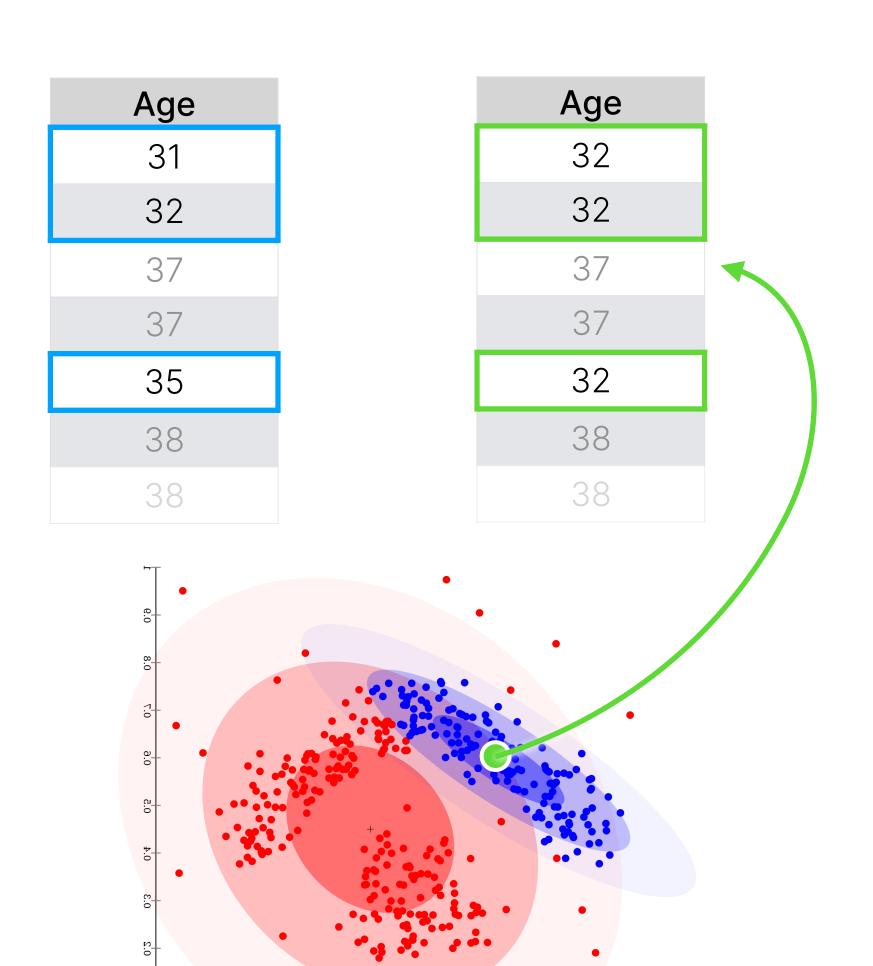
Age generalization hierarchy

- Compute k-sized similar clusters
- Hierarchy-free generalization can publish "cluster center"



Perturbation: data can change

- Maintain data semantics for downstream analysis
- More precisely target cluster center with median/mode
- Target geometric/geographical center
- Avoid suppression

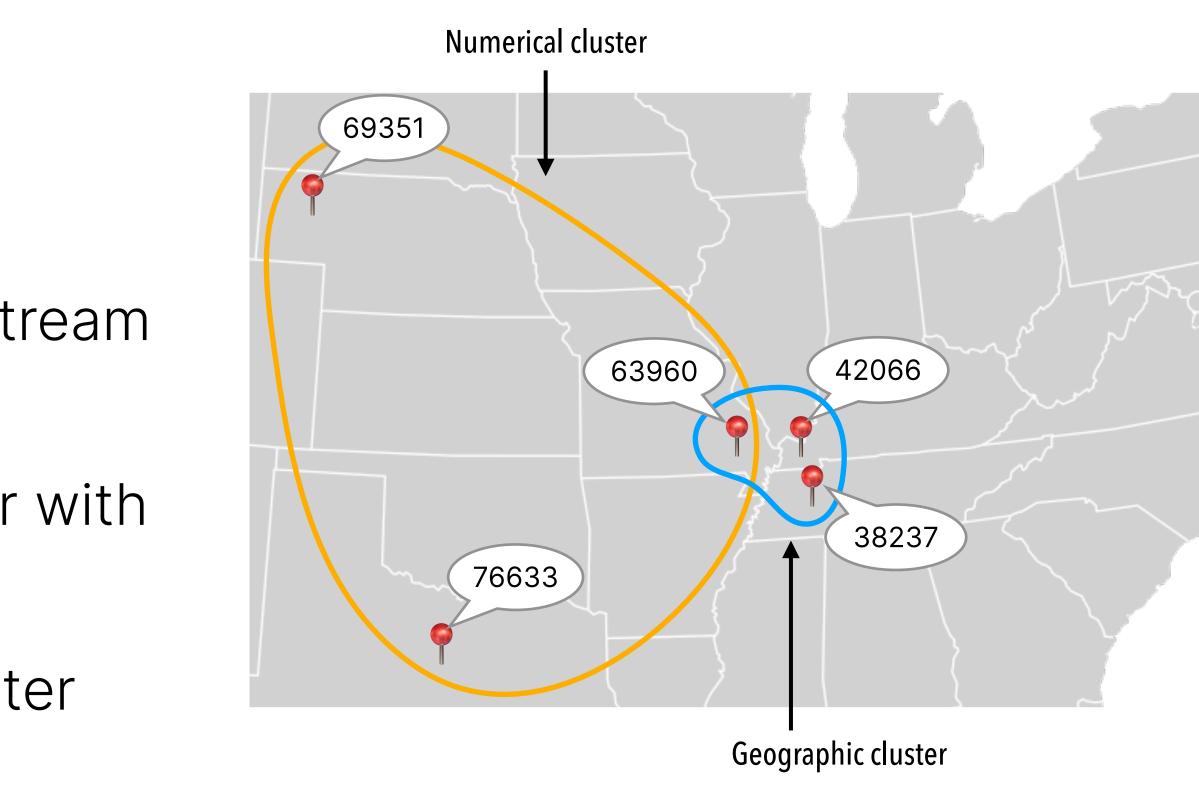


0.5 0.4 0.2 0.2 0.1

0

Perturbation: data can change

- Maintain data semantics for downstream analysis
- More precisely target cluster center with median/mode
- Target geometric/geographical center
- Avoid suppression



Perturbation: data can change

- Maintain data semantics for downstream analysis
- More precisely target cluster center with median/mode
- Target geometric/geographical center
- Avoid suppression

Sex Sex Sex Μ Μ * Μ Μ * Μ Μ Μ F F F F * Μ Μ Μ Μ Μ Μ Μ Mode Unprotected Suppressed

PRIVACY DYNAMICS Conclusion

- Privacy Dynamics found microaggregation to offer balanced privacy and utility for data sharing
- Every data privacy method presents tradeoffs
- Most appropriate method depends many factors:
 - Sensitivity of content
 - Size of dataset
 - Expected analysis
 - Audience size and trust
 - More

