
Model Serving
systems

From the ground up

Chaoyu Yang

CEO @ BentoML.com

I have a trained model!

POST: /hotdog_or_not/

Model “Not Hotdog”

Using a Model Server

• TF-Serving

• Triton Inference Server

• TorchServe
Model Server

Model
File

Input
Tensor

Output
Tensor

Real world ML application

Business Logic

Database Query

RPC/REST calls

Data Validation

Embedding Lookup

Feature Transformation

Model Inference

Output Transformation

Business Logic

{ “user_id”: 10010 }

{ “approval”: true}

Using a web serving framework

HTTP Request

Business Logic

Feature Transformation

Model Inference

Output Transformation

HTTP Response

FastAPI
worker

• Scale by replicating process

• Low resource utilization, limited by GIL

• No batching

Web Server + Model Server, best from both worlds?

Feature Transformation

Model Server

Business Logic

Output Transformation

HTTP Request

HTTP Response

Model and code are tightly coupled

Web Server Model Server Model
File

Jupyter Notebook

Request

Response

Tensor

Tensor

Serving Complex Pipelines

Pre-processor Feature
Transformer

Request

Model A

Model B

Model C

Post-processor

Response

• Complex micro-services or task-queue based architecture

• Hard to optimize performance and eliminate bottleneck

• Hard to evaluate model performance end-to-end

Day 1 and Day 2 problems even higher infrastructure cost

• New ML Framework support?

• Fine-tune batching behavior for each model

• Retrain model and CI/CD pipeline

• Model performance monitoring

• A/B Testing, Canary rollout, Multi-armed bandit

•…

Introducing BentoML

The Unified Model Serving Framework

Save and version all your models in one place

• One model store that works for all ML frameworks

• Model registry backed by cloud blob storage

• Preserve model dependency versions, metadata, and labels

Describe entire serving pipeline in Python

Build Bento for deployment

• Bento is just like docker for ML deployment

• Package all your models, serving pipeline code, and dependencies into a bento

• Easy to test and ready for deployment

High-performance serving out-of-the-bento

Single-node deployment architecture

Yatai: BentoML at scale on Kubernetes

High-performance model serving at scale

Pre-processor
Feature

Transforme
r

Model A

Model B

Model C

Post-processor

Bento Deployment

Yatai CRD
Controller

• Auto-scale at individual runner level to eliminate bottleneck

• Automatically adjust batching parameter based on traffic

• Kubernetes native, advanced CI/CD made easy

Thank you!

github.com/bentoml

chaoyu@bentoml.com

mailto:chaoyu@bentoml.com

