

DevOps for machine learning and other half-truths:

Processes and tools for the ML

lifecycle

Diego Oppenheimer, EVP MLOps



# **Speaker Bio**





Diego Oppenheimer is co-founder and CEO of Algorithmia, the enterprise MLOps platform, where he helps organizations scale and achieve their full potential through machine learning. Algorithmia puts ML models into production faster and more cost-effectively with enterprise-grade security and governance. Diego is active in Al/ML communities and works with leaders to define ML industry standards and best practices. He brings his passion for data from his time at Microsoft where he shipped some of Microsoft's most used data analysis products including Excel, Power Pivot, SQL Server, and Power Bl. Diego holds a Bachelor's degree in Information Systems and a Masters degree in Business Intelligence and Data Analytics from Carnegie Mellon University.

Diego Oppenheimer | EVP, MLOps

@doppenhe | linkedin.com/in/doppenheimer



# How do I deploy this model?





# Machine Learning != Production Machine Learning

Distributed parallel processing

Load balancing

Cloud infrastructure decisions

Cluster orchestration

Model versioning

Container image management

API management

Utilizing GPUs

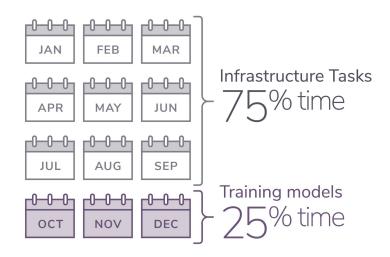


**DevOps:** "a set of practices intended to reduce the time between committing a change to a system and the change being placed into normal production, while ensuring high quality"

## Survey: Teams are capable of much more



### 75% of time spent on infrastructure



### **Key challenges**

**30%:** supporting different languages and frameworks

**30%:** model management tasks such as versioning and reproducibility

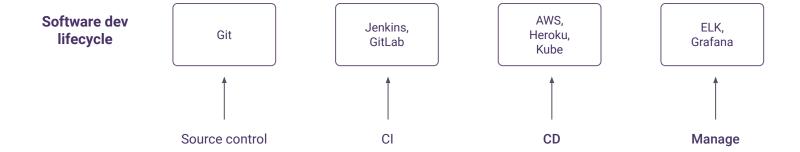
**38%:** deploying models at necessary scale

\* - survey of > 500 practitioners & management in summer of 2018

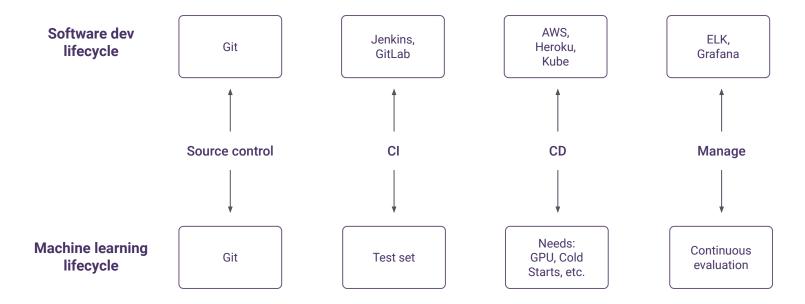


Traditional Software: Machine Learning SDLC: MLLC



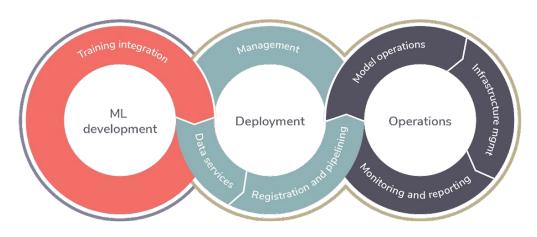






### How is ML different?





- Governance and security: ML development

Governance and security: deployment and operations

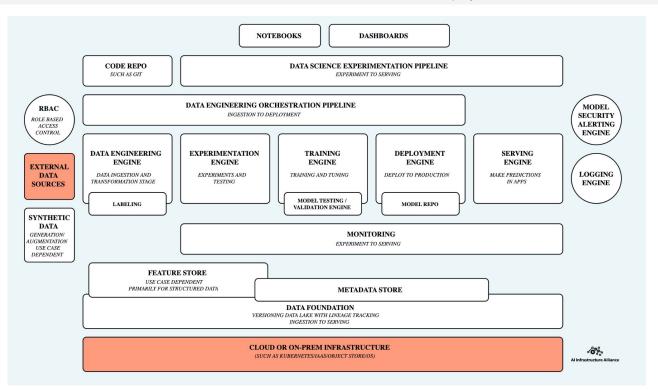
- ML development lifecycle is an evolving ecosystem
- ML moves faster than traditional app dev
- "Upgrades" in ML often come from more data, not new code



# Boyd's Law of Iteration





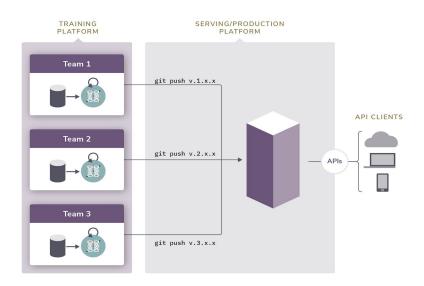




# Data is useless without algorithms, but algorithms are also useless without data.







### Training and production are very different

### **Training**

- Long compute cycle
- Interactive
- Exploratory
- Stateful
- Single user

### **Production**

- Short compute bursts
- Elastic
- Stateless
- Many users

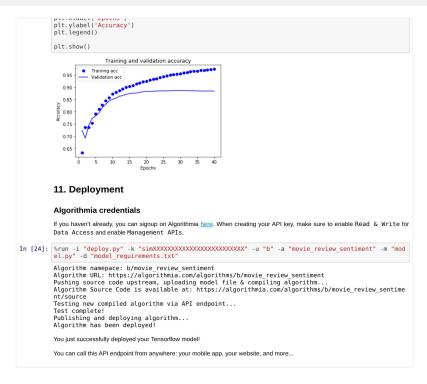


### How to bridge the gap between training and production?

### **Proposed solution: The 2-Git Flow**

- Machine learning, unlike more traditional software, often contains two distinct codebases
- One repo for training, one for inference

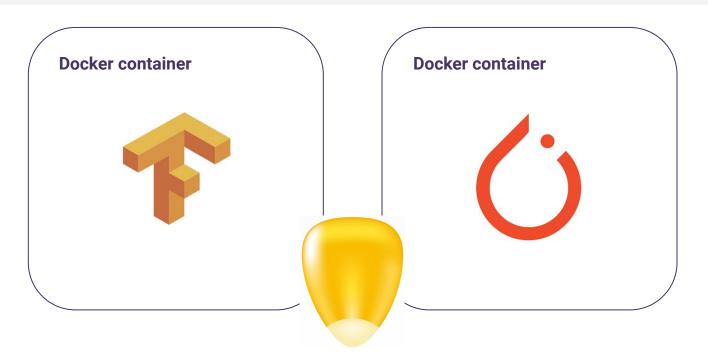




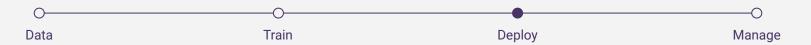


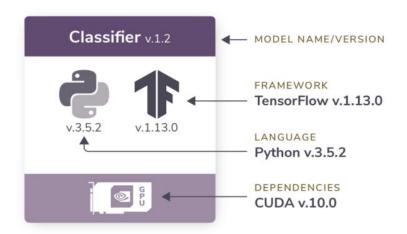












### Heterogeneous tooling and dependencies

- Dozens of language/framework combinations
- Hardware dependencies

   (e.g. CUDA) require substantial

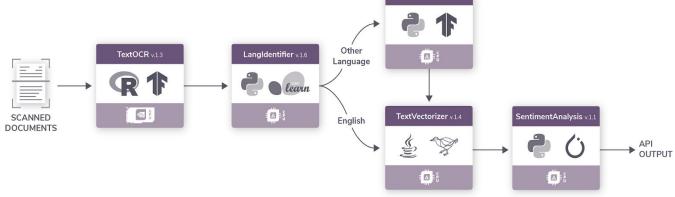
   architecture investment
- New frameworks emerge every year
- Frameworks and languages evolve constantly, requiring ongoing maintenance and testing





### Composability compounds the challenge

- Multiple frameworks
- Multiple languages
- Multiple teams



Translator v.1.2



| ACCURACY<br>(TP+TN)/(TP+FP+FN+TN) | How many subjects did the model classify correctly?                |
|-----------------------------------|--------------------------------------------------------------------|
| SENSITIVITY/RECALL<br>TP/(TP+FN)  | How many of the actual positives did the model identify correctly? |
| SPECIFICITY<br>TN/(TN+FP)         | How many of the actual negatives did the model correctly identify? |
| PRECISION<br>TP/(TP+FP)           | How many identified as positives were actual positives?            |

### Measuring model performance

- Success and performance are very context-sensitive
- Multiple success factors
- No one model is right for every job



### Where are the tests??

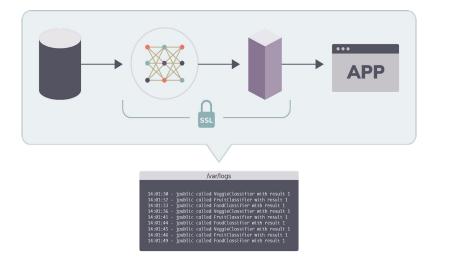
- Unit tests
- Integration tests
- Smoke tests
- Performance tests
- Stress tests

### Drift

- Model
- Concept

A/B tests





### Auditability and governance

- Internal model usage difficult to track across multi-model pipelines
- Auditability and access are major security, compliance concerns







### Introspection

- Logging
- Monitoring
- Alerting
- Observability

# Deploying ML today is economically challenging



- × Lack of process
- Wrong incentives
- × Wrong teams
- Wrong technology
- X Lack of proper champions

### How to tackle





1. Stuck in the lab



2. Disconnected teams



3. Technology mismatch



4. Stakeholder buy-in



5. Hidden technical debt

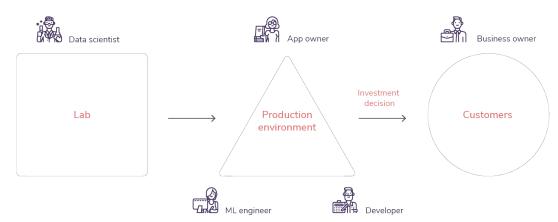
### Stuck in the lab



- You decide to invest in data science and AI for competitive advantage
- Proofs of concept funded and experiments running
- Models are trained and concepts are demonstrated but never deployed
- The business is left wondering when results will be delivered

### **Must answer:**

- Who funds production?
- Who needs to be involved?
- How does production work in my enterprise?

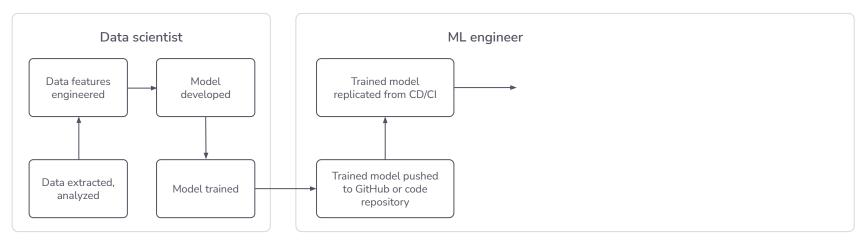


### Disconnected teams



- Asking data scientists to build infrastructure
- Teams with lack of DevOps experience
- Not partnering the right skill sets inside the org.

#### Model development ML operations and management



# Who is responsible?

- Data scientists
- DevOps
- Business/Executives

### Conway's Law

Organizations which design systems are constrained to produce designs which are copies of the communication structures of these organizations.



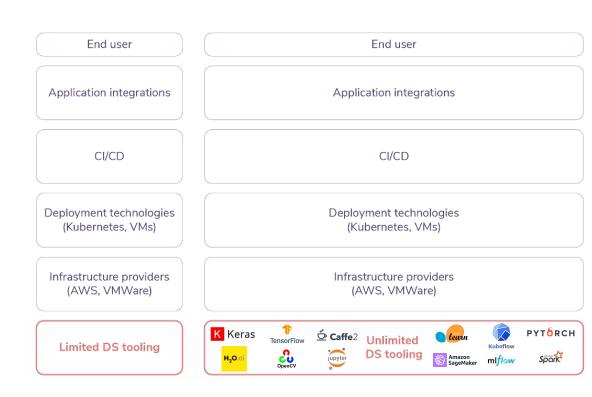
# Technology mismatch



- Lack of defined technology stack or best practices
- Not building for repeatability, measurability, and auditability
- Proprietary lock-in to tooling
- Not thinking about access to data
- Differences between prod and dev

#### Must answer:

What is the best ML architecture for my organization?



# Stakeholder buy-in

- Like with any new tech deployment, a lack of champions can be detrimental
- ML projects without executive sponsorship rarely see the light of day

#### Must answer:

How do I get buy-in from stakeholders?

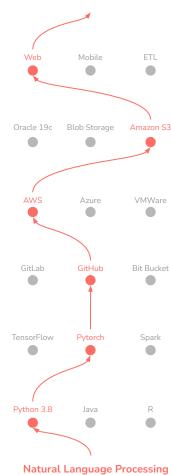
"Like any introduction of new ideas, tools, or processes, it creates a level of uncertainty due to skepticism, unfamiliarity, or misunderstanding. Fear of failure gets into the way of important and rational decisions."

-lan Xiao, Deloitte Manager and Al thought leader

### Algorithm to Application







# Lack of process



- Easy to get proofs of concept funded and experiments running
- Once results shown... then what?
- Who funds production, who needs to be involved, how does production work at my enterprise?

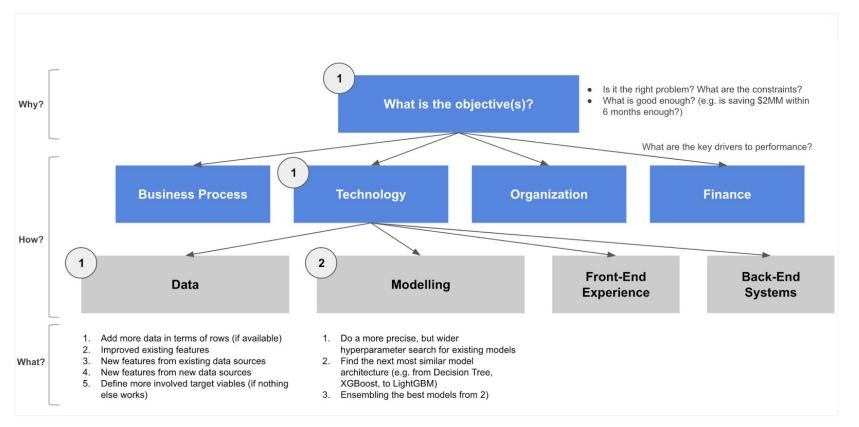
Must be able to answer: How do we go from POC to Production?

### **Solution:**

- Plan and fund deployment upfront
- Set clear deployment criterias
- Bring in stakeholders from IT and Devops early
- Build for repeatability in process



## Minimal Justifiable Improvement Tree





# ML is in a huge growth phase, but it is difficult and expensive for DevOps to keep up

- A few models, a couple frameworks, 1-2 languages
- Dedicated hardware or VM Hosting
- Self-managed DevOps or IT team
- High time-to-deploy, manual discoverability
- Few end-users, heterogenous APIs (if any)
- Each algorithm: 1 to 1,000 calls/second, a lot of variance
- Need auto-deploy, discoverability, low (10-15ms) latency
- Common API, composability, fine-grained security

### Hidden technical debt



It is difficult and expensive for DevOps to keep up with the rate of machine learning

- A few models, a couple frameworks, 1-2 languages
- Dedicated hardware or VM hosting
- Self-managed DevOps or IT team
- High time-to-deploy, manual discoverability

#### Must answer:

What is best way to do MLOps and management at scale?

- Few end-users, heterogenous APIs (if any)
- Each algorithm: 1 to 1,000 calls/second, a lot of variance
- Need auto-deploy, discoverability, low (10-15ms) latency
- Common API, composability, fine-grained security

# Considerations for ML in the Enterprise



- Infrastructure-agnostic deployment
- Collaboration and pipelining
- Performance SLAs
- Regulatory compliance
- Governance
- Accounting/chargeback tracking
- Security/authentication

# Navigate common pitfalls



- Don't reinvent the wheel
- Outcomes, not process
- Don't try to be perfect
- Say no to lock-in
- Tools aren't solutions
- Audit honestly, revise constantly



# Machine Learning != Production Machine Learning



We've spent two decades learning best practices in software engineering, and we can take those lessons and apply them to machine learning.

It's about more than just machine learning, it involves all the components around it, and picking the right tools for the job.

# Thank you



### **Further reading and credits:**

- <u>Last defense in another Al winter</u> Ian Xiao
- Foundations for ML at Scale Peter Skomoroch
- Hidden Technical Debt in Machine Learning System Google
- The Roadmap to Machine Learning Maturity Algorithmia