
Materialize + dbt:

Jessica Laughlin
Materialize

Streaming for the modern 
data stack



It’s the modern data 
stack’s world,
we just live in it.



First, some definitions

data stack → collection of all your 
data tools



First, some definitions

data stack → collection of all your 
data tools

modern data 
stack

→ collection of all your 
data tools, in the 
cloud



What’s so good about the modern data stack?

- More powerful
- Less expensive



What’s so good about the modern data stack?

- More powerful
- Less expensive
- SQL interface



A small detour:
interfaces are important.











What’s wrong with the modern data stack?

The modern data stack is batch-based because 
streaming tools haven’t exposed that same 
SQL interface.



“Batch is good enough.”





Say hello to Materialize.





Timely Dataflow and Differential Dataflow

Timely Dataflow →
“a low-latency cyclic dataflow 
computational model, introduced in the 
paper Naiad: a timely dataflow system”



Timely Dataflow and Differential Dataflow

Timely Dataflow →
“a low-latency cyclic dataflow 
computational model, introduced in the 
paper Naiad: a timely dataflow system”

Differential Dataflow →
“a computational framework built on top 
of timely dataflow intended for efficiently 
performing computations on large 
amounts of data and maintaining the 
computations as the data change”





You can build correct, 
real-time applications and 
analytics, just using
SQL + Materialize.



Materialize’s superpower: 
incrementally-maintained 
materialized views.



Materialized views, a primer

What’s a materialized 
view?

A database object that contains the result 
of a query.

Why would I use one?

Each time you query your database you 
will incur a cost. Materialized views cache 
your results, limiting your costs and 
keeping your results “fresh enough.”

What’s the downside? Materialized views get stale, and refreshing 
them can be slow and expensive.



Incrementally-maintained materialized views

What’s the same? A database object that contains the 
result of a query.

What’s different?

These materialized views update their 
results incrementally as the underlying 
data changes. This means they are 
never stale, and will always return 
correct, up-to-date results. Even better, 
this means they will only perform the 
necessary work.





Customer Item Amount

Jean Some bread 4

Marie Most bread 7

Pierre Bread 5

= 16



Customer Item Amount

Jean Some bread 4

Marie Most bread 7

Pierre Bread 5

Louise Tiny bread 3

= 16

How would you calculate the updated sum?

4 + 7 + 5 + 3 or 16 + 3?



Customer Item Amount

Jean Some bread 4

Marie Most bread 7

Pierre Bread 5

Louise Tiny bread 3

= 16 + 3 = 19

How would you calculate the updated sum?

4 + 7 + 5 + 3 or 16 + 3?





https://docs.google.com/file/d/1xqLbaqTbLvOD10c0tguRIKwVIG-5pIev/preview




Materialize + dbt



Because Materialize speaks 
SQL, you can transform 
your data in real-time using 
Materialize + dbt.



What’s the same?

Model 
definitions →

Because Materialize speaks 
PostgreSQL, you can define your 
models like you would with any other 
data warehouse.

dbt commands* →
Use all of the same, familiar dbt 
commands over streams: dbt run, dbt 
test, dbt docs, and more.

Documentation, 
lineage → Document your streaming data and get 

handy lineage information, as usual.



What’s different?

Materialization types →
You’ll want to use our custom 
“materializedview” materialization to 
create an incrementally-maintained 
materialized view.



What’s different

Materialization types →
You’ll want to use our custom 
“materializedview” materialization to 
create an incrementally-maintained 
materialized view.

How some dbt 
commands are used → Let’s dig in, you’re going to be 

pleasantly surprised!



“dbt run” your models 
once and never again.

Proprietary & Confidential



https://docs.google.com/file/d/1oSMjLzxN-FFX7PLnY1FpU0iEP7qjk2dF/preview


dbt test works on streaming data, too!

Run dbt test on your materialized views to 
catch data quality issues in real time.









Thank you!
Questions? Come to our booth or find me at 

@JLDLaughlin or 
jessica@materialize.com

We’re hiring! jobs@materialize.com


