

It's The Data, Stupid!

March 24, 2022 Peter Gao

Peter Gao

Cofounder and CEO at *(*Aquarium)

Early employee at Cruise, led CV team

Deep Learning research at Berkeley

Here is a real use case from work for model improvement and the steps taken to get there:

- Baseline: 53%
- Logistic: 58%
- Deep learning: 61%
- **Fixing your data: 77%**

Some good ol' fashion "understanding your data" is worth it's weight in hyperparameter tuning!

12:48 PM · Apr 24, 2019

1.3K \bigcirc 377 people are Tweeting about this

How To Improve Your ML System

- Improve your model code
- Improve your training dataset
- <u>Do these faster and more frequently</u>

"Old School" ML Vs Deep Learning

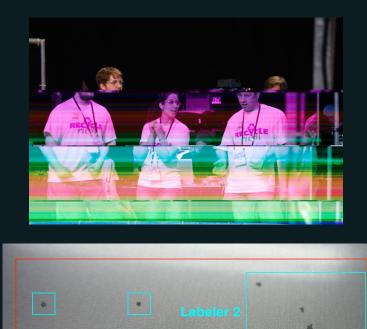
	Old School ML	Deep Learning
Example Tasks	Forecasting, recommendations	Object detection, seq2seq
Data types	Structured / tabular data	Unstructured data (imagery, audio, etc.)
Labeling	Labels come "for free"	Pay people to label data
Algorithms	Logistic regression, SVMs, random forests	Neural networks
Development Emphasis	 Data pipelines + infrastructure Feature engineering Model experimentation (ex: sparsity) 	 Data pipelines + infrastructure Fine tuning pretrained models Improving quality + variety of datasets

How Do You Improve Your Data?

- Find problems in the data / model performance
- Figure out why the problems are happening
- Modify your dataset to fix the problems
- Make sure the problems are fixed as you retrain your model on the new dataset
- Deploy new model + repeat

Types Of Data Problems

- Invalid data
- Labeling errors, ambiguities
- Difficult edge cases
- Out of sample data



Labeler 1

How Do You Improve Datasets Efficiently?

- Problem: Identifying failure cases in the data / model performance
 - Lots of labeled data, only a few examples are problematic. Labor intensive to dig through haystack looking for the needle
 - Example: Triple QA finds many issues but can 3x your labeling cost
 - Example: Hard to understand model failure modes without metadata to slice on

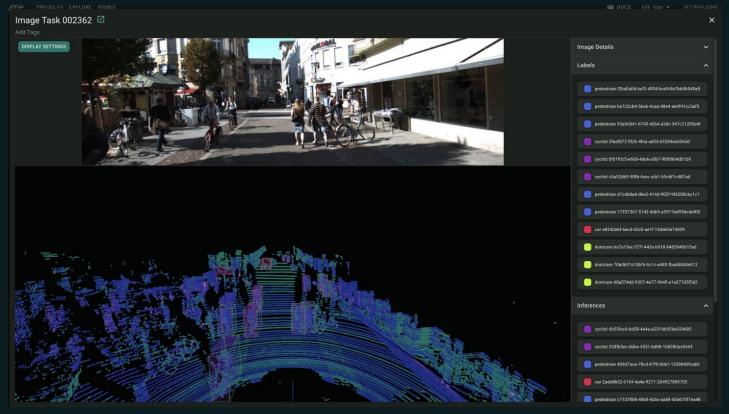
How Do You Improve Datasets Efficiently?

- Solution: Get feedback signal that tells you where to look
 - Feedback from double-checking
 - Human-check prod model outputs (example: customer feedback)
 - Check disagreement between automated systems
 - Feedback from model
 - High loss disagreements with labels (tend to be labeling errors)
 - Error patterns vs labels (in metadata + raw data)
 - Distributional shifts between training + prod environments

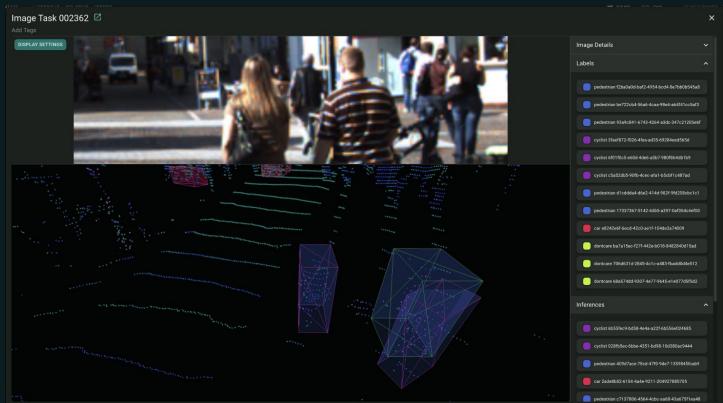
Example: KITTI



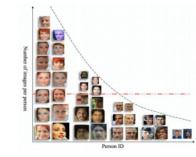
Example: KITTI



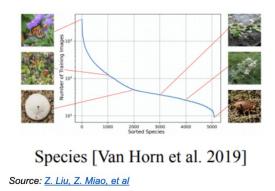
Example: KITTI

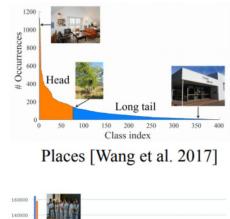


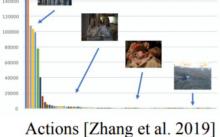
Long Tail Is Long

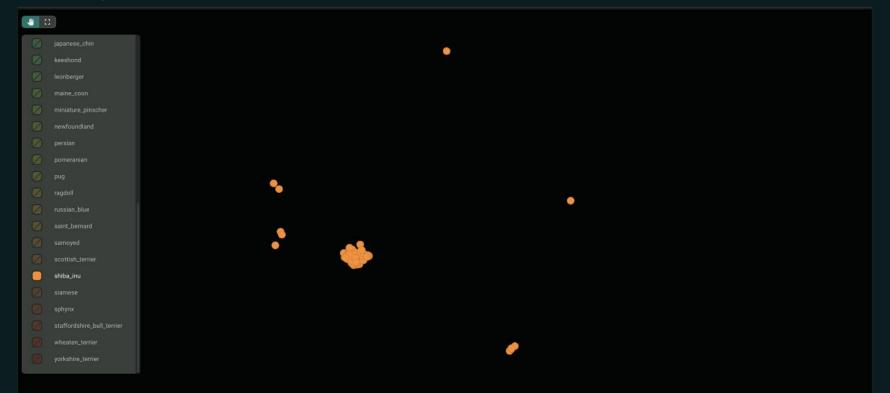


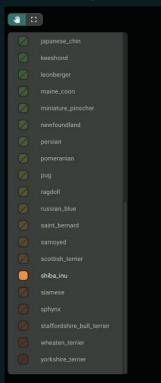
Faces [Zhang et al. 2017]

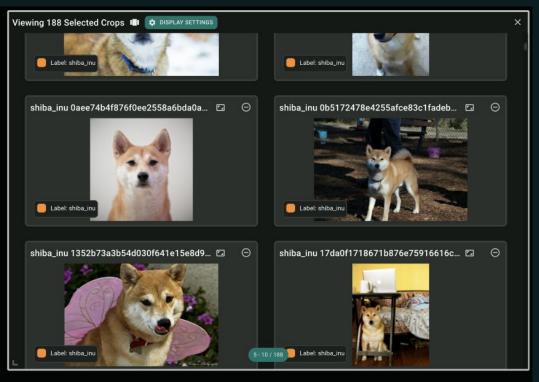


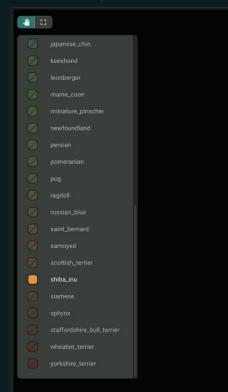


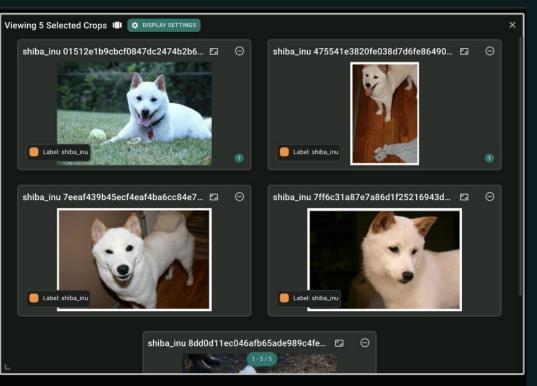


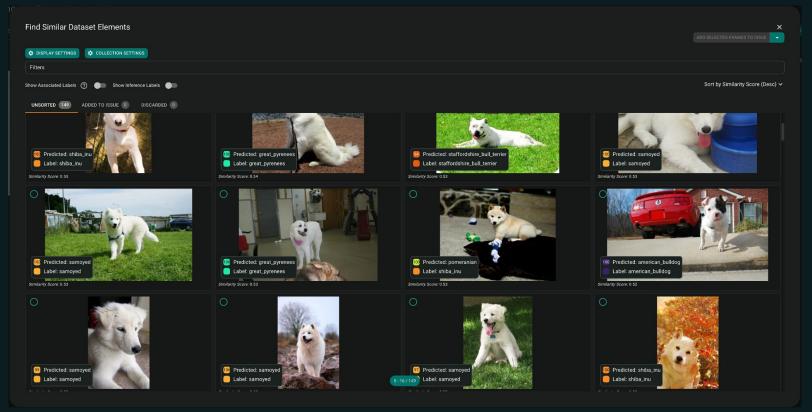












Aquarium

Make it easier to build and improve production ML systems!

