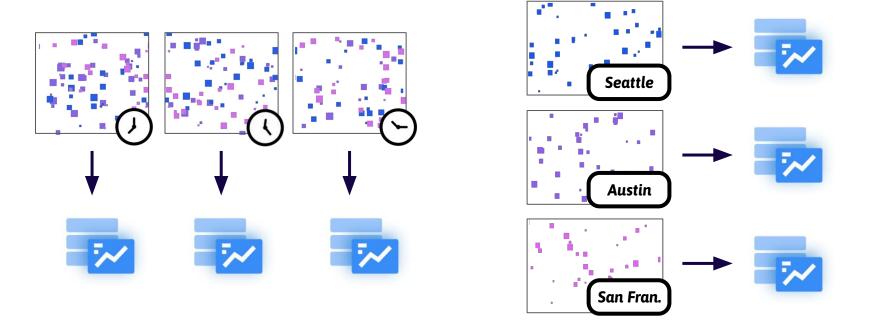
Observability at the long tail: Why sampling production data doesn't work for rare events

> Bernease Herman Data Scientist, WhyLabs Data Council Austin March 23, 2022 in Austin, Texas

WHYLABS

On a mission to build the interface between human operators and AI applications

whylogs


O bit.ly/<u>whylogs</u>: Telemetry for the ML stack

🕒 😑 🥥 whylabs/whylogs: Profile and	im X				
- → C' ŵ 🛛 🖨 https://git	hub.com/whylabs/whylogs			III\ 🗊 📵 🧧	🖥 🖻 🔕 🖒 🖸 🖬 🖯 🗉 🍕 »
Search or jump to	7 Pull requests issues	Marketplace	Explore		\$ +• ∰•
📮 whylabs / whylogs				⊙ Unwatch +	16 🚖 Unstar 344 ^얓 Fork 15
✓ Code ① Issues 28 \$1	Pull requests 3 🕑 Actions	III Projects	🖽 Wiki	Security	🗠 Insights
🐉 mainline 🗸 🐉 45 branches	🛇 8 tags	Go to file	Add file -	± Code -	About
lalmei and andyndang Updat	e .github/ISSUE_TEMPLATE/confi		30 yesterday	() 647 commits	Profile and monitor your ML data pipeline end-to-end
.github	Enable publishing to WhyLabs (#222) 2 days ago python lo dataops of format and lint fixes yesterday			whylogs.readthedocs.io/	
docs					
examples					
images	add images, modify tables, fix ty	add images, modify tables, fix typos			aiops mlops ml-pipelines
notebooks	add notebook examples and fix action 28			28 days ago	
proto	Add 'proto/' from commit '0834	Add 'proto/' from commit '083464b1e5fdc200b3118e8621b 26 days ago			statistical-properties
scripts	Updated development documentation, removed more setup 16 days ago		C Readme		
src/whylogs	Enable publishing to WhyLabs (#222) 2 days			2 days ago	o Apache-2.0 License
test_notebooks Add autoflake to fix flake issues		19 days ago			
🖿 testdata	计 regression metrics (#171)		last month	Releases 8	
tests	Close sessions before asserting	results		12 days ago	o v0.4.5 Regression Latest

Production ML data is often voluminous, dynamic, and increasingly in the form of streaming data

Complexities of (1) scale and (2) streaming data

Many practitioners try simple sampling techniques; others slice data into segments based on time and other characteristics before conducting analysis

Comparing static windowing, sampling, and profiling

Median and quantile calculation include the following popular approaches:

Static metrics on subsets of data

Predetermine important metrics and store only that information

Random sampling

Store a random sample of the data for further analysis

Data profiling for streaming data

Advanced data structures and algorithms for summarizing data and error

Capturing simple pre-selected metrics for ML data...

```
metrics: {
mean: 8.0,
standard_deviation: 1.24,
quantile_0.25: 5.2,
•••,
accuracy: 0.89,
precision: 0.75,
recall: 0.92,
```

Static metrics approach

Pros:

Fast access to key metrics Low storage size

Actual metrics on single batch

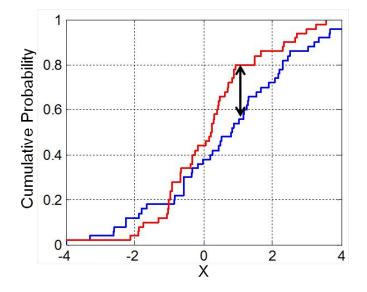
<u>Cons:</u>

Requires metric pre-selection Non-mergeable

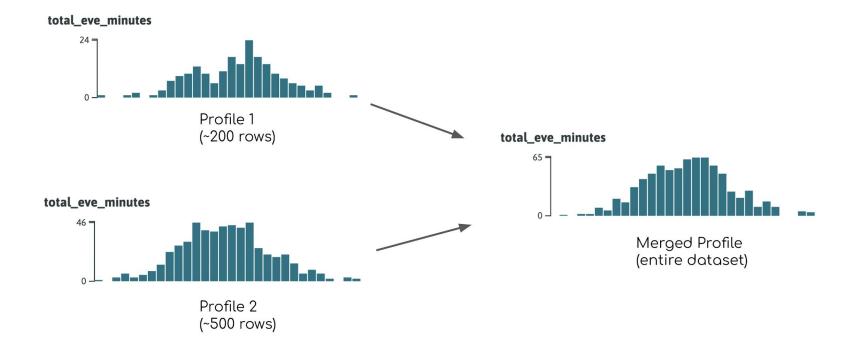
... isn't enough for root causing production systems!

Using simple pre-selected metrics alone, you can not answer the following:

Est. value of new metric x on prior data?


Est, overlap of data with set {a, b, c}?

Relative rank of value x on last year's data?


Distribution drift between two datasets?

Error bounds of estimates over the last month of data?

...and many more.

Data mergeability is critical for observing the long tail and rare events

Randomly sampling ML data has issues as well.

Sampled rows: 495K

. . .

Total rows: 198MM

- 0 Transaction ID,Customer ID,Quantity,Item Price, Total Tax,Total Amount,Store Type,Product Category,Product Subcategory,Gender,City Code, Age at Transaction Date,Transaction Type, Transaction Week,Transaction Batch
- 1 T24951240379,C267987,12,19.1,24.0660000000000, 1306.85256,e-Shop,Electronics,Personal Appliances,M,9.0,24.0,Purchase,0,2
- 2 T54251889351,C267740,-3,54.2,17.073,-927.11268 00000001,MBR,Books,Non-Fiction,M,2.0,36.0,Cancel lation,0,2

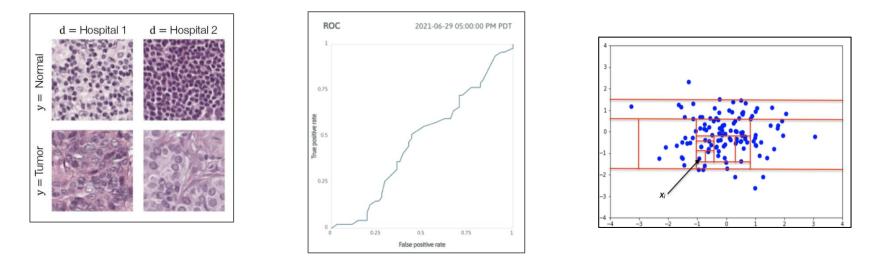
Random sampling

Pros:

Same format as original data High flexibility Batch or streaming data Mergeable

Cons:

Poor estimates on tail/outliers Poor precision (based on %) High storage size


What is data profiling?

Data profiling is the act of reviewing and analyzing datasets to understand their structure and information. Data profiles can include the following:

- Collection of descriptive statistics
- Identify different data structures, types, and patterns
- Employ keywords, categorize datasets, and create descriptions
- Conduct data quality examinations
- ... and more.

Source: Hanh Truong, "What is Data Profiling?"

Data profiling can include static metrics, but can also contain many more advanced tools needed for analysis

E.g., error bounds for estimates, feature importance, outlier detection, surrogate models.

Sketch-based data profiling for ML data

Profile S	ummar	y: mytestytest_2	2021-06-01 05:00:00	PM -0700		
Observations	Missing C 500 (12					
Drift detecte				Quint	search	
1 with severe drift	ft (0.00 - 0.05)	0 with moderate drift (0.05 - 0.3)	3 with mild drift (0.3 - 0.6) 3 with minim	nal drift (0.6 - 1.0)	search	
Feature			Reference	Diff from ref. 🧿	Total count	Mean
1mixture_distr	ibution	ullius		0.40	500	0.36
3mixture_distr	ibution	dilduna a		0.53	500	0.35
uniform_integ	ers	databila	lanatulati	undefined	500	23.83

Data profiling approach

Pros:

Fast access to key metrics High flexibility Low memory and storage size Mergeable

Built on peer-reviewed algos

Cons:

Requires some pre-selection Underlying algorithm complexity

Building a profiling standard for ML data

Properties of sketch-supported profiling for logging, analysis, and monitoring of ML systems:

- Lightweight
- Configurable
- Mergeable
- Streaming
- Statistically sound

How it works: Notation for median and quantiles

For a stream of numbers $x_1, x_2, ...$ with current stream length N: Rank, rank(x)Number of elements $\leq x$

Relative rank,
$$r(x)$$

Normalized rank, $rac{rank(x)}{N}$

Quantile, quantile(q)

Value x s.t. rank(x) = qN or equivalently, r(x) = q

Median example Values: 5 4 1 5 6 2 Sorted: 1 2 4 5 5 6 In this example, rank(4) = 3 $r(4)=rac{3}{6}=0.5$ quantile(0.5) = 4

Calculating quantiles in $\,P\,$ passes over data

Exact calculations

Munro-Paterson proved that the lowest amount of space needed to calculate a quantile in P passes over the data is: $\Omega(N^{1/P})$

You'd need to store N data points to calculate the quantile exactly in streaming setting. Not acceptable!

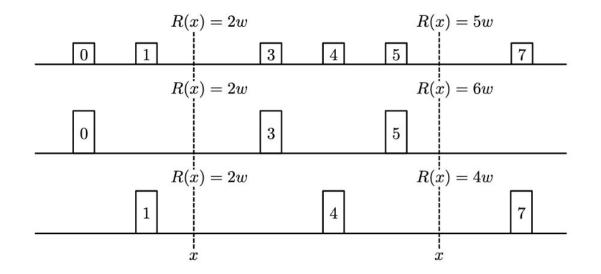
Approximate calculations

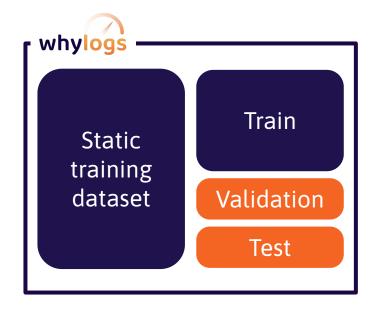
Data sketching techniques allow us to calculate approximate quantiles much more efficiently and in one pass, if desired for streaming.

Numerous algorithms, but KLL (what we use in **whylogs**):

For a single quantile: $(1/\epsilon)loglog^2(1/\epsilon\delta)$ For all quantiles: $(1/\epsilon)loglog^2(1/\delta)$

A brief look at how quantile sketches (KLL) are made



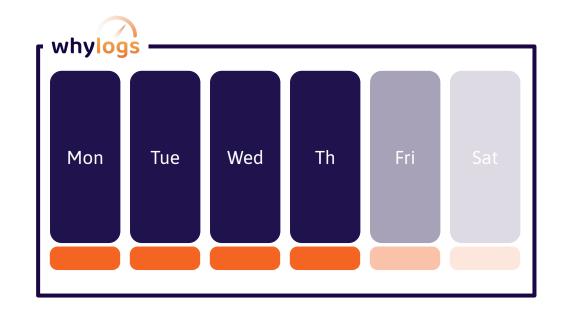

Figure 1: An illustration of a single compactor with 6 items performing a single compaction operation. The rank of a query remains unchanged if its rank with in the compactor is even. If it is odd, its rank is increased or decreased by w with equal probability by the compaction operation.

Considerations for the whylogs library

Properties of profiling that make whylogs great for logging, analysis, and monitoring ML systems:

- Lightweight
- Mergeable
- Configurable
- Streaming
- Statistically sound

Profiling training data and other static datasets


Profile static datasets such as training datasets to store, analyze, and use as a comparison for monitoring.

Uses the same calculations as other profiling, so emphasis on lightweight, speed, and common use cases.

Profiling ongoing production data

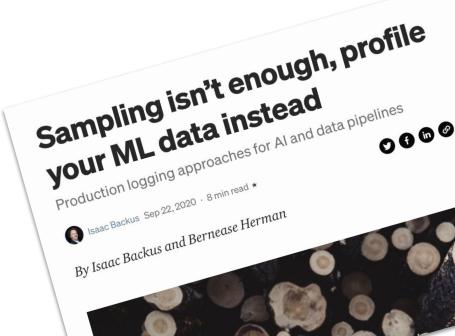
Most typical use case, profiling batch or streaming production data.

The underlying data (and perhaps actuals for performance metrics) gets logged regularly while you serve production traffic.

WhyLabs Confidential

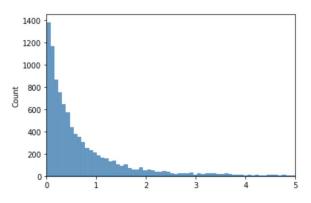
Single profile analysis, but added value for 2+ profiles

whylogs			
	Single profile	Two profiles	Three or more
Data documentation	V	~	~
Exploratory data analysis	\checkmark	~	\checkmark
Data unit testing	√ NEW!	~	~
Ad-hoc comparison to Baseline		~	~
Continuous monitoring			~

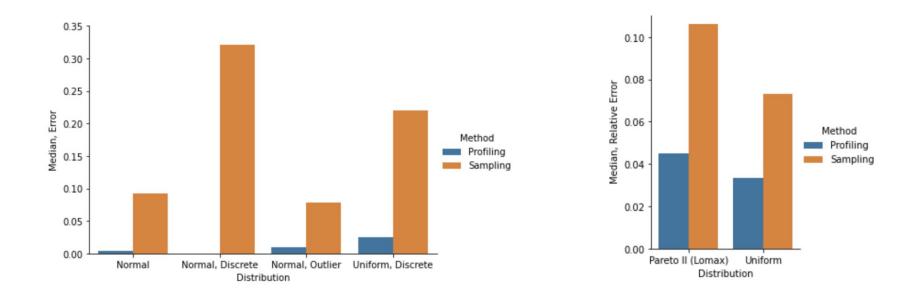

With multiple data profiles, powerful analyses like drift detection, event monitoring, and automated data unit testing become available.

Data sampling versus profiling experiments: Comparing error on common statistical distributions

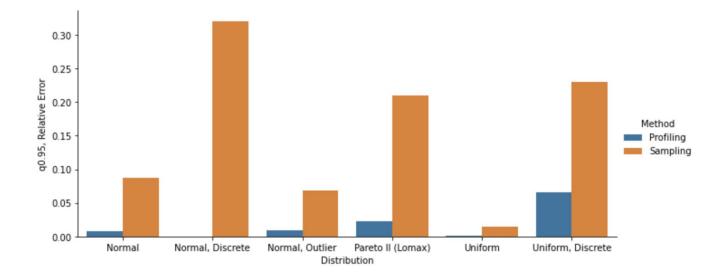
Experimental procedure:


For each statistical distribution:

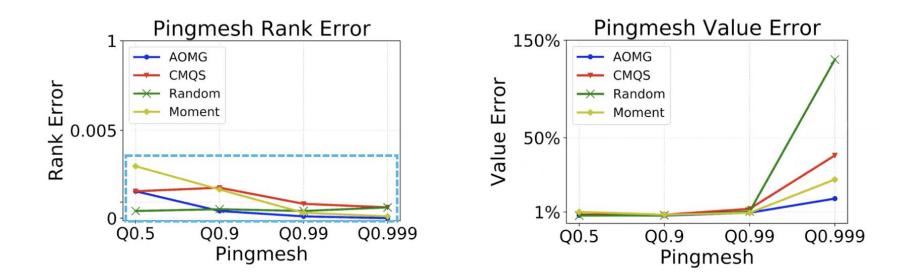
- 1. Randomly sample **10**⁵ records
- 2. Sample a subset of **n_sample** records such that the subset is as many bytes as the profile. This is to compare apples to apples.
- 3. Compare with exact value on sample
- 4. Repeat steps 2 through 4 for a total of 24 runs and average the results


Data sampling versus profiling experiments: Statistical distributions chosen for experiments

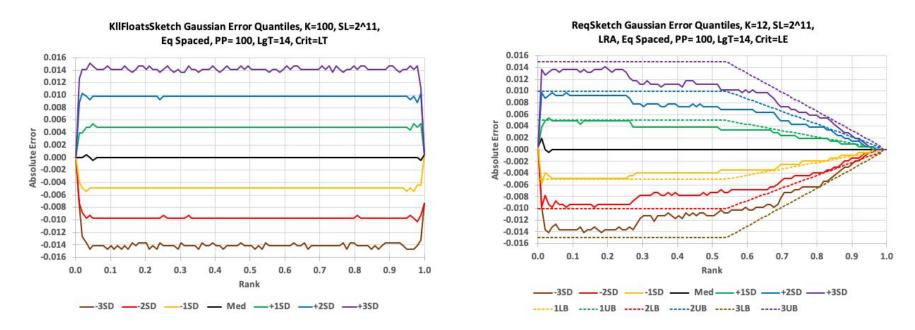
Distribution	Parameters	Purpose	
Normal	mu = 0, std dev = 1	A broad class of data. Unskewed, has a tail but is peaked around the center	
Uniform	min = 0, max = 1	Data without a tail that is evenly sampled across its domain.	
Pareto (type II)	shape = 2, min = 0	A broad class of skewed data with a long tail/outliers.	
Discretized normal	mu = 0, std dev = 1 discretized into ~10 categories	Non-uniformly sampled categorical data, occasionally with outliers	
Discretized pareto (type II)	shape = 2, min = 0 discretized into ~10 categories	Very non-uniformly sampled categories, with rare events/outliers.	
Discrete Uniform min = 0, max = 1 10 categories		Evenly sampled categorical data	



Pareto Type II, or Lomax distribution


Data sampling versus profiling experiments: Comparing error on median across distributions

Data sampling versus profiling experiments: Comparing error of across q0.95 across distributions



But even low rank error can have a large effect on the tail of the distribution where values may be high

Source: Gangmuk Lim, ICSE 2020 Presentation

Current sketch treats error evenly across rank, but opportunities to prioritize left or right tail of data

Source: Apache DataSketches, Relative Error Quantiles (REQ)

Want to extend functionality beyond open-source whylogs profiles? Try the WhyLabs SaaS platform

Select model:	lending_club_credit_moc	lel Summary	<u>05/31/2021</u> to <u>06/29/2021</u> Log out Histogram data
Monitor settings and audit log ? lending_club_credit Monitor Configuration Audit Log	Model monitors ? All on	Total Features ? Discrete Non-discrete	20k- 1 5k- 1 5k- 1 0k- 1 0k-
Monitor default Defaults will apply in "learned thresh Baseline ? © Compare to tr Compare to r	y to all features old* mode. ailing window	Monitor control Enable or disable monitors in bulk for all features. Distribution On Missing Values On Est. Unique Values On	Max: 35422.6 Count: 4483 0 -100k -50k 0 50k 100k 150k 200k Profile 1
Trailing window 7-day window 7-day window Some monitors ca settings the numb deviations: Number of Std De Auto Range 10 - 2.0	n be tuned by er of standard	e Est Onique values on Inf. Data Type On Note: when a monitor is turned off, it will disable all feature monitors of the same type.	Frequent items data 10k 7.5k- 5k- 2.5k- 0 NY" "PA" "IL" "NC" "C TVY AL" "MS" "ID" "SD" "MT" "WV"

Thank you! Questions?

Also, help build the open standard for data logging:

github.com/whylabs/whylogs

<u>join.slack.whylabs.ai</u>

Contact me: In-person at Data Council Austin Email: **bernease@whylabs.ai** Social media: **@bernease**

Instructions for getting WhyLabs swag:

- Star the **whylogs** project on Github
- Join our **Community Slack**
- Submit a form with relevant info at <u>bit.ly/whylogsswag</u>

A subset of ML issues encountered in production

- Experiment/production environment mismatch
- Wrong model version deployed
- Underprovisioned hardware
- Inappropriate hardware
- Latency/SLA issues
- Data permissions misconfigured
- Untracked changes broke prod
- Traffic sent to the wrong model
- Computational instability
- Customers gaming the model
- PII data exposed
- Expected accuracy doesn't materialize

- Pre-processing mismatch in experiments vs. production
- Retrained on faulty data
- Accuracy improves on one segment, regresses in others
- Outliers predicted incorrectly
- Bias identified
- Correlation with protected features
- Overfitting on training/test
- Surge in missing values
- Surge in duplicates

- Poor performance on outliers
- Data quality issues affect accuracy
- Production data doesn't match test/training
- Accuracy is decaying over time
- Data drift in inputs
- Concept drift in outputs
- Extreme predictions for out of distribution data
- Model not generalizing on new data / new segments
- Major consumer behavior shift

...or it simply doesn't work, and nobody knows why! $_{\rm 30}$

Most ML issues are observable from the data itself

- Experiment/production environment mismatch
- Wrong model version deployed
- Underprovisioned hardware
- Inappropriate hardware
- Latency/SLA issues
- Data permissions misconfigured
- Untracked changes broke prod
- Traffic sent to the wrong model
- Computational instability
- Customers gaming the model
- PII data exposed
- Expected accuracy doesn't materialize

- Pre-processing mismatch in experiments vs. production
- Retrained on faulty data
- Accuracy improves on one segment, regresses in others
- Outliers predicted incorrectly
- Bias identified
- Correlation with protected features
- Overfitting on training/test
- Surge in missing values
- Surge in duplicates

- Poor performance on outliers
- Data quality issues affect accuracy
- Production data doesn't match test/training
- Accuracy is decaying over time
- Data drift in inputs
- Concept drift in outputs
- Extreme predictions for out of distribution data
- Model not generalizing on new data / new segments
- Major consumer behavior shift