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1.7 Million+
NUMBER OF MERCHANTS

Shopify creates the best commerce tools for 
anyone, anywhere, to start and grow a business.

~175 Countries
WITH MERCHANTS

~$356 Billion
TOTAL SALES ON SHOPIFY

7,000+
NUMBER OF EMPLOYEES



What I’m NOT going to cover today 





Instead, we want to make building 
and operating Flink applications as 

easy as building and operating 
Rails applications 
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We Need Realtime Data Products

● Reporting & Insights
● Product Analytics
● Data Integration
● Data Enrichment
● Sessionization
● …

Everywhere

● Sales & Orders
● Inventory
● Marketing
● Billing
● Customer Behaviour
● Messaging
● Mobile
● 3rd-party APIs
● …



Why Apache Flink?

● We’ve been building streaming applications for many years: Spark Structured 
Streaming, Beam, in-house tools.

● None of the ways supports large complex stateful transformations.
● None of the ways feels like “just building another app”.



How do you build a data platform?



1. Ecosystem 3. “Serverless” Platform2. Managed Platform

Three Levels of Platforms



1. Ecosystem

Combination of libraries, 
tools and standalone 
services.

3. “Serverless” Platform2. Managed Platform

Examples: Apache Spark/Flink 
+ related tooling.

Three Levels of Platforms



1. Ecosystem

Combination of libraries, 
tools and standalone 
services.

3. “Serverless” Platform2. Managed Platform

A single shared managed 
runtime powering many 
use-cases.

Examples: Apache Spark/Flink 
+ related tooling.

Three Levels of Platforms

Examples: Google Dataproc, 
Amazon EMR.



1. Ecosystem

Combination of libraries, 
tools and standalone 
services.

3. “Serverless” Platform

A single shared “serverless” 
runtime powering many 
use-cases.

2. Managed Platform

A single shared managed 
runtime powering many 
use-cases.

Examples: Apache Spark/Flink 
+ related tooling.

Three Levels of Platforms

Examples: Google Dataproc, 
Amazon EMR.

Examples: Google BigQuery, 
Amazon Redshift Serverless.



Our strategy: start with an 
ecosystem of tools, evolve to a 

“serverless” platform



Roadmap

● First milestone, foundations:
○ Library: common Flink components, helpers and connectors:

■ Kafka (multiple flavours), GCS (many formats), Bigtable.
○ Observability: DataDog metrics reporter, structured logging for Splunk.
○ Examples: real applications demonstrating common use-cases.
○ Project generator: have a working repo in 30 seconds.
○ Documentation & customer support.

● Second milestone: launch, learn and iterate.



Ecosystem: Trickle



Ecosystem: Trickle



https://docs.google.com/file/d/1e4AW3M3BNinCEB6lnvijYtDFjPb527C3/preview


implicit val env = Trickle.createEnv()

Typical Flink application



implicit val env = Trickle.createEnv()

val checkoutTrackSource: DataStream[CheckoutTrack] = 
CheckoutTrackMonorailSource()

val lineItemsSource: DataStream[LineItemRecord] = CDCSource[LineItemRecord](
  topic = "core-line_items-v2", // ...
)

Typical Flink application
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val lineItemsSource: DataStream[LineItemRecord] = CDCSource[LineItemRecord](
  topic = "core-line_items-v2", // ...
)

val sink: SinkFunction[Result] = pipelineConfig.sinkType match {
  case Print => new PrintSinkFunction()
  case Bigtable => BigtableSink[Result](
    table = "vendor_popularity", // ...
  )
}

Typical Flink application
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env.execute("Demo App")

Typical Flink application
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Trickle V2 documentation



Lessons Learned



Apache Flink Fork

● We had to fork Flink in order to incorporate early features and add bugfixes:
○ E.g. running Flink in GCP might be tricky; Parquet reader < 1.14 has tons of 

issues.
○ Some things just don’t work properly (there are no good DogStatsD metrics 

reporters out there).
● Maintaining the fork doesn’t need to be hard!



Fork Upstream

Tag: release-1.14.3

Branch: 
shopify-release-1.14.3

Shopify 
changes

Branch: masterBranch: master

Our Flink fork branching strategy



shopify-flink

Branch: 
shopify-release-1.14.3

Shopify 
changes

Artifact 
Repository

(JARs)

GCS
(Binary 

distribution)

CI Job: 
shopify-flink-publish-package

data-docker-images Docker 
Registry

Our Flink fork build process



Data Reconciliation

● Consider investing in data reconciliation tooling when migrating workloads.
○ E.g. we have a data integrity service that continuously performs data 

integrity checks and alerts if necessary.
● Could be as simple as running old and new workloads in parallel and comparing 

results in some kind of notebook. You may need to make certain design 
decisions to support it.

● This can actually uncover bugs!



Scaling Adoption

● Multiple teams involved: Streaming Capabilities, Customer Success (DPE).
● The first team manages the core components, the second team helps 

customers:
○ Triage questions & requests, only escalate what’s necessary.
○ Help with onboarding.
○ Act as consultants, be involved in technical designs and discussions.
○ White-glove first key customers.



Building Community

● Engage first adopters to build community!
○ Internal Q&A website.
○ #flink and other Slack channels.
○ Regular Flink User Group meetings.



In less than 6 months we had 3 
use-cases in production and 10+ 

prototypes





Next Steps

● Production Maturity 
○ Better Kubernetes tooling & integrations.
○ Zero-downtime deployments.
○ Autoscaling.

● New Features
○ 1.14 upgrade, Hybrid sources.
○ Python support.
○ Iceberg integration.
○ and more!

Final goal: serverless runtime.



Summary

● Carefully choose the right approach to build a platform.
● Build the foundation and engage customers early.
● Having more control over the key technology (e.g. forking it) may be necessary.
● Create a community, don’t afraid to white-glove first key customers.
● Keep iterating, focus on the biggest gaps.



Questions?
Twitter: @sap1ens

Also, we’re hiring! shopify.com/careers


