
Apache Flink Adoption at Shopify
Yaroslav Tkachenko

👋 Hi, I’m Yaroslav

Staff Data Engineer @ Shopify (Data Platform: Stream Processing)

Software Architect @ Activision (Data Platform)

Engineering Lead @ Mobify (Platform)

Software Engineer → Director of Engineering @ Bench Accounting
(Web Apps, Platform)

sap1ens sap1ens.com

1.7 Million+
NUMBER OF MERCHANTS

Shopify creates the best commerce tools for
anyone, anywhere, to start and grow a business.

~175 Countries
WITH MERCHANTS

~$356 Billion
TOTAL SALES ON SHOPIFY

7,000+
NUMBER OF EMPLOYEES

What I’m NOT going to cover today

Instead, we want to make building
and operating Flink applications as

easy as building and operating
Rails applications

7

We Need Realtime Data Products

● Reporting & Insights
● Product Analytics
● Data Integration
● Data Enrichment
● Sessionization
● …

Everywhere

● Sales & Orders
● Inventory
● Marketing
● Billing
● Customer Behaviour
● Messaging
● Mobile
● 3rd-party APIs
● …

Why Apache Flink?

● We’ve been building streaming applications for many years: Spark Structured
Streaming, Beam, in-house tools.

● None of the ways supports large complex stateful transformations.
● None of the ways feels like “just building another app”.

How do you build a data platform?

1. Ecosystem 3. “Serverless” Platform2. Managed Platform

Three Levels of Platforms

1. Ecosystem

Combination of libraries,
tools and standalone
services.

3. “Serverless” Platform2. Managed Platform

Examples: Apache Spark/Flink
+ related tooling.

Three Levels of Platforms

1. Ecosystem

Combination of libraries,
tools and standalone
services.

3. “Serverless” Platform2. Managed Platform

A single shared managed
runtime powering many
use-cases.

Examples: Apache Spark/Flink
+ related tooling.

Three Levels of Platforms

Examples: Google Dataproc,
Amazon EMR.

1. Ecosystem

Combination of libraries,
tools and standalone
services.

3. “Serverless” Platform

A single shared “serverless”
runtime powering many
use-cases.

2. Managed Platform

A single shared managed
runtime powering many
use-cases.

Examples: Apache Spark/Flink
+ related tooling.

Three Levels of Platforms

Examples: Google Dataproc,
Amazon EMR.

Examples: Google BigQuery,
Amazon Redshift Serverless.

Our strategy: start with an
ecosystem of tools, evolve to a

“serverless” platform

Roadmap

● First milestone, foundations:
○ Library: common Flink components, helpers and connectors:

■ Kafka (multiple flavours), GCS (many formats), Bigtable.
○ Observability: DataDog metrics reporter, structured logging for Splunk.
○ Examples: real applications demonstrating common use-cases.
○ Project generator: have a working repo in 30 seconds.
○ Documentation & customer support.

● Second milestone: launch, learn and iterate.

Ecosystem: Trickle

Ecosystem: Trickle

https://docs.google.com/file/d/1e4AW3M3BNinCEB6lnvijYtDFjPb527C3/preview

implicit val env = Trickle.createEnv()

Typical Flink application

implicit val env = Trickle.createEnv()

val checkoutTrackSource: DataStream[CheckoutTrack] =
CheckoutTrackMonorailSource()

val lineItemsSource: DataStream[LineItemRecord] = CDCSource[LineItemRecord](
 topic = "core-line_items-v2", // ...
)

Typical Flink application

implicit val env = Trickle.createEnv()

val checkoutTrackSource: DataStream[CheckoutTrack] =
CheckoutTrackMonorailSource()

val lineItemsSource: DataStream[LineItemRecord] = CDCSource[LineItemRecord](
 topic = "core-line_items-v2", // ...
)

val sink: SinkFunction[Result] = pipelineConfig.sinkType match {
 case Print => new PrintSinkFunction()
 case Bigtable => BigtableSink[Result](
 table = "vendor_popularity", // ...
)
}

Typical Flink application

implicit val env = Trickle.createEnv()

val checkoutTrackSource: DataStream[CheckoutTrack] = CheckoutTrackMonorailSource()

val lineItemsSource: DataStream[LineItemRecord] = CDCSource[LineItemRecord](
 topic = "core-line_items-v2", // ...
)

val sink: SinkFunction[Result] = pipelineConfig.sinkType match {
 case Print => new PrintSinkFunction()
 case Bigtable => BigtableSink[Result](
 table = "vendor_popularity", // ...
)
}

val checkouts = processCheckoutTrackSource(checkoutTrackSource)
val lineItems = processLineItemsSource(lineItemsSource)
val results = aggregateJoinResults(
 joinCheckoutsAndLineItems(checkouts, lineItems)
)

results.addSink(sink)

env.execute("Demo App")

Typical Flink application

implicit val env = Trickle.createEnv()

val checkoutTrackSource: DataStream[CheckoutTrack] = CheckoutTrackMonorailSource()

val lineItemsSource: DataStream[LineItemRecord] = CDCSource[LineItemRecord](
 topic = "core-line_items-v2", // ...
)

val sink: SinkFunction[Result] = pipelineConfig.sinkType match {
 case Print => new PrintSinkFunction()
 case Bigtable => BigtableSink[Result](
 table = "vendor_popularity", // ...
)
}

val checkouts = processCheckoutTrackSource(checkoutTrackSource)
val lineItems = processLineItemsSource(lineItemsSource)
val results = aggregateJoinResults(
 joinCheckoutsAndLineItems(checkouts, lineItems)
)

results.addSink(sink)

env.execute("Demo App")

Typical Flink application

Trickle V2 documentation

Lessons Learned

Apache Flink Fork

● We had to fork Flink in order to incorporate early features and add bugfixes:
○ E.g. running Flink in GCP might be tricky; Parquet reader < 1.14 has tons of

issues.
○ Some things just don’t work properly (there are no good DogStatsD metrics

reporters out there).
● Maintaining the fork doesn’t need to be hard!

Fork Upstream

Tag: release-1.14.3

Branch:
shopify-release-1.14.3

Shopify
changes

Branch: masterBranch: master

Our Flink fork branching strategy

shopify-flink

Branch:
shopify-release-1.14.3

Shopify
changes

Artifact
Repository

(JARs)

GCS
(Binary

distribution)

CI Job:
shopify-flink-publish-package

data-docker-images Docker
Registry

Our Flink fork build process

Data Reconciliation

● Consider investing in data reconciliation tooling when migrating workloads.
○ E.g. we have a data integrity service that continuously performs data

integrity checks and alerts if necessary.
● Could be as simple as running old and new workloads in parallel and comparing

results in some kind of notebook. You may need to make certain design
decisions to support it.

● This can actually uncover bugs!

Scaling Adoption

● Multiple teams involved: Streaming Capabilities, Customer Success (DPE).
● The first team manages the core components, the second team helps

customers:
○ Triage questions & requests, only escalate what’s necessary.
○ Help with onboarding.
○ Act as consultants, be involved in technical designs and discussions.
○ White-glove first key customers.

Building Community

● Engage first adopters to build community!
○ Internal Q&A website.
○ #flink and other Slack channels.
○ Regular Flink User Group meetings.

In less than 6 months we had 3
use-cases in production and 10+

prototypes

Next Steps

● Production Maturity
○ Better Kubernetes tooling & integrations.
○ Zero-downtime deployments.
○ Autoscaling.

● New Features
○ 1.14 upgrade, Hybrid sources.
○ Python support.
○ Iceberg integration.
○ and more!

Final goal: serverless runtime.

Summary

● Carefully choose the right approach to build a platform.
● Build the foundation and engage customers early.
● Having more control over the key technology (e.g. forking it) may be necessary.
● Create a community, don’t afraid to white-glove first key customers.
● Keep iterating, focus on the biggest gaps.

Questions?
Twitter: @sap1ens

Also, we’re hiring! shopify.com/careers

