
Type-safe Machine Learning
Orchestration with Flyte and

Pandera
 Data Council Austin 2022

Niels Bantilan, ML Engineer @ Union.ai
03/23/2022

Type-safety is a critical feature of
orchestration tools that deal with data
and machine learning

Types define the set of values that data can take, but they
also define the domain of operations that we can perform on
that data.

✅ 1 + 1 → 2
❌ 1 + “a” → undefined

✅ mean([1, 2, 3]) → 2
❌ mean([“a”, “b”, “a”, “c”]) → undefined

integers ∈ { 1, 2, -1, 5, 1000, … }
strings ∈ { “a”, “xyz”, “hello”, “foobar”, …}

Or more complex:

list[int]
dict[str, float]
dict[str, list[float]]

Types can be simple:

int, float, str

Let’s talk about housing 🏡

Source: https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset

https://scikit-learn.org/stable/datasets/real_world.html#california-housing-dataset

Let’s talk about housing 🏡
pandas.DataFrame({
 'Latitude': [37.88, …],
 'Longitude': [-122.23, …],
 'AveBedrms': [1.0238, …],
 'AveOccup': [2.5555, …],
 'AveRooms': [6.9841, …],
 'HouseAge': [41.0, …],
 'MedInc': [8.3252, …],
 'Population': [322.0, …],
 'MedHouseVal': [4.526, …],
})

Source: https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html

float

positive float

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html

Enforcing and maintaining data quality is challenging

Production machine learning has a complexity problem

source: https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf

How do I know if these components are compatible?

https://proceedings.neurips.cc/paper/2015/file/86df7dcfd896fcaf2674f757a2463eba-Paper.pdf

Input → Program → Output

(Features, Labels) Learning Algorithm Model

Input → Program → Model program

Features input

Predictions output

Strongly-typed interfaces unlock static analysis capabilities
that push many potential errors from the runtime context
into the compile-time context.

Reliability

Readability: as a human being 👫 or machine 🤖, I can tell what a
component needs as input and what it produces as output.

Reproducibility: when a component fails 💥 at its input/output boundaries, I
can be more confident that I can reproduce the error 🐞.

Efficiency

Caching: if I want to determine whether I should hit the cache 🎒 or
re-compute 🔁 the result of a component, I can first check for changes in a
function’s type signature before checking actual input values.

Parallelization: before I try to concurrently apply functions to a collection of
inputs 🛍🛍🛍, I can be confident that the elements in the collection are of
the correct type.

Auditability

Debugging: When a pipeline execution fails 💥, I can pinpoint the cause of
the error quickly and understand how to address it.

Data Lineage: I can understand how some downstream artifact 📦 came to
be by looking at the upstream processes 🏭 that produced it.

Flyte is a data- and machine-learning-aware orchestration
tool with type-safety built into multiple layers of the
software stack.

Flyte
Easily Compose
Workflows 🔀
using Tasks as
Building Blocks
🧱

pip install flytekit

California House Price Regression

pandas.DataFrame({
 'Latitude': [37.88, …],
 'Longitude': [-122.23, …],
 'AveBedrms': [1.0238, …],
 'AveOccup': [2.5555, …],
 'AveRooms': [6.9841, …],
 'HouseAge': [41.0, …],
 'MedInc': [8.3252, …],
 'Population': [322.0, …],
 'MedHouseVal': [4.526, …],
})

features

target

Pipeline
Overview

What Types are
We Going to
Use?

Tasks are 📦
Containerized
Units of Work
🛠 with a
Transparent
Interface

Workflows are
Dynamic DAGs
that Compose
Tasks Together
to do Something
Useful 🏗

Auto-generate
Strongly Typed
Launch Forms 📝

Docker 🐳
Guarantees
Reproducibility

…as long as tasks are
idempotent

Flyte Statically
Analyzes 🔍 the
DAG to catch
Type Errors

Catch Value
Errors 🐞 When
Testing Locally

Know Where
your Pipeline
Blew Up 🧨

Cache the
Outputs of a
Task 🎒

Errors at the
End of a
Long-running
Training
Pipeline got you
Down 😓?

Don’t
Re-compute,
Hit the Cache!
🤜🎒

Workflows
Execute Tasks
with Built-in
Parallelism 🔀

Static Type
Checking 🔍
Applies to
Parallelized
Invocations of a
Task

Trace Model
Artifacts to the
Data and
Downstream
Processes that
Produced it

But wait, what about data types for machine learning?

Pandera is a statistical typing and data testing library for
dataframes, providing tools for defining complex data types
and unit testing your pipelines with them.

Statistical Typing: Specifying the properties of collections
of data points

Single data point
● Primitive data types
● Value range
● Allowable values
● Regex string match
● Nullability

Latitu
de

Longitude

AveBedrms

AveOccup

Collection of data points

Statistical Typing: Specifying the properties of collections
of data points

Latitu
de

Longitude

AveBedrms

AveOccup

● Apply atomic checks at scale
● Uniqueness
● Monotonicity
● Mean, median, standard deviation
● Statistical distributions
● Fractional checks, e.g. “90% of data

points are not null”

…

Statistical properties, by definition, can only be verified at
runtime, but we can also define functions that use statistical
type annotations that verify valid operations on those types.

Data Testing: Validating not only real data…

transform function

transformed data

apply
validations

Real world 🌏 raw data

… but also the functions that produce them

transform function

transformed data

apply
validations

transform function

mock transformed
data

...

Real world 🌏

Unit tests 🧪 test case 1

test case 2

test case N

raw data

Generate test
cases

Pandera
Define
Statistical
Types for your
DataFrame-like
Objects 📊🖼

pip install pandera

Pandera and
Flyte Play Well
Together 🤝

pip install flytekitplugins-pandera

Defining a
Statistical Type
for California
Housing
Dataset 🏡

log(MedHouseVal)

Custom Checks
are Just…

🎉 Functions 🎉

Know When
Your Data Has
Missing
Columns 🏛

Know When
Your Data Has
the Wrong
Type ⌨

Know When
Your Data Has
the Wrong
Values 💵

Know When
Your Data Has
the Wrong
Statistical
Distribution 📊

Synthesize Valid
Data Under
Your Schema’s
Constraints 🤯

Test Your Data…

… the Functions
That Produce
Them…

… and the
Artifacts They
Help Create.

Takeaway 1
Flyte is an orchestration and distributed execution platform where
type-safety is deeply integrated with other features, which together provide
strong reliability, efficiency, and auditability guarantees.

Takeaway 2
With Pandera, you can ensure the quality of data flowing through your
machine learning pipelines and the correctness of those pipelines
themselves by expressing statistical types directly in your codebase.

Takeaway 3
With Flyte and Pandera combined, you can build, deploy, and scale these
ML pipelines while enjoying the guarantee that, when things go wrong,
you’ll know where exactly the error occurred to help you fix it.

Flyte Roadmap Pandera Roadmap

Flyte Decks: A Customizable Reporting API for
your Pipeline Artifacts

ML-awareness: Intra-task model checkpointing,
data labeling.

Serving Integrations: support for model serving,
low latency batch workflows, model monitoring.

Extensibility: support for xarray, jsonschema,
pyarrow, and more!

User Experience: more built-in checks, statistical
hypothesis checks

Interoperability: tighter integrations with the
python ecosystem, e.g. fastapi, pydantic, pytest

Contact
email: niels@union.ai
twitter: @cosmicbboy
linkedin: linkedin.com/in/nbantilan

Flyte
website: www.flyte.org
docs: docs.flyte.org
repo: github.com/flyteorg/flyte

Pandera
docs: pandera.readthedocs.io
repo: github.com/pandera-dev/pandera

Where do I learn more?

https://twitter.com/cosmicBboy
http://www.linkedin.com/in/nbantilan/
http://www.flyte.org
https://docs.flyte.org/
https://github.com/flyteorg/flyte
https://pandera.readthedocs.io/en/stable/
https://github.com/pandera-dev/pandera

