AI Monitoring & Explainability: The Critical Hidden Connection

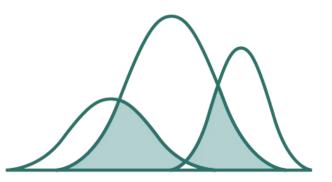
Anupam Datta

Co-Founder, President, Chief Scientist

TruEra

Confidential. Do not distribute.

truera



What people think ML Monitoring is like...

A lot can go wrong.

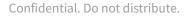
Data Bugs

Unforeseen Changes

New, untrained use cases

Shifting concepts & behavior

Adversarial attacks



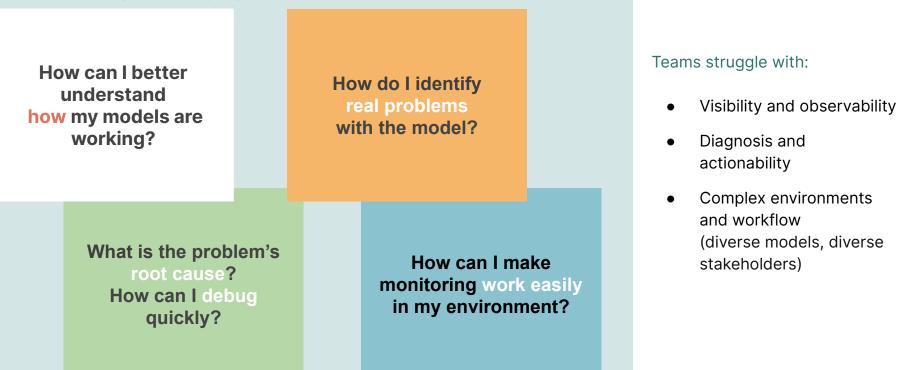
The harsh reality of ML.

The moment you put a model in production, it goes on a wild ride.

So monitoring is key.

Monitoring is not that easy today. Data Science and ML Ops teams struggle to minimize ML risk.

There's a wild goose chase going on.



Confidential. Do not distribute.

Monitoring Requirements

Fast, precise, and complete.



Broad coverage of model & data quality metrics

Fast, precise debugging

Easy to deploy and scale

AI Monitoring & Explainability: The Critical Hidden Connection

Focus Today: Monitoring Requirements

Fast, precise, and complete.



Model Drift & Performance Metrics

Fast, precise debugging with root cause analysis

Easy to deploy and scale

AI Monitoring & Explainability: The Critical Hidden Connection

Outline

• Overview

- Why does drift happen?
- What are different kinds of drift?
- What is consequential drift?

• How to identify drift?

- Measures
- Challenges
- How to mitigate drift?
- Monitoring

Overview of Drift

Overview of Drift

Bikes used to look like this

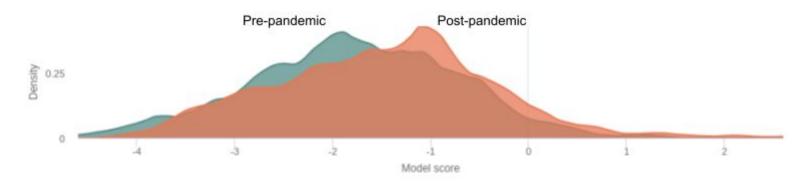
... now they look like this

Will an ML model trained on images like the left continue to work well?

Overview of Drift

This is similar to what happened to models with Covid.

Example: risk scoring model. Lower model score shows lower risk.



Will an ML model trained on pre-pandemic data continue to work well?

Overview: Why does drift happen?

Data quality issues

Examples:

NaN

• Broken feature pipelines

The External World Has Changed

Examples:

- The pandemic
- Housing market fluctuations

Model Applied to a New Context

Example:

• Model trained on Wikipedia applied to news articles

Collected Training Data Is Different

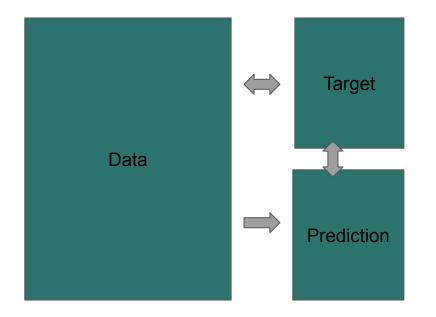
Example:

- For credit decisions, labels are only available for approved applicants
- Impact of your models on the data

Confidential. Do not distribute.

truera

Overview: What are the Different Kinds of Drift?



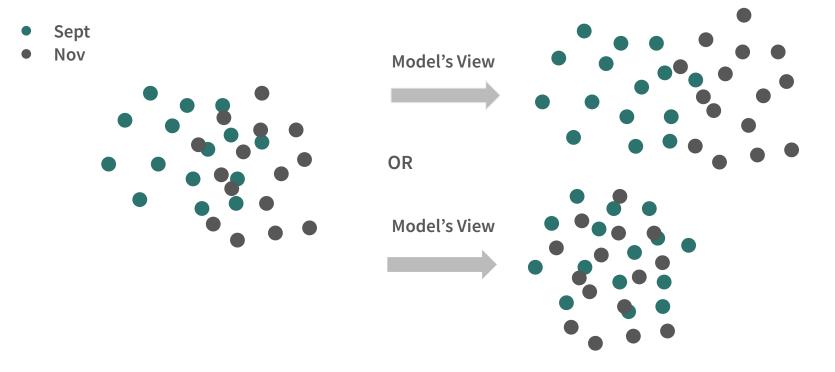
1. Data drift

- a. Covariate shift -- drift in input features
- b. Concept drift -- drift in relationship between input and target
- 2. Model decay -- performance loss due to data drift
- 3. "Prediction shift" -- drift in model predictions

Confidential. Do not distribute.

truera

Overview: Which Drifts are Consequential and Why? ^{truera}



High-dimensional data always drifts (curse of dimensionality)

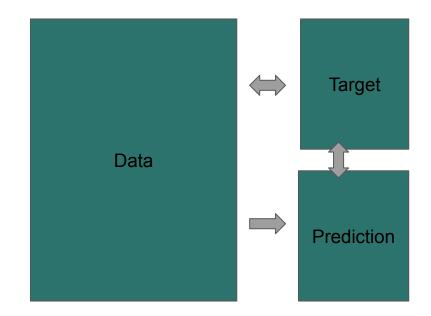
... but not necessarily in ways that affect the model

How to identify drift?

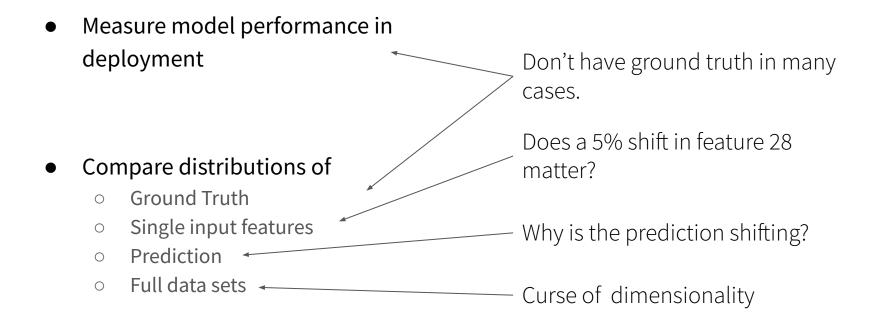
Standard Approaches To Measuring Drift

• Measure model performance in deployment

- Compare distributions of
 - Ground Truth
 - Single input features
 - \circ Prediction
 - Full data sets



Challenges with Standard Approaches



example scenarios

Blind model retraining is often not the best answer to counter drift.

Step 1: Understand root causes of drift:

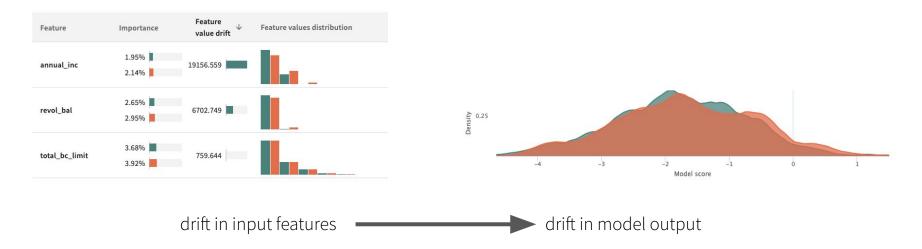
Where is it happening?
When is it happening?
How much is there?
What is causing it?

Monitoring & Explainability – The Critical Hidden Connection!

Step 2: Understanding the root cause of drift leads to targeted ways to address drift

Is the drift caused by an unstable feature?

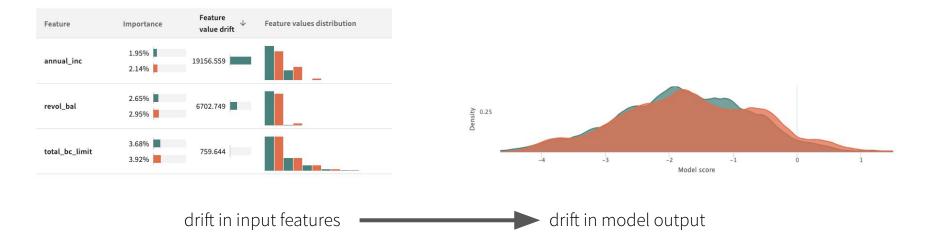
- Identify and address cause (of prediction drift).
 - Remove a feature without retraining (i.e. replace with mean/mode).
 - Remove a feature and retrain with existing data.



Is the drift caused by an unstable feature?

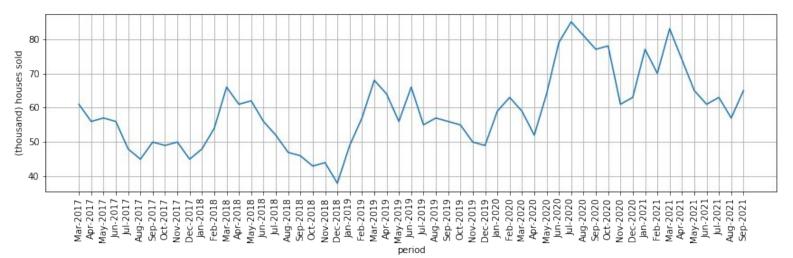
- Explainability technology under the hood
 - Feature importances based on Shapley Values, gradients & more

iruera



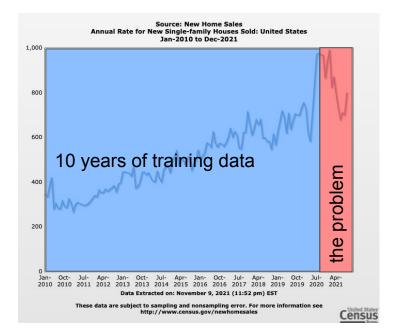
Is the drift periodic or learnable?

- Concept drift --> Covariate drift with feature engineering
 - Add features to learn periodic change over time.
 - Add indicators of effects of unexpected events ("is-covid" vs "unemployment-rate")
 - Might not need labeling additional data.



Is the drift sudden relative to training period?

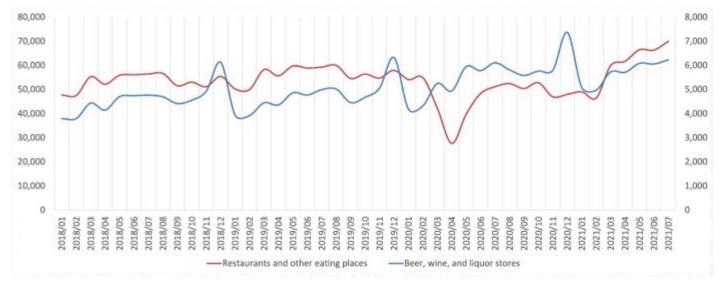
- Drift period may be too insignificant for a retrained model to pick up on it.
- Options:
 - Upweight recent data.
 - Fine tune model with recent data.
 - Identify new features that can help generalize to newer data
 - Example: newer data might be characterized by lower interest rates which might not have been predictive before



What can we do about drift?

Is the drift periodic or learnable?

- Concept drift --> Covariate drift with feature engineering
 - Add features to learn periodic change over time.
 - Add indicators of effects of unexpected events ("is-covid" vs "unemployment-rate")
 - Might not need labeling additional data.



Is the drift significant enough? Is it affecting model outputs? Is it affecting performance?

• No action may be needed.

- It might be the case that the model has shifted in a way that is still reasonable.
- Also needs understanding the root cause of drift.

ML Monitoring

ML Monitoring involves computing drift on data or metrics over time

• Track drift over time

- Basics: Feature Data, Predictions
 - If available: Ground truth, Accuracy
 - Consequences: Influences, MSI, etc
- Set alerts if drift above specific threshold
- Run automated root cause analysis
- Mitigate

Takeaways

Overview

- Data drift can happen due to a variety of internal and external causes.
- Not all drift impacts the model
- Important to identify consequential drift

• How to identify drift?

- Different classes of metrics to capture different types of drift: features, ground truth, model output, relationships
- \circ \quad How to use TruEra to identify root causes of drift

• How to mitigate drift?

- Not just retrain: Important to understand type and root cause of drift in order to mitigate
- Retraining, adding features, feature engineering, fixing data quality, and more

Focus Today: Monitoring Requirements

Fast, precise, and complete.



Model Drift & Performance Metrics

Fast, precise debugging with root cause analysis

Easy to deploy and scale

AI Monitoring & Explainability: The Critical Hidden Connection

Monitoring Requirements

Fast, precise, and complete.



Broad coverage of model & data quality metrics

Fast, precise debugging

Easy to deploy and scale

AI Monitoring & Explainability: The Critical Hidden Connection

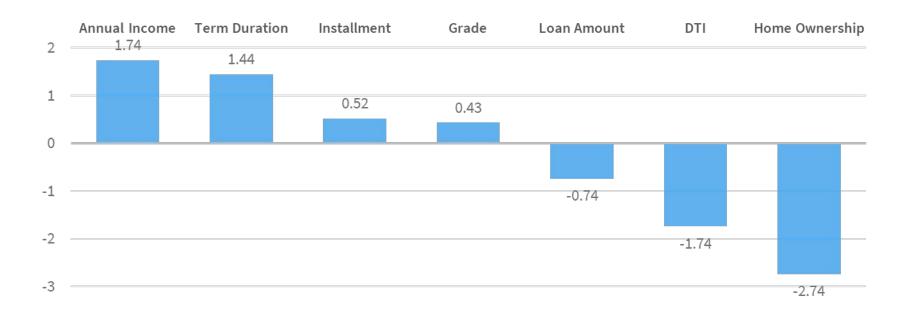
Thank you!

Q&A Time

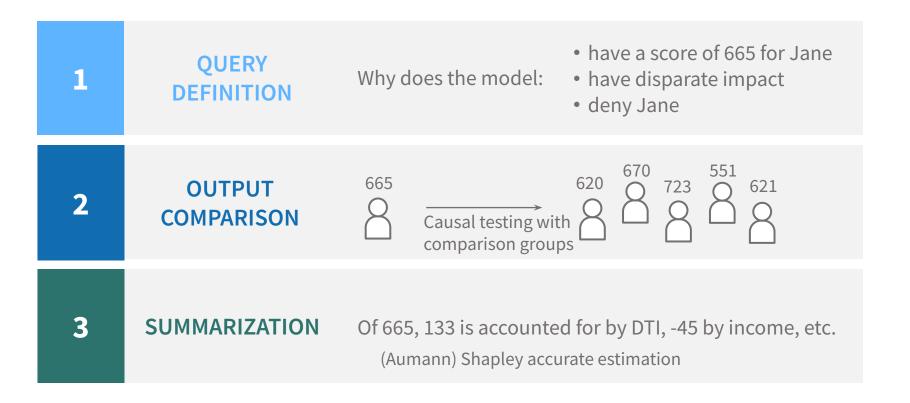
Appendix: Explainability Methods

iruera

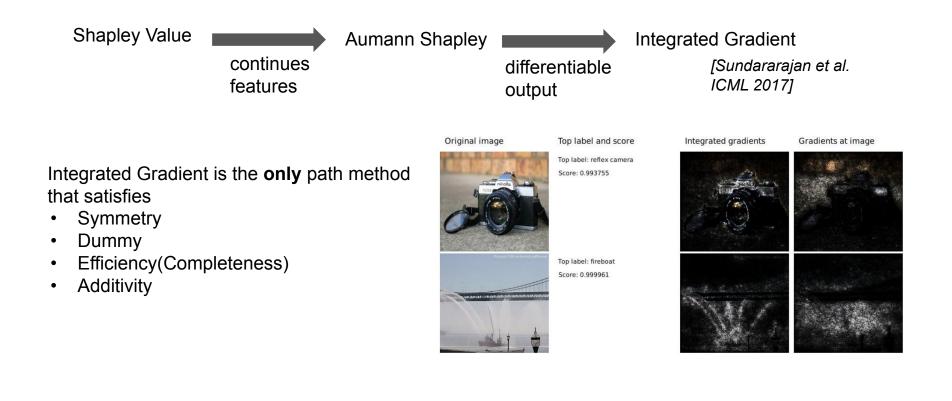
Input Feature Importance for a Tree Model



Elements of Explanation Methods



Integrated Gradient



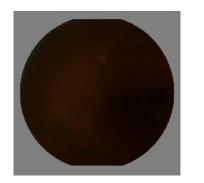
What Makes Orlando Bloom Orlando Bloom?

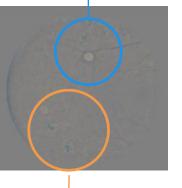
Internal explanation for a deep network

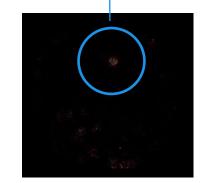
Influence-Directed Explanations Leino, Sen, Fredrikson, Datta, Li, ITC '18

Detecting Diabetic Retinopathy Stage 5

Optical Disk



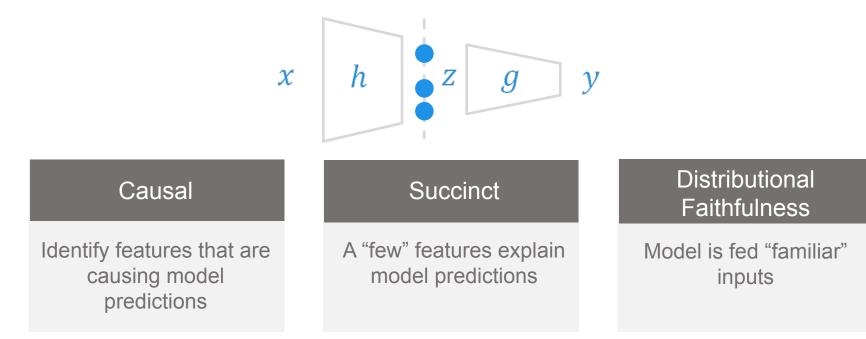




Lesions

Influence-Directed Explanations Leino, Sen, Fredrikson, Datta, Li 2018

Requirements for "Good" Explanations



Influence-Directed Explanations Leino, Sen, Fredrikson, Datta, Li, ITC '18

Distributional Influence

Influence = average gradient over distribution of interest

